151
|
Bi S, Cui Y, Dong Y, Zhang N. Target-induced self-assembly of DNA nanomachine on magnetic particle for multi-amplified biosensing of nucleic acid, protein, and cancer cell. Biosens Bioelectron 2013; 53:207-13. [PMID: 24140870 DOI: 10.1016/j.bios.2013.09.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 12/19/2022]
Abstract
A biosensing system is established for the multi-amplified detection of DNA or specific substrates of aptamers under isothermal conditions, which combines nicked rolling circle amplification (N-RCA) and beacon assisted amplification (BAA) with sensitive colorimetric technique by using DNAzymes as reporter units. According to the configuration, the analysis of DNA is accomplished by recognizing the target to capture nucleic acid-functionalized magnetic particles, followed by the self-assembly of the other two nucleic acids into multicomponent DNA supramolecular structure on magnetic particles. After magnetic separation, the circularization with ligase and the fragmentation with polymerase activate N-RCA and BAA in the presence of polymerase, dNTPs, and the nicking endonuclease, successively producing horseradish peroxidase (HRP)-mimicking DNAzymes that act as colorimetric reporter to catalyze the oxidation of ABTS(2-) by H2O2 in the presence of hemin. Under the optimized conditions, we obtain a wide dynamic range for DNA analysis over 6 orders of magnitude from 1.0 × 10(-14) to 1.0 × 10(-9)M with a low limit of detection of 6.8 × 10(-15)M. In the absence of a target, neither self-assembly of nucleic acids nor amplification process can be initiated, indicating an excellent selectivity of the proposed strategy. Similarly, an analogous system is activated by cancer cells or lysozyme through cooperative self-assembly of nucleic acids on magnetic particles in the presence of respective substrates of aptamers to synthesize HRP-mimicking DNAzymes that give the readout signal for the recognition events, achieving LODs of 81 Ramos cells and 7.2 × 10(-15)M lysozyme, respectively.
Collapse
Affiliation(s)
- Sai Bi
- Shandong Provincial Key Laboratory of Detection Technology of Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | |
Collapse
|
152
|
Artificial Metalloenzymes Constructed From Hierarchically-Assembled Proteins. Chem Asian J 2013; 8:1646-60. [DOI: 10.1002/asia.201300347] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/20/2023]
|
153
|
Seixas JD, Mukhopadhyay A, Santos-Silva T, Otterbein LE, Gallo DJ, Rodrigues SS, Guerreiro BH, Gonçalves AML, Penacho N, Marques AR, Coelho AC, Reis PM, Romão MJ, Romão CC. Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics. Dalton Trans 2013; 42:5985-98. [PMID: 23223860 PMCID: PMC3618497 DOI: 10.1039/c2dt32174b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complex fac-[Mo(CO)(3)(histidinate)]Na has been reported to be an effective CO-Releasing Molecule in vivo, eliciting therapeutic effects in several animal models of disease. The CO releasing profile of this complex in different settings both in vitro and in vivo reveals that the compound can readily liberate all of its three CO equivalents under biological conditions. The compound has low toxicity and cytotoxicity and is not hemolytic. CO release is accompanied by a decrease in arterial blood pressure following administration in vivo. We studied its behavior in solution and upon the interaction with proteins. Reactive oxygen species (ROS) generation upon exposure to air and polyoxomolybdate formation in soaks with lysozyme crystals were observed as processes ensuing from the decomposition of the complex and the release of CO.
Collapse
Affiliation(s)
- João D. Seixas
- Alfama Lda, Taguspark, núcleo central 267, 2740-122 Porto Salvo, Portugal
| | - Abhik Mukhopadhyay
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Leo E Otterbein
- Harvard Medical School, Department of Surgery, Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - David J. Gallo
- Harvard Medical School, Department of Surgery, Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | | | - Bruno H. Guerreiro
- Alfama Lda, Taguspark, núcleo central 267, 2740-122 Porto Salvo, Portugal
| | | | - Nuno Penacho
- Alfama Lda, Taguspark, núcleo central 267, 2740-122 Porto Salvo, Portugal
| | - Ana R. Marques
- Alfama Lda, Taguspark, núcleo central 267, 2740-122 Porto Salvo, Portugal
| | - Ana C. Coelho
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Patrícia M. Reis
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Maria J. Romão
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos C. Romão
- Alfama Lda, Taguspark, núcleo central 267, 2740-122 Porto Salvo, Portugal
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
154
|
Jesse HE, Nye TL, McLean S, Green J, Mann BE, Poole RK. Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or bo'' to inhibition by the carbon monoxide-releasing molecule, CORM-3: N-acetylcysteine reduces CO-RM uptake and inhibition of respiration. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1693-703. [PMID: 23624261 PMCID: PMC3787766 DOI: 10.1016/j.bbapap.2013.04.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/04/2022]
Abstract
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Cytochrome bd-I is a CORM- insensitive heme-protein in E. coli. The oxygen affinity of the ‘third oxidase’, cytochrome bd-II is low (Km 0.24 μM). Non-thiol antioxidants do not prevent CO-RM-mediated inhibition of respiration. N-acetylcysteine reduces the uptake of CORM-2 and CORM-3 by E. coli.
Collapse
Affiliation(s)
- Helen E Jesse
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK.
| | | | | | | | | | | |
Collapse
|
155
|
Woys AM, Mukherjee SS, Skoff DR, Moran SD, Zanni MT. A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies. J Phys Chem B 2013; 117:5009-18. [PMID: 23537223 DOI: 10.1021/jp402946c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of non-natural infrared probes is reported that consist of a metal-tricarbonyl modified with a -(CH2)n- linker and cysteine-specific leaving group. They can be site-specifically attached to proteins using mutagenesis and similar protocols for EPR spin labels, which have the same leaving group. We characterize the label's frequencies and lifetimes using 2D IR spectroscopy in solvents of varying dielectric. The frequency range spans 10 cm(-1), and the variation in lifetimes ranges from 6 to 19 ps, indicating that these probes are very sensitive to their environments. Also, we attached probes with -(CH2)-, -(CH2)3-, and -(CH2)4- linkers to ubiquitin at positions 6 and 63 and collected spectra in aqueous buffer. The frequencies and lifetimes were correlated for 3C and 4C linkers, as they were in the solvents, but did not correlate for the 1C linker. We conclude that lifetime measures solvation, whereas frequency reflects the electrostatics of the environment, which in the case of the 1C linker is a measure of the protein electrostatic field. We also labeled V71C α-synuclein in buffer and membrane-bound. Unlike most other infrared labels, this label has extremely strong cross sections and thus can be measured with 2D IR spectroscopy at sub-millimolar concentrations. We expect that these labels will find use in studying the structure and dynamics of membrane-bound, aggregated, and kinetically evolving proteins for which high signal-to-noise at low protein concentrations is imperative.
Collapse
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | | | | | | | | |
Collapse
|
156
|
Garcı́a-López JA, Oliva-Madrid MJ, Saura-Llamas I, Bautista D, Vicente J. Room-Temperature Isolation of Palladium(II) Organocarbonyl Intermediates in the Synthesis of Eight-Membered Lactams after Alkyne/CO Sequential Insertions. Organometallics 2013. [DOI: 10.1021/om301241n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- José-Antonio Garcı́a-López
- Grupo de Quı́mica
Organometálica, Departamento
de Quı́mica Inorgánica, Facultad de
Quı́mica, Universidad de Murcia, E-30071 Murcia, Spain
| | - Marı́a-José Oliva-Madrid
- Grupo de Quı́mica
Organometálica, Departamento
de Quı́mica Inorgánica, Facultad de
Quı́mica, Universidad de Murcia, E-30071 Murcia, Spain
| | - Isabel Saura-Llamas
- Grupo de Quı́mica
Organometálica, Departamento
de Quı́mica Inorgánica, Facultad de
Quı́mica, Universidad de Murcia, E-30071 Murcia, Spain
| | | | - José Vicente
- Grupo de Quı́mica
Organometálica, Departamento
de Quı́mica Inorgánica, Facultad de
Quı́mica, Universidad de Murcia, E-30071 Murcia, Spain
| |
Collapse
|
157
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
158
|
King JT, Kubarych KJ. Ultrafast slaving dynamics at the protein-water interface studied with 2D-IR spectroscopy. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
159
|
King JT, Kubarych KJ. Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy. J Am Chem Soc 2012; 134:18705-12. [PMID: 23101613 DOI: 10.1021/ja307401r] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is considerable evidence for the slaving of biomolecular dynamics to the motions of the surrounding solvent environment, but to date there have been few direct experimental measurements capable of site-selectively probing both the dynamics of the water and the protein with ultrafast time resolution. Here, two-dimensional infrared spectroscopy (2D-IR) is used to study the ultrafast hydration and protein dynamics sensed by a metal carbonyl vibrational probe covalently attached to the surface of hen egg white lysozyme dissolved in D(2)O/glycerol solutions. Surface labeling provides direct access to the dynamics at the protein-water interface, where both the hydration and the protein dynamics can be observed simultaneously through the vibrational probe's frequency-frequency correlation function. In pure D(2)O, the correlation function shows a fast initial 3 ps decay corresponding to fluctuations of the hydration water, followed by a significant static offset attributed to fluctuations of the protein that are not sampled within the <20 ps experimental window. Adding glycerol increases the bulk solvent viscosity while leaving the protein structurally intact and hydrated. The hydration dynamics exhibit a greater than 3-fold slowdown between 0 and 80% glycerol (v/v), and the contribution from the protein's dynamics is found to slow in a nearly identical fashion. In addition, the magnitude of the dynamic slowdown associated with hydrophobic hydration is directly measured and shows quantitative agreement with predictions from molecular dynamics simulations.
Collapse
Affiliation(s)
- John T King
- Department of Chemistry, University of Michigan, Ann Arbor, 48109, United States
| | | |
Collapse
|
160
|
Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable photoCORMs labilized by visible light. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.12.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
161
|
Santos MFA, Seixas JD, Coelho AC, Mukhopadhyay A, Reis PM, Romão MJ, Romão CC, Santos-Silva T. New insights into the chemistry of fac-[Ru(CO)₃]²⁺ fragments in biologically relevant conditions: the CO releasing activity of [Ru(CO)₃Cl₂(1,3-thiazole)], and the X-ray crystal structure of its adduct with lysozyme. J Inorg Biochem 2012; 117:285-91. [PMID: 22883959 DOI: 10.1016/j.jinorgbio.2012.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/24/2012] [Accepted: 06/25/2012] [Indexed: 11/30/2022]
Abstract
Complexes of the general formula fac-[Ru(CO)(3)L(3)](2+), namely CORM-2 and CORM-3, have been successfully used as experimental CO releasing molecules (CO-RMs) but their mechanism of action and delivery of CO remain unclear. The well characterized complex [Ru(CO)(3)Cl(2)(1,3-thiazole)] (1) is now studied as a potential model CO-RM of the same family of complexes using LC-MS, FTIR, and UV-vis spectroscopy, together with X-ray crystallography. The chemistry of [Ru(CO)(3)Cl(2)(1,3-thiazole)] is very similar to that of CORM-3: it only releases residual amounts of CO to the headspace of a solution in PBS7.4 and produces marginal increase of COHb after long incubation in whole blood. 1 also reacts with lysozyme to form Ru adducts. The crystallographic model of the lysozyme-Ru adducts shows only mono-carbonyl Ru species. [Ru(H(2)O)(4)(CO)] is found covalently bound to a histidine (His15) and to two aspartates (Asp18 and Asp119) at the protein surface. The CO release silence of both 1 and CORM-3 and their rapid formation of protein-Ru(CO)(x)(H(2)O)(y) (x=1,2) adducts, support our hypothesis that fac-[Ru(CO)(3)L(3)] CO-RMs deliver CO in vivo through the decay of their adducts with plasma proteins.
Collapse
Affiliation(s)
- M F A Santos
- REQUIMTE-CQFB, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Marques AR, Kromer L, Gallo DJ, Penacho N, Rodrigues SS, Seixas JD, Bernardes GJL, Reis PM, Otterbein SL, Ruggieri RA, Gonçalves ASG, Gonçalves AML, Matos MND, Bento I, Otterbein LE, Blättler WA, Romão CC. Generation of Carbon Monoxide Releasing Molecules (CO-RMs) as Drug Candidates for the Treatment of Acute Liver Injury: Targeting of CO-RMs to the Liver. Organometallics 2012. [DOI: 10.1021/om300360c] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ana R. Marques
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Lukas Kromer
- Instituto de Tecnologia Quı́mica
e Biológica da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras,
Portugal
| | - David J. Gallo
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Nuno Penacho
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Sandra S. Rodrigues
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - João D. Seixas
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
- Instituto de Tecnologia Quı́mica
e Biológica da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras,
Portugal
| | - Gonçalo J. L. Bernardes
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Patrícia M. Reis
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
- Instituto de Tecnologia Quı́mica
e Biológica da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras,
Portugal
| | - Sherrie L. Otterbein
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Rachel A. Ruggieri
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Ana S. G. Gonçalves
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Ana M. L. Gonçalves
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Marta N. De Matos
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Isabel Bento
- Instituto de Tecnologia Quı́mica
e Biológica da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras,
Portugal
| | - Leo E. Otterbein
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
- Harvard Medical
School, Transplant Institute, Department
of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Walter A. Blättler
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
| | - Carlos C. Romão
- Alfama Inc., Taguspark, núcleo central 267,
2740-122 Porto Salvo, Portugal, and 100 Cummings Center, Beverly,
Massachusetts 01915, United States
- Instituto de Tecnologia Quı́mica
e Biológica da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras,
Portugal
| |
Collapse
|
163
|
Affiliation(s)
- Brian E. Mann
- Department of Chemistry, University of Sheffield, Sheffield,
United Kingdom S3 7HF
| |
Collapse
|
164
|
King JT, Arthur EJ, Brooks CL, Kubarych KJ. Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents. J Phys Chem B 2012; 116:5604-11. [PMID: 22530969 DOI: 10.1021/jp300835k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermodynamic driving forces for protein folding, association, and function are often determined by protein-water interactions. With a novel covalently bound labeling approach, we have used sensitive vibrational probes, site-selectively conjugated to two lysozyme variants-in conjunction with ultrafast two-dimensional infrared (2D-IR) spectroscopy-to investigate directly the protein-water interface. By probing alternatively a topologically flat, rigid domain and a flexible domain, we find direct experimental evidence for spatially heterogeneous hydration dynamics. The hydration environment around globular proteins can vary from exhibiting bulk-like hydration dynamics to dynamically constrained water, which results from stifled hydrogen bond switching dynamics near extended hydrophobic surfaces. Furthermore, we leverage preferential solvation exchange to demonstrate that the liberation of dynamically constrained water is a sufficient driving force for protein-surface association reactions. These results provide an intuitive picture of the dynamic aspects of hydrophobic hydration of proteins, illustrating an essential function of water in biological processes.
Collapse
Affiliation(s)
- John T King
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
165
|
Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity. Anal Biochem 2012; 427:36-40. [PMID: 22561917 DOI: 10.1016/j.ab.2012.04.026] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/10/2012] [Accepted: 04/24/2012] [Indexed: 01/15/2023]
Abstract
Carbon monoxide-releasing molecules (CO-RMs) emulate the beneficial (e.g., anti-inflammatory) effects of CO in biology. CO release from CO-RMs is routinely determined in the presence of reduced deoxy-myoglobin by measuring the formation of carboxy-myoglobin (Mb-CO). Previous studies have highlighted discrepancies between the apparent CO release rates of some CO-RMs established using this assay versus other experimental data where a slower or more complex mechanism of release is suggested. It has been hypothesized that some CO-RMs require a CO acceptor, believed to be reduced myoglobin in Mb-CO assays, in order to facilitate the release of CO. Here, we show, for the first time, that CO is not liberated from the ruthenium (Ru)-based [Ru(CO)(3)Cl(2)](2) (CORM-2) and [Ru(CO)(3)Cl(glycinate)] (CORM-3) at an appreciable rate in the presence of reduced myoglobin alone. Rather, we confirm that it is the reducing agent sodium dithionite that facilitates release of CO from these CO-RMs. Other sulfite compounds, namely sodium sulfite and potassium metabisulfite, also promote the liberation of CO from CORM-3. We describe an alternative oxy-hemoglobin assay that eliminates dithionite and suggest that the efficacy of CO-RMs results from intracellular interactions with anions that facilitate CO delivery to therapeutic targets.
Collapse
|
166
|
Ding F, Li XN, Diao JX, Sun Y, Zhang L, Ma L, Yang XL, Zhang L, Sun Y. Potential toxicity and affinity of triphenylmethane dye malachite green to lysozyme. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 78:41-49. [PMID: 22236952 DOI: 10.1016/j.ecoenv.2011.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 05/31/2023]
Abstract
Malachite green is a triphenylmethane dye that is used extensively in many industrial and aquacultural processes, generating environmental concerns and health problems to human being. In this contribution, the complexation between lysozyme and malachite green was verified by means of computer-aided molecular modeling, steady state and time-resolved fluorescence, and circular dichroism (CD) approaches. The precise binding patch of malachite green in lysozyme has been identified from molecular modeling and ANS displacement, Trp-62, Trp-63, and Trp-108 residues of lysozyme were earmarked to possess high-affinity for this dye, the principal forces in the lysozyme-malachite green adduct are hydrophobic and π-π interactions. Steady state fluorescence proclaimed the complex of malachite green with lysozyme yields quenching through static type, which substantiates time-resolved fluorescence measurements that lysozyme-malachite green conjugation formation has an affinity of 10(3)M(-1). Moreover, via molecular modeling and also CD data, we can safely arrive at a conclusion that the polypeptide chain of lysozyme partially destabilized upon complexation with malachite green. The data emerged here will help to further understand the toxicological action of malachite green in human body.
Collapse
Affiliation(s)
- Fei Ding
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Romão CC, Blättler WA, Seixas JD, Bernardes GJL. Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev 2012; 41:3571-83. [PMID: 22349541 DOI: 10.1039/c2cs15317c] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of Carbon Monoxide (CO) as a therapeutic agent has already been tested in human clinical trials. Pre-clinically, CO gas administration proved beneficial in animal models of various human diseases. However, the use of gaseous CO faces serious obstacles not the least being its well-known toxicity. To fully realise the promise of CO as a therapeutic agent, it is key to find novel avenues for CO delivery to diseased tissues in need of treatment, without concomitant formation of elevated, toxic blood levels of carboxyhemoglobin (COHb). CO-releasing molecules (CO-RMs) have the potential to constitute safe treatments if CO release in vivo can be controlled in a spatial and temporal manner. It has already been demonstrated in animals that CO-RMs can release CO and mimic the therapeutic effects of gaseous CO. While demonstrating the principle of treatment with CO-RMs, these first generation compounds are not suitable for human use. This tutorial review summarises the biological and chemical behaviour of CO, the current status of CO-RM development, and derives principles for the creation of the next generation of CO-RMs for clinical applications in humans.
Collapse
Affiliation(s)
- Carlos C Romão
- Alfama Lda., Taguspark, núcleo central 267, 2740-122 Porto Salvo, Portugal.
| | | | | | | |
Collapse
|
168
|
Marazioti A, Bucci M, Coletta C, Vellecco V, Baskaran P, Szabó C, Cirino G, Marques AR, Guerreiro B, Gonçalves AML, Seixas JD, Beuve A, Romão CC, Papapetropoulos A. Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules. Arterioscler Thromb Vasc Biol 2012; 31:2570-6. [PMID: 21836072 DOI: 10.1161/atvbaha.111.229039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Carbon monoxide (CO) is a weak soluble guanylyl cyclase stimulator, leading to transient increases in cGMP and vasodilation. The aim of the present work was to measure the effect of CO-releasing molecules (CORMs) on the cGMP/nitric oxide (NO) pathway and to evaluate how selected CORMs affect NO-induced vasorelaxation. METHODS AND RESULTS Incubation of smooth muscle cells with some but not all of the CORMs caused a minor increase in cGMP levels. Concentration-response curves were bell-shaped, with higher CORMs concentrations producing lower increases in cGMP levels. Although exposure of cells to CORM-2 enhanced cGMP formation, we observed that the compound inhibited NO-stimulated cGMP accumulation in cells and NO-stimulated soluble guanylyl cyclase activity that could be reversed by superoxide anion scavengers. Reactive oxygen species generation from CORMs was confirmed using luminol-induced chemiluminescence and electron spin resonance. Furthermore, we observed that NO is scavenged by CORM-2. When used alone CORM-2 relaxed vessels through a cGMP-mediated pathway but attenuated NO donor-stimulated vasorelaxation. CONCLUSION We conclude that the CORMs examined have context-dependent effects on vessel tone, as they can directly dilate blood vessels, but also block NO-induced vasorelaxation.
Collapse
Affiliation(s)
- Antonia Marazioti
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Patras, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. Antimicrob Agents Chemother 2011; 56:1281-90. [PMID: 22155828 DOI: 10.1128/aac.05571-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Severe forms of malaria infection, such as cerebral malaria (CM) and acute lung injury (ALI), are mainly caused by the apicomplexan parasite Plasmodium falciparum. Primary therapy with quinine or artemisinin derivatives is generally effective in controlling P. falciparum parasitemia, but mortality from CM and other forms of severe malaria remains unacceptably high. Herein, we report the design and synthesis of a novel carbon monoxide-releasing molecule (CO-RM; ALF492) that fully protects mice against experimental CM (ECM) and ALI. ALF492 enables controlled CO delivery in vivo without affecting oxygen transport by hemoglobin, the major limitation in CO inhalation therapy. The protective effect is CO dependent and induces the expression of heme oxygenase-1, which contributes to the observed protection. Importantly, when used in combination with the antimalarial drug artesunate, ALF492 is an effective adjunctive and adjuvant treatment for ECM, conferring protection after the onset of severe disease. This study paves the way for the potential use of CO-RMs, such as ALF492, as adjunctive/adjuvant treatment in severe forms of malaria infection.
Collapse
|
170
|
Panzner MJ, Bilinovich SM, Youngs WJ, Leeper TC. Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies. Chem Commun (Camb) 2011; 47:12479-81. [PMID: 22042312 DOI: 10.1039/c1cc15908a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The X-ray crystal structure, NMR binding studies, and enzyme activity of silver(I) metallated hen egg white lysozyme are presented. Primary bonding of silver is observed through His15 with secondary bonding interactions coming from nearby Arg14 and Asp87. A covalently bound nitrate completes a four coordinate binding pocket.
Collapse
Affiliation(s)
- Matthew J Panzner
- Center for Silver Therapeutics Research, Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | | | | | | |
Collapse
|
171
|
Binkley SL, Leeper TC, Rowlett RS, Herrick RS, Ziegler CJ. Re(CO)(3)(H(2)O)(3)(+) binding to lysozyme: structure and reactivity. Metallomics 2011; 3:909-16. [PMID: 21805003 DOI: 10.1039/c1mt00065a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of Re(CO)(3)(H(2)O)(3)(+) with hen egg white lysozyme in aqueous solution results in a single covalent adduct. Both NMR spectroscopy and single crystal X-ray diffraction show that the rhenium tricarbonyl cation binds to His15 via replacement of one of the coordinated water molecules. The formation of this adduct does not greatly affect the structure of the protein.
Collapse
Affiliation(s)
- Sarah L Binkley
- Department of Chemistry, University of Akron, Akron, OH 44325-3601, USA
| | | | | | | | | |
Collapse
|
172
|
Tavares AFN, Teixeira M, Romão CC, Seixas JD, Nobre LS, Saraiva LM. Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules. J Biol Chem 2011; 286:26708-17. [PMID: 21646348 DOI: 10.1074/jbc.m111.255752] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CO-releasing molecules (CO-RMs) were previously shown by us to be more potent bactericides than CO gas. This suggests a mechanism of action for CO-RM, which either potentiates the activity of CO or uses another CO-RM-specific effect. We have also reported that CORM-2 induces the expression of genes related to oxidative stress. In the present study we intend to establish whether the generation of reactive oxygen species by CO-RMs may indeed result in the inhibition of bacterial cellular function. We now report that two CO-RMs (CORM-2 and ALF062) stimulate the production of ROS in Escherichia coli, an effect that is abolished by addition of antioxidants. Furthermore, deletion of genes encoding E. coli systems involved in reactive oxygen species scavenging, namely catalases and superoxide dismutases, potentiates the lethality of CORM-2 due to an increase of intracellular ROS content. CORM-2 also induces the expression of the E. coli DNA repair/SOS system recA, and its inactivation enhances toxicity of CORM-2. Moreover, fluorescence microscopy images reveal that CORM-2 causes DNA lesions to bacterial cells. We also demonstrate that cells treated with CORM-2 contain higher levels of free iron arising from destruction of iron-sulfur proteins. Importantly, we show that CO-RMs generate hydroxyl radicals in a cell-free solution, a process that is abolished by scavenging CO. Altogether, we provide a novel insight into the molecular basis of CO-RMs action by showing that their bactericidal properties are linked to cell damage inflicted by the oxidative stress that they are able to generate.
Collapse
Affiliation(s)
- Ana Filipa N Tavares
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|