151
|
Dutta S, Kumari N, Dubbu S, Jang SW, Kumar A, Ohtsu H, Kim J, Cho SH, Kawano M, Lee IS. Highly Mesoporous Metal‐Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angew Chem Int Ed Engl 2020; 59:3416-3422. [DOI: 10.1002/anie.201916578] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Soumen Dutta
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sateesh Dubbu
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sun Woo Jang
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Hiroyoshi Ohtsu
- Department of ChemistrySchool of ScienceTokyo Institute of Technology Tokyo 152-8550 Japan
| | - Junghoon Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Seung Hwan Cho
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Masaki Kawano
- Department of ChemistrySchool of ScienceTokyo Institute of Technology Tokyo 152-8550 Japan
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| |
Collapse
|
152
|
Chen X, Xue S, Lin Y, Luo J, Kong L. Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: A new platform for efficient ligand discovery from natural herbs. Anal Chim Acta 2020; 1099:94-102. [DOI: 10.1016/j.aca.2019.11.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
|
153
|
Gascón Pérez V, Sánchez-Sánchez M. Environmentally Friendly Enzyme Immobilization on MOF Materials. Methods Mol Biol 2020; 2100:271-296. [PMID: 31939130 DOI: 10.1007/978-1-0716-0215-7_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Metal-organic framework (MOF) materials have revolutionized the applications of nanoporous materials. They can be potentially used in separation, storage, and catalysis, among other applications. Since their discovery in 1999 (Li et al. Nature 402:276-279, 1999; Chui Science 283:1148-1150, 1999), more than 20,000 new structures have been synthesized thanks in part to their high compositional versatility. However, only some of them are really stable in water (both in liquid and vapor phase), which limits their employment in other applications. Furthermore, biocatalysis field has been demanding a "universal support" able to encapsulate/immobilize any type of enzyme in a straightforward methodology and, simultaneously, capable of keeping the enzymatic catalytic activity. This requisite set has been a big challenge considering the drastic synthesis conditions required for most of the MOF materials. Thus, a compromise between the development of a well-formed material support and an acceptable enzymatic activity had to be achieved in order to obtain active biocatalysts, ideally prepared in just one step and under sustainable conditions. In this chapter, we describe the protocols about how to synthesize MOF materials in water, under mild conditions and almost instantaneously in the presence of enzymes. The most successful support of these sustainable MOFs was the semicrystalline Fe-BTC MOF material (like the commercial Basolite F300) allowing the development of efficient active biocatalysts (97% with respect to the free enzyme in the case of CALB lipase). Particularly, this enzyme support improves the benefits given by some other MOF-based supports also described in this chapter, like NH2-MIL-53(Al). Furthermore, we present the post-synthesis immobilization approach, which consists firstly in the synthesis or preparation of the respective MOF material (Fe-BTC or NH2-MIL-53(Al)), followed by an enzyme immobilization protocol. As reported in bibliography, MOFs as enzyme supports combine together more active biocatalysts with lower enzyme leaching when compared to other conventional materials. Moreover, MOFs prepared in non-aqueous media (for instance, N,N-dimethylformamide) can also trap enzymes in an otherwise adverse media. These facts bring these biocatalysts closer to industrial employment in even more demanding applications.
Collapse
Affiliation(s)
- Victoria Gascón Pérez
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| | | |
Collapse
|
154
|
Duan C, Yu Y, Li F, Wu Y, Xi H. Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks with high space–time yields. CrystEngComm 2020. [DOI: 10.1039/c9ce01676g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a facile and general approach to rapidly synthesize four hierarchically porous MOFs (HKUST-1, ZIF-8, ZIF-61, and ZIF-90) under ambient conditions.
Collapse
Affiliation(s)
- Chongxiong Duan
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528231
- P. R. China
| | - Yi Yu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Feier Li
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Ying Wu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
155
|
Naghian E, Marzi Khosrowshahi E, Sohouli E, Ahmadi F, Rahimi-Nasrabadi M, Safarifard V. A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of Zn(ii)-MOF. NEW J CHEM 2020. [DOI: 10.1039/d0nj01322f] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An electrochemical fentanyl sensor based on modified screen-printed carbon electrode by Zn(ii)-MOF.
Collapse
Affiliation(s)
- Ebrahim Naghian
- Chemical Injuries Research Center
- Systems Biology and Poisonings Institute
- Baqiyatallah University of Medical Sciences
- Tehran
- Iran
| | | | - Esmail Sohouli
- Young Researchers and Elites Club, Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Farhad Ahmadi
- Physiology Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Medicinal Chemistry, School of Pharmacy-International Campus
| | - Mehdi Rahimi-Nasrabadi
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences
- Tehran
- Iran
- Department of Chemistry
- South Tehran Branch Islamic Azad University
| | - Vahid Safarifard
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| |
Collapse
|
156
|
Mendes RF, Figueira F, Leite JP, Gales L, Almeida Paz FA. Metal–organic frameworks: a future toolbox for biomedicine? Chem Soc Rev 2020; 49:9121-9153. [DOI: 10.1039/d0cs00883d] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review focuses on the use of Metal–Organic Frameworks, (MOFs) highlighting the most recent developments in the biological field and as bio-sensors.
Collapse
Affiliation(s)
- Ricardo F. Mendes
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Flávio Figueira
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José P. Leite
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Luís Gales
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Filipe A. Almeida Paz
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
157
|
Shams S, Ahmad W, Memon AH, Shams S, Wei Y, Yuan Q, Liang H. Cu/H3BTC MOF as a potential antibacterial therapeutic agent against Staphylococcus aureus and Escherichia coli. NEW J CHEM 2020. [DOI: 10.1039/d0nj04120c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The objective of this study was to design a more effective antibacterial agent to overcome the problem of fast-growing bacterial resistance.
Collapse
Affiliation(s)
- Saira Shams
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Waqas Ahmad
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Sumaira Shams
- Department of Zoology
- Abdul Wali Khan University
- Mardan
- Pakistan
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
158
|
Wei S, Kou X, Liu Y, Zhu F, Xu J, Ouyang G. Facile construction of superhydrophobic hybrids of metal-organic framework grown on nanosheet for high-performance extraction of benzene homologues. Talanta 2019; 211:120706. [PMID: 32070608 DOI: 10.1016/j.talanta.2019.120706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023]
Abstract
Encapsulating functional nanomaterials within the bulk of metal-organic frameworks (MOFs) offers the opportunity to construct high-performance hybrid coating materials for solid phase microextraction (SPME). In this work, we proposed the facile synthesis of a superhydrophobic MOF composite material (NSZIF-8Si) by growing ZIF-8 on MnxOy nanosheet (NS) and subsequently depositing short-chain polysiloxane on the surface of the composite. A novel SPME fiber was successfully prepared based on the NSZIF-8Si composite. The NSZIF-8Si fiber possessed outstanding thermal stability (up to 450 °C). In headspace SPME of BTEX, the home-made fiber exhibited extraction efficiencies much higher than the commercially available PDMS fiber. This phenomenon was due to the synergetic cooperation of the π-π stacking and the hydrophobic interactions between the NSZIF-8Si coating and the analyte molecules, as well as the increased aspect ratio of the MOF grown on the nanosheet. The established method achieved wide linearity (5-2000 ng L-1) and low LODs (0.02 ng L-1 to 0.21 ng L-1). Satisfactory recoveries were obtained in the analysis of real water samples collected from the Pearl River, indicative of the good reliability of the established method for real-scenario applications. This work might provide critical insights in constructing novel NS/MOF composite materials for the development of high-performance SPME fiber coatings.
Collapse
Affiliation(s)
- Songbo Wei
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaoxue Kou
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yan Liu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fang Zhu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jianqiao Xu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| |
Collapse
|
159
|
Kidanemariam A, Lee J, Park J. Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction. Polymers (Basel) 2019; 11:E2090. [PMID: 31847223 PMCID: PMC6960843 DOI: 10.3390/polym11122090] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
The accumulation of carbon dioxide (CO2) pollutants in the atmosphere begets global warming, forcing us to face tangible catastrophes worldwide. Environmental affability, affordability, and efficient CO2 metamorphotic capacity are critical factors for photocatalysts; metal-organic frameworks (MOFs) are one of the best candidates. MOFs, as hybrid organic ligand and inorganic nodal metal with tailorable morphological texture and adaptable electronic structure, are contemporary artificial photocatalysts. The semiconducting nature and porous topology of MOFs, respectively, assists with photogenerated multi-exciton injection and adsorption of substrate proximate to void cavities, thereby converting CO2. The vitality of the employment of MOFs in CO2 photolytic reaction has emerged from the fact that they are not only an inherently eco-friendly weapon for pollutant extermination, but also a potential tool for alleviating foreseeable fuel crises. The excellent synergistic interaction between the central metal and organic linker allows decisive implementation for the design, integration, and application of the catalytic bundle. In this review, we presented recent MOF headway focusing on reports of the last three years, exhaustively categorized based on central metal-type, and novel discussion, from material preparation to photocatalytic, simulated performance recordings of respective as-synthesized materials. The selective CO2 reduction capacities into syngas or formate of standalone or composite MOFs with definite photocatalytic reaction conditions was considered and compared.
Collapse
Affiliation(s)
| | | | - Juhyun Park
- School of Chemical Engineering and Materials Science, Institute of Energy-Converting Soft Materials, Chung-Ang University, Seoul 06974, Korea; (A.K.); (J.L.)
| |
Collapse
|
160
|
Guo J, Mattos BD, Tardy BL, Moody VM, Xiao G, Ejima H, Cui J, Liang K, Richardson JJ. Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications. Curr Med Chem 2019; 26:6107-6131. [PMID: 29984645 DOI: 10.2174/0929867325666180706111909] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Porous micro- and nanoparticles have the capacity to encapsulate a large quantity of therapeutics, making them promising delivery vehicles for a variety of applications. This review aims to highlight the latest development of inorganic and hybrid (inorganic/ organic) particles for drug delivery with an additional emphasis on combatting drug resistant cancer. We go one step further and discuss delivery applications beyond medicinal delivery, as there is generally a translation from medicinal delivery to botanic delivery after a short lag time. METHODS We undertook a search of relevant peer-reviewed publications. The quality of the relevant papers was appraised using standard tools. The characteristics of the papers are described herein, and the relevant material and therapeutic properties are discussed. RESULTS We discuss 4 classes of porous particles in terms of drug delivery and theranostics. We specifically focus on silica, calcium carbonate, metal-phenolic network, and metalorganic framework particles. Other relevant biomedically relevant applications are discussed and we highlight outstanding therapeutic results in the relevant literature. CONCLUSION The findings of this review confirm the importance of studying and utilizing porous particles for therapeutic delivery. Moreover, we show that the properties of porous particles that make them promising for medicinal drug delivery also make them promising candidates for agro-industrial applications.
Collapse
Affiliation(s)
- Junling Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan, Shandong 250100, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, United States
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076, Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076, Finland
| | - Vanessa M Moody
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Pennsylvania 19104, United States
| | - Gao Xiao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, United States.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hirotaka Ejima
- Department of Materials Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph J Richardson
- Department of Materials Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
161
|
Li Y, Wen L, Tan T, Lv Y. Sequential Co-immobilization of Enzymes in Metal-Organic Frameworks for Efficient Biocatalytic Conversion of Adsorbed CO 2 to Formate. Front Bioeng Biotechnol 2019; 7:394. [PMID: 31867320 PMCID: PMC6908815 DOI: 10.3389/fbioe.2019.00394] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
The main challenges in multienzymatic cascade reactions for CO2 reduction are the low CO2 solubility in water, the adjustment of substrate channeling, and the regeneration of co-factor. In this study, metal-organic frameworks (MOFs) were prepared as adsorbents for the storage of CO2 and at the same time as solid supports for the sequential co-immobilization of multienzymes via a layer-by-layer self-assembly approach. Amine-functionalized MIL-101(Cr) was synthesized for the adsorption of CO2. Using amine-MIL-101(Cr) as the core, two HKUST-1 layers were then fabricated for the immobilization of three enzymes chosen for the reduction of CO2 to formate. Carbonic anhydrase was encapsulated in the inner HKUST-1 layer and hydrated the released CO2 to HCO3-. Bicarbonate ions then migrated directly to the outer HKUST-1 shell containing formate dehydrogenase and were converted to formate. Glutamate dehydrogenase on the outer MOF layer achieved the regeneration of co-factor. Compared with free enzymes in solution using the bubbled CO2 as substrate, the immobilized enzymes using stored CO2 as substrate exhibited 13.1-times higher of formate production due to the enhanced substrate concentration. The sequential immobilization of enzymes also facilitated the channeling of substrate and eventually enabled higher catalytic efficiency with a co-factor-based formate yield of 179.8%. The immobilized enzymes showed good operational stability and reusability with a cofactor cumulative formate yield of 1077.7% after 10 cycles of reusing.
Collapse
Affiliation(s)
- Yan Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Liyin Wen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
162
|
Mu J, He L, Huang P, Chen X. Engineering of Nanoscale Coordination Polymers with Biomolecules for Advanced Applications. Coord Chem Rev 2019; 399:213039. [PMID: 32863398 PMCID: PMC7453726 DOI: 10.1016/j.ccr.2019.213039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoscale coordination polymers (NCPs) have shown extraordinary advantages in various research areas due to their structural diversity and multifunctionality. Recently, integration of biomolecules with NCPs received extensive attention and the formed hybrid materials exhibit superior properties over the individual NCPs or biomolecules. In this review, the state-of-the-art of approaches to engineer NCPs with different types of guest biomolecules, such as amino acids, nucleic acids, enzymes and lipids are systematically introduced. Additionally, advanced applications of these biomolecule-NCP composites in the areas of sensing, catalysis, molecular imaging and therapy are thoroughly summarized. Finally, current challenges and prospects are also discussed.
Collapse
Affiliation(s)
- Jing Mu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liangcan He
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
163
|
|
164
|
Wu X, Yue H, Zhang Y, Gao X, Li X, Wang L, Cao Y, Hou M, An H, Zhang L, Li S, Ma J, Lin H, Fu Y, Gu H, Lou W, Wei W, Zare RN, Ge J. Packaging and delivering enzymes by amorphous metal-organic frameworks. Nat Commun 2019; 10:5165. [PMID: 31727883 PMCID: PMC6856190 DOI: 10.1038/s41467-019-13153-x] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/23/2019] [Indexed: 01/22/2023] Open
Abstract
Enzymatic catalysis in living cells enables the in-situ detection of cellular metabolites in single cells, which could contribute to early diagnosis of diseases. In this study, enzyme is packaged in amorphous metal-organic frameworks (MOFs) via a one-pot co-precipitation process under ambient conditions, exhibiting 5–20 times higher apparent activity than when the enzyme is encapsulated in corresponding crystalline MOFs. Molecular simulation and cryo-electron tomography (Cryo-ET) combined with other techniques demonstrate that the mesopores generated in this disordered and fuzzy structure endow the packaged enzyme with high enzyme activity. The highly active glucose oxidase delivered by the amorphous MOF nanoparticles allows the noninvasive and facile measurement of glucose in single living cells, which can be used to distinguish between cancerous and normal cells. For packaging enzymes into metal–organic frameworks (MOFs), crystalline MOFs are usually used. Here, the authors encapsulated enzymes in amorphous MOFs a via one-pot co-precipitation process under ambient condition, which led to higher enzymatic activity than in a corresponding crystalline MOF composite.
Collapse
Affiliation(s)
- Xiaoling Wu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.,School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyu Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoyang Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Licheng Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yufei Cao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Miao Hou
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haixia An
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China.
| | - Sai Li
- Key Laboratory of Protein Science, Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Beijing, 100084, China.
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - He Lin
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yanan Fu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hongkai Gu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Richard N Zare
- Department of Chemistry, Fudan University, Jiangwan Campus, Shanghai, 200438, China
| | - Jun Ge
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China. .,Biopharmaceutical and Health Engineering Division, Tsinghua Shenzhen International Graduate School, Shenzhen, China.
| |
Collapse
|
165
|
Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks. Nat Commun 2019; 10:5002. [PMID: 31676820 PMCID: PMC6825160 DOI: 10.1038/s41467-019-12966-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Metal–organic frameworks (MOFs) have recently garnered consideration as an attractive solid substrate because the highly tunable MOF framework can not only serve as an inert host but also enhance the selectivity, stability, and/or activity of the enzymes. Herein, we demonstrate the advantages of using a mechanochemical strategy to encapsulate enzymes into robust MOFs. A range of enzymes, namely β-glucosidase, invertase, β-galactosidase, and catalase, are encapsulated in ZIF-8, UiO-66-NH2, or Zn-MOF-74 via a ball milling process. The solid-state mechanochemical strategy is rapid and minimizes the use of organic solvents and strong acids during synthesis, allowing the encapsulation of enzymes into three prototypical robust MOFs while maintaining enzymatic biological activity. The activity of encapsulated enzyme is demonstrated and shows increased resistance to proteases, even under acidic conditions. This work represents a step toward the creation of a suite of biomolecule-in-MOF composites for application in a variety of industrial processes. Metal–organic frameworks (MOFs) are attractive for encapsulating enzymes for industrial purposes because they can increase selectivity, stability, and/or activity of the enzymes. Here, the authors developed an economical solid-state mechanochemical method to encapsulate enzymes during MOF synthesis.
Collapse
|
166
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
167
|
Li H, Pan Y, Farmakes J, Xiao F, Liu G, Chen B, Zhu X, Rao J, Yang Z. A sulfonated mesoporous silica nanoparticle for enzyme protection against denaturants and controlled release under reducing conditions. J Colloid Interface Sci 2019; 556:292-300. [DOI: 10.1016/j.jcis.2019.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/23/2023]
|
168
|
Duan W, Zhao Z, An H, Zhang Z, Cheng P, Chen Y, Huang H. State-of-the-Art and Prospects of Biomolecules: Incorporation in Functional Metal–Organic Frameworks. Top Curr Chem (Cham) 2019; 377:34. [DOI: 10.1007/s41061-019-0258-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
|
169
|
Coordination Nanoparticles Formed by Fluorescent 2-Aminopurine and Au3+: Stability and Nanozyme Activities. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00112-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
170
|
Thangaraj B, Solomon PR. Immobilization of Lipases – A Review. Part II: Carrier Materials. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baskar Thangaraj
- Jiangsu UniversitySchool of Food and Biological Engineering 301 Xuefu road 212013 Zhenjiang Jiangsu Province China
| | - Pravin Raj Solomon
- SASTRA Deemed UniversitySchool of Chemical & Biotechnology, Tirumalaisamudram 613401 Thanjavur Tamil Nadu India
| |
Collapse
|
171
|
Cheng K, Svec F, Lv Y, Tan T. Hierarchical Micro- and Mesoporous Zn-Based Metal-Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902927. [PMID: 31513349 DOI: 10.1002/smll.201902927] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Indexed: 05/28/2023]
Abstract
Encapsulation of enzymes in metal-organic frameworks (MOFs) is often obstructed by the small size of the orifices typical of most reported MOFs, which prevent the passage of larger-size enzymes. Here, the preparation of hierarchical micro- and mesoporous Zn-based MOFs via the templated emulsification method using hydrogels as a template is presented. Zinc-based hydrogels featuring a 3D interconnecting network are first produced via the formation of hydrogen bonds between melamine and salicylic acid in which zinc ions are well distributed. Further coordination with organic linkers followed by the removal of the hydrogel template produces hierarchical Zn-based MOFs containing both micropores and mesopores. These new MOFs are used for the encapsulation of glucose oxidase and horseradish peroxidase to prove the concept. The immobilized enzymes exhibit a remarkably enhanced increased operational stability and enzymatic activity with a kcat /km value of 85.68 mm s-1 . This value is 7.7-fold higher compared to that found for the free enzymes in solution, and 2.7-fold higher than enzymes adsorbed on conventional microporous MOFs. The much higher catalytic activity of the mesoporous conjugate for Knoevenagel reactions is demonstrated, since the large pores enable easier access to the active sites, and compared with that observed for catalysis using microporous MOFs.
Collapse
Affiliation(s)
- Kaipeng Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongqin Lv
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
172
|
Feng Y, Zhong L, Hou Y, Jia S, Cui J. Acid-resistant enzyme@MOF nanocomposites with mesoporous silica shells for enzymatic applications in acidic environments. J Biotechnol 2019; 306:54-61. [PMID: 31550490 DOI: 10.1016/j.jbiotec.2019.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/16/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Zeolitic imidazole frameworks (ZIFs) with tunable pore sizes and high surface areas have recently used as an effective support for immobilizing enzymes. However, the instability in the aqueous acidic environment has limited their practical applications in some cases. In this work, we develop a novel catalase/ZIFs composite with mesoporous silica shell (mSiO2@CAT/ZIFs) via co-precipitation, and controlled self-assembly of silanes. During preparation, the cetyltrimethylammonium bromide induced the formation of the mesostructured silica layer on the outer surface of CAT/ZIFs. The resultant mSiO2@CAT/ZIFs exhibited high activity recovery (92%). Compared with the conventional CAT/ZIFs and free CAT, mSiO2@CAT/ZIFs exhibited excellent acid resistance. For example, after 30 min in acetate buffer solution (pH 3.0), the CAT/ZIFs and free CAT almost lost activity whereas the mSiO2@CAT/ZIFs still retained 35% of original activity. Meanwhile, the thermostability of the mSiO2@CAT/ZIFs was enhanced significantly compared with conventional CAT/ZIFs. In addition, the mSiO2@CAT/ZIFs displayed excellent storage stability, and retained 60% of its initial activity after 15 days storage period. Furthermore, the mSiO2@CAT/ZIFs could maintain 70% of its initial activity after 8 continuous uses, demonstrating superior reusability than the free CAT and CAT/ZIFs. These results demonstrated that the mSiO2@CAT/ZIFs are potential for practical applications even in the acidic environment.
Collapse
Affiliation(s)
- Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China
| | - Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China
| | - Ying Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China.
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, PR China.
| |
Collapse
|
173
|
Zhong Y, Yu L, He Q, Zhu Q, Zhang C, Cui X, Zheng J, Zhao S. Bifunctional Hybrid Enzyme-Catalytic Metal Organic Framework Reactors for α-Glucosidase Inhibitor Screening. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32769-32777. [PMID: 31423772 DOI: 10.1021/acsami.9b11754] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The screening strategy based on α-glucosidase inhibition has been widely employed for the discovery of antidiabetic drugs, but it still faces some challenges in practical applications, such as poor stability of enzyme, high consumption of test compounds, low sensitivity of screening methods and so on. In this work, a bifunctional hybrid enzyme-catalytic metal organic framework reactor (GAA@GOx@Cu-MOF) with a flower-shaped globular structure was innovatively prepared via self-assembling of α-glucosidase (GAA), glucose oxidase (GOx), Cu2+, and 4,4'-bipyridine. It was found that GAA@GOx@Cu-MOF not only enjoyed merits of high stability, selectivity, and sensitivity but also possessed the character of assembly line work, with about 4.58 times enhanced enzyme activity compared with the free enzyme system. Based on the above characteristics, a highly sensitive screening of GAA inhibitors could be achieved with the detection limit of 7.05 nM for acarbose. Furthermore, the proposed method was successfully applied to the screening of oleanolic acid derivatives as potential antidiabetic drugs. Therefore, it was expected that this work could provide new insights and inspirations for the screening of clinical antidiabetic drugs and for further exploration of functional MOF composites.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , People's Republic of China
| | - Linjin Yu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , People's Republic of China
| | - Qiyi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , People's Republic of China
| | - Qiuyan Zhu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , People's Republic of China
| | - Chunguo Zhang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , People's Republic of China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , People's Republic of China
| | - Junxia Zheng
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , People's Republic of China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , People's Republic of China
| |
Collapse
|
174
|
Gkaniatsou E, Serre C, Mahy JP, Steunou N, Ricoux R, Sicard C. Enhancing microperoxidase activity and selectivity: immobilization in metal-organic frameworks. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microperoxidases 8 (MP8) and 11 (MP11) are heme-containing peptides obtained by the proteolytic digestion of Cytochrome c. They act as mini-enzymes that combine both peroxidase-like and Cytochrome P450-like activities that may be useful in the synthesis of fine chemicals or in the degradation of environmental pollutants. However, their use is limited by their instability in solution due to (i) the bleaching of the heme in the presence of an excess of H2O2, (ii) the decoordination of the distal histidine ligand of the iron under acidic conditions and, (iii) their tendency to aggregate in aqueous alkaline solutions, even at low concentrations. Additionally, both MP8 and MP11 show relatively low selectivity, due to the lack of control of the substrates by a specific catalytic pocket on the distal face of the heme. Both stability and selectivity issues can be effectively addressed by immobilization of microperoxidases in solid matrices, which can also lead to their possible recycling from the reaction medium. Considering their relatively small size, the pore inclusion of MPs into Metal-Organic Frameworks appeared to be more adequate compared to other immobilization methods that have been widely investigated for decades. The present minireview describes the catalytic activities of MP8 and MP11, their limitations, and various results describing their immobilization into MOFs which led to MP11- or MP8@MOF hybrid materials that display good activity in the oxidation of dyes and phenol derivatives, with remarkable recyclability due to the stabilization of the MPs inside the MOF cavities. An example of selective oxidation of dyes according to their charge by MP8@MOF hybrid materials is also highlighted.
Collapse
Affiliation(s)
- Effrosyni Gkaniatsou
- Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des Etat-Unis, Versailles, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, UMR-8004 CNRS-ENS-ESPCI, PSL Research University, 75005, Paris, France
| | - Jean-Pierre Mahy
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Université Paris Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Nathalie Steunou
- Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des Etat-Unis, Versailles, France
| | - Rémy Ricoux
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Université Paris Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Clémence Sicard
- Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des Etat-Unis, Versailles, France
| |
Collapse
|
175
|
Zhao Y, Qi S, Niu Z, Peng Y, Shan C, Verma G, Wojtas L, Zhang Z, Zhang B, Feng Y, Chen YS, Ma S. Robust Corrole-Based Metal–Organic Frameworks with Rare 9-Connected Zr/Hf-Oxo Clusters. J Am Chem Soc 2019; 141:14443-14450. [DOI: 10.1021/jacs.9b07700] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Shibo Qi
- School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, People’s Republic of China
| | - Zheng Niu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yunlei Peng
- College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Gaurav Verma
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Yu-Sheng Chen
- ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
176
|
Tong P, Liang J, Jiang X, Li J. Research Progress on Metal-Organic Framework Composites in Chemical Sensors. Crit Rev Anal Chem 2019; 50:376-392. [DOI: 10.1080/10408347.2019.1642732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peihong Tong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Junyu Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xinxin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
177
|
Huang Y, Zhang S, Chen H, Zhao L, Zhang Z, Cheng P, Chen Y. A Zinc Coordination Complex Mimicking Carbonic Anhydrase for CO 2 Hydrolysis and Sequestration. Inorg Chem 2019; 58:9916-9921. [PMID: 31318535 DOI: 10.1021/acs.inorgchem.9b01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbonic anhydrase (CA) mimicking is an effective and environmentally friendly strategy for carbon dioxide sequestration. Herein, we developed a nonanuclear CA-mimetic zinc coordination complex (1) which possesses a coordination environment similar to that of CA's catalytically active zinc sites. Complex 1 exhibited excellent reusability, solvent and thermal stability, and gram-scale synthesis, which are essential for practical applications. It was found that complex 1 exhibited outstanding catalytic performance that is much better in comparison to that of the popular CA-mimetic compound Zn-cyclen and comparable to that of the reported metal-organic frameworks (e.g., CFA-1). Moreover, we found that its catalytic activity can be significantly improved via OAc-/OH- exchange and particle size reduction treatment. This study provides important guidance for the design of highly efficient CA-mimetic materials.
Collapse
Affiliation(s)
- Yueyun Huang
- Department of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Guangzhou 510000 , People's Republic of China
| | - Sainan Zhang
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300071 , People's Republic of China.,Department of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Haixin Chen
- Department of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Guangzhou 510000 , People's Republic of China
| | - Limin Zhao
- Department of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Guangzhou 510000 , People's Republic of China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300071 , People's Republic of China.,Department of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Peng Cheng
- Department of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300071 , People's Republic of China.,Department of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| |
Collapse
|
178
|
Yang X, Liang T, Sun J, Zaworotko MJ, Chen Y, Cheng P, Zhang Z. Template-Directed Synthesis of Photocatalyst-Encapsulating Metal–Organic Frameworks with Boosted Photocatalytic Activity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01783] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaojie Yang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | | | - Michael J. Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94T9PX, Republic of Ireland
| | | | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
179
|
Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Zinc-based metal-organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metab Rev 2019; 51:356-377. [PMID: 31203696 DOI: 10.1080/03602532.2019.1632887] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of biomedical systems for controllable drug delivery systems and construction of biosensors is imperative to reduce side effects of common treatment techniques and enhance the therapeutic efficacy. To address this issue, metal-organic frameworks (MOFs) as hybrid porous polymeric structures have attracted worldwide attention due to their unprecedented opportunities in vast range of applications in diverse fields including chemistry, biological, and medicinal science as gas storage/separation, sensing, and drug delivery systems. Recently, biomedical application has become an interesting and promising issue for development and usage of multi-functional MOFs. Flexible chemical composition and versatile porous structure of MOFs enable the engineering and enhancement of their medical formulation and functionality as practical carriers for whether therapeutic or imaging agents. One important point in this domain is the efficient delivery of drugs in the body using nontoxic and biodegradable carriers. This review brings together the literatures that addressing the biomedical applications of Zinc-based MOFs (i.e. as drug delivery systems or nontoxic agent in matter of therapeutic applications) to present recent achievements in this interesting field.
Collapse
Affiliation(s)
- Sonia Bahrani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences , Shiraz , Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences , Shiraz , Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences , Shiraz , Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Rouhollah Azhdari
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences , Shiraz , Iran.,Faculty of Chemical, Petroleum and Gas, Semnan University , Semnan , Iran
| |
Collapse
|
180
|
Li Y, Zhang K, Liu P, Chen M, Zhong Y, Ye Q, Wei MQ, Zhao H, Tang Z. Encapsulation of Plasmid DNA by Nanoscale Metal-Organic Frameworks for Efficient Gene Transportation and Expression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901570. [PMID: 31155760 DOI: 10.1002/adma.201901570] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Indexed: 05/25/2023]
Abstract
The intracellular delivery and functionalization of genetic molecules play critical roles in gene-based theranostics. In particular, the delivery of plasmid DNA (pDNA) with safe nonviral vectors for efficient intracellular gene expression has received increasing attention; however, it still has some limitations. A facile one-pot method is employed to encapsulate pDNA into zeolitic imidazole framework-8 (ZIF-8) and ZIF-8-polymer vectors via biomimetic mineralization and coprecipitation. The pDNA molecules are found to be well distributed inside both nanostructures and benefit from their protection against enzymatic degradation. Moreover, through the use of a polyethyleneimine (PEI) 25 kD capping agent, the nanostructures exhibit enhanced loading capacity, better pH responsive release, and stronger binding affinity to pDNA. From in vitro experiments, the cellular uptake and endosomal escape of the protected pDNA are greatly improved with the superior ZIF-8-PEI 25 kD vector, leading to successful gene expression with high transfection efficacy, comparable to expensive commercial agents. New cost-effective avenues to develop metal-organic-framework-based nonviral vectors for efficient gene delivery and expression are provided.
Collapse
Affiliation(s)
- Yantao Li
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Parklands Dr, Southport, Queensland, 4222, Australia
| | - Kai Zhang
- Menzies Health Institute Queensland and School of Medical Science, Gold Coast Campus, Griffith University, Parklands Dr, Southport, Queensland, 4222, Australia
| | - Porun Liu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Parklands Dr, Southport, Queensland, 4222, Australia
| | - Mo Chen
- Menzies Health Institute Queensland and School of Medical Science, Gold Coast Campus, Griffith University, Parklands Dr, Southport, Queensland, 4222, Australia
| | - Yulin Zhong
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Parklands Dr, Southport, Queensland, 4222, Australia
| | - Qingsong Ye
- School of Dentistry, Herston Campus, The University of Queensland, 288 Herston Rd, Herston, Queensland, 4006, Australia
| | - Ming Q Wei
- Menzies Health Institute Queensland and School of Medical Science, Gold Coast Campus, Griffith University, Parklands Dr, Southport, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Parklands Dr, Southport, Queensland, 4222, Australia
| | - Zhiyong Tang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, No.11, Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| |
Collapse
|
181
|
Liu B, Hu F, Zhang J, Wang C, Li L. A Biomimetic Coordination Nanoplatform for Controlled Encapsulation and Delivery of Drug–Gene Combinations. Angew Chem Int Ed Engl 2019; 58:8804-8808. [DOI: 10.1002/anie.201903417] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Bei Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Feng Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Jingfang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Congli Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
182
|
Sher H, Ali H, Rashid MH, Iftikhar F, Saif-Ur-Rehman, Nawaz MS, Khan WS. Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function. Protein Pept Lett 2019; 26:636-647. [PMID: 31208305 DOI: 10.2174/0929866526666190430120046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
MOFs are porous materials with adjustable porosity ensuing a tenable surface area and stability. MOFs consist of metal containing joint where organic ligands are linked with coordination bonding rendering a unique architecture favouring the diverse applications in attachment of enzymes, Chemical catalysis, Gases storage and separation, biomedicals. In the past few years immobilization of soluble enzymes on/in MOF has been the topic of interest for scientists working in diverse field. The activity of enzyme, reusability, storage, chemical and thermal stability, affinity with substrate can be greatly improved by immobilizing of enzyme on MOFs. Along with improvement in enzymes properties, the high loading of enzyme is also observed while using MOFs as immobilization support. In this review a detail study of immobilization on/in Metalorganic Frameworks (MOFs) have been described. Furthermore, strategies for the enzyme immobilization on MOFs and resulting in improved catalytic performance of immobilized enzymes have been reported.
Collapse
Affiliation(s)
- Hassan Sher
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad H Rashid
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Fariha Iftikhar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Saif-Ur-Rehman
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad S Nawaz
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Waheed S Khan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
183
|
Liu B, Hu F, Zhang J, Wang C, Li L. A Biomimetic Coordination Nanoplatform for Controlled Encapsulation and Delivery of Drug–Gene Combinations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903417] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bei Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Feng Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Jingfang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Congli Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
184
|
Chu C, Su M, Zhu J, Li D, Cheng H, Chen X, Liu G. Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment. Theranostics 2019; 9:3134-3149. [PMID: 31244946 PMCID: PMC6567975 DOI: 10.7150/thno.33539] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/20/2019] [Indexed: 02/05/2023] Open
Abstract
Cancer treatment using functional proteins, DNA/RNA, or complex bio-entities is important in both preclinical and clinical studies. With the help of nano-delivery systems, these biomacromolecules can enrich cancer tissues to match the clinical requirements. Biomineralization via a self-assembly process has been widely applied to provide biomacromolecules exoskeletal-like protection for immune shielding and preservation of bioactivity. Advanced metal-organic framework nanoparticles (MOFs) are excellent supporting matrices due to the low toxicity of polycarboxylic acids and metals, high encapsulation efficiency, and moderate synthetic conditions. In this review, we study MOFs-based biomineralization for cancer treatment and summarize the unique properties of MOF hybrids. We also evaluate the outlook of potential cancer treatment applications for MOFs-based biomineralization. This strategy likely opens new research orientations for cancer theranostics.
Collapse
Affiliation(s)
- Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
| | - Min Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces & The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
| | - Dongsheng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces & The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
185
|
Qiu Q, Chen H, Wang Y, Ying Y. Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
186
|
Sun Q, Aguila B, Lan PC, Ma S. Tuning Pore Heterogeneity in Covalent Organic Frameworks for Enhanced Enzyme Accessibility and Resistance against Denaturants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900008. [PMID: 30859646 DOI: 10.1002/adma.201900008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Indexed: 05/23/2023]
Abstract
Achieving high-performance biocomposites requires knowledge of the compatability between the immobilized enzyme and its host material. The modular nature of covalent organic frameworks (COFs), as a host, allows their pore geometries and chemical functionalities to be fine-tuned independently, permitting comparative studies between the individual parameters and the performances of the resultant biocomposites. This research demonstrates that dual pores in COFs have profound consequences on the catalytic activity and denaturation of infiltrated enzymes. This approach enforces a constant pore environment by rational building-block design, which enables it to be unequivocally determined that pore heterogeneity is responsible for rate enhancements of up to threefold per enzyme molecule. More so, the enzyme is more tolerant to detrimental by-products when occupying the larger pore in a dual-pore COF compared to a corresponding uniform porous COF. Kinetic studies highlight that pore heterogeneity facilitates mass transfer of both reagents and products. This unparalleled versatility of these materials allows many different aspects to be designed on demand, lending credence to their prospect as next-generation host materials for various enzyme biocomposites catalysts.
Collapse
Affiliation(s)
- Qi Sun
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - Briana Aguila
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - Pui Ching Lan
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| |
Collapse
|
187
|
Shemsi AM, Khanday FA, Qurashi A, Khalil A, Guerriero G, Siddiqui KS. Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol Adv 2019; 37:357-381. [DOI: 10.1016/j.biotechadv.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/13/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023]
|
188
|
Rasmussen MK, Kardjilov N, Oliveira CLP, Watts B, Villanova J, Botosso VF, Sant'Anna OA, Fantini MCA, Bordallo HN. 3D visualisation of hepatitis B vaccine in the oral delivery vehicle SBA-15. Sci Rep 2019; 9:6106. [PMID: 30988384 PMCID: PMC6465313 DOI: 10.1038/s41598-019-42645-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
Developing a technology that enables oral vaccines to work efficiently remains a considerable effort since a number of difficulties must be addressed. The key objective being to ensure the safe passage through the harsh conditions within the gastrointestinal tract, promoting delivery that induces enhanced immune response. In the particular case of hepatitis B, the oral formulation in the nanostructured silica SBA-15 is a viable approach. As a result of its porous structure, low toxicity and structural stability, SBA-15 is capable to protect and release the hepatitis B surface antigen (HBsAg), used in the vaccination scheme, at the desired destination. Furthermore, when compared to the currently used injection based delivery method, better or similar antibody response has been observed. However, information about the organisation of the antigen protein remains unknown. For instance, HBsAg is too large to enter the 10 nm ordered mesopores of SBA-15 and has a tendency to agglomerate when protected by the delivery system. Here we report on the pH dependence of HBsAg aggregation in saline solution investigated using small angle X-rays scattering that resulted in an optimisation of the encapsulation conditions. Additionally, X-ray microscopy combined with neutron and X-ray tomography provided full 3D information of the HBsAg clustering (i.e. agglomeration) inside the SBA-15 macropores. This method enables the visualisation of the organisation of the antigen in the interior of the delivery system, where agglomerated HBsAg coexists with its immunological effective uniformly distributed counterpart. This new approach, to be taken into account while preparing the formulation, can greatly help in the understanding of clinical studies and advance new formulations.
Collapse
Affiliation(s)
- Martin K Rasmussen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | | | | | | | - Heloisa N Bordallo
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark. .,European Spallation Source (ESS), Lund, Sweden.
| |
Collapse
|
189
|
Lee J, Lim DW, Dekura S, Kitagawa H, Choe W. MOP × MOF: Collaborative Combination of Metal-Organic Polyhedra and Metal-Organic Framework for Proton Conductivity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12639-12646. [PMID: 30839184 DOI: 10.1021/acsami.9b01026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a hybrid solid system, UMOM-100-a and UMOM-100-b, synthesized by incorporation of Cu-based metal-organic polyhedra (MOPs) into a porous metal-organic framework (MOF) host, PCN-777. The MOP guests have acid (SO3-) functional groups, acting as functionalized nanocages, whereas the porosity is still maintained for proton conductivity. The key parameter for the UMOM-100 series is the number of MOPs inside a MOF, which controls the ratio between meso- and micropores, polarity, and finally proton conductivity. This is an example demonstrating a new design strategy for porous solids to add active components into porous MOFs, opening up possibilities in other applications such as solid-state electrolytes and heterogeneous catalysts.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Chemistry , Ulsan National Institute of Science and Technology , Ulsan 44919 , Korea
| | - Dae-Woon Lim
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Shun Dekura
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho , Sakyo-ku, Kyoto 606-8502 , Japan
- Institute for Solid State Physics , University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8581 , Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Wonyoung Choe
- Department of Chemistry , Ulsan National Institute of Science and Technology , Ulsan 44919 , Korea
| |
Collapse
|
190
|
An H, Li M, Gao J, Zhang Z, Ma S, Chen Y. Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
191
|
Bilal M, Adeel M, Rasheed T, Iqbal HM. Multifunctional metal–organic frameworks-based biocatalytic platforms: recent developments and future prospects. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T 2019. [DOI: 10.1016/j.jmrt.2018.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
192
|
Neupane S, Patnode K, Li H, Baryeh K, Liu G, Hu J, Chen B, Pan Y, Yang Z. Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal-Organic Frameworks for Large-Substrate Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12133-12141. [PMID: 30839195 DOI: 10.1021/acsami.9b01077] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biocatalysis of large-sized substrates finds wide applications. Immobilizing the involved enzymes on solid supports improves biocatalysis yet faces challenges such as enzyme structural perturbation, leaching, and low cost-efficiencies, depending on immobilization strategies/matrices. Carbon nanotubes (CNTs) are attractive matrices but challenged by enzyme leaching (physical adsorption) or perturbation (covalent linking). Zeolitic imidazolate frameworks (ZIFs) overcome these issues. However, our recent study [ J. Am. Chem. Soc., 2018, 140, 16032-16036] showed reduced cost-efficiency as enzymes trapped below the ZIF surfaces cannot participate in biocatalysis; the enzyme-ZIF composites are also unstable under acidic conditions. In this work, we demonstrate the feasibility of using ZIFs to immobilize enzymes on CNT surfaces on two model enzymes, T4 lysozyme and amylase, both of which showed negligible leaching and retained catalytic activity under neutral and acidic conditions. To better understand the behavior of enzymes on CNTs and CNT-ZIF, we characterized enzyme orientation on both matrices using site-directed spin-labeling (SDSL)-electron paramagnetic resonance (EPR), which is immune to the complexities caused by CNT and ZIF background signals and enzyme-matrix interactions. Our structural investigations showed enhanced enzyme exposure to the solvent compared to enzymes in ZIFs alone; orientation of enzymes in matrices itself is directly related to substrate accessibility and, therefore, essential for understanding and improving catalytic efficiency. To the best of our knowledge, this is the first time ZIFs and one-pot synthesis are employed to anchor large-substrate enzymes on CNT surfaces for biocatalysis. This is also the first report of enzyme orientation on the CNT surface and upon trapping in CNT-ZIF composites. Our results are essential for guiding the rational design of CNT-ZIF combinations to improve enzyme stabilization, loading capacity, and catalytic efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinlian Hu
- Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Kowloon 999077 , Hong Kong , China
| | | | | | | |
Collapse
|
193
|
Du Y, Gao J, Zhou L, Ma L, He Y, Zheng X, Huang Z, Jiang Y. MOF-Based Nanotubes to Hollow Nanospheres through Protein-Induced Soft-Templating Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801684. [PMID: 30937262 PMCID: PMC6425429 DOI: 10.1002/advs.201801684] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/06/2018] [Indexed: 06/09/2023]
Abstract
A controllable and facile strategy is established for constructing metal-organic frameworks-based (MOF-based) hollow composites via a protein-induced soft-templating pathway. Using metal-sodium deoxycholate hydrogel as soft-template, nanotubes are gained while the protein is absent. With the presence of protein, hollow nanospheres structure are prepared by changing the amount of protein. To verify the universality of the proposed pathway, two kinds of proteins (Burkholderia cepacia lipase and penicillin G acylase) and three kinds of MOF (ZIF-8, ZIF-67, and Fe-MOF) are adopted as model proteins and materials, and the obtained protein-containing composites (named protein@H-MOF) possess high bioactivity and stability. This proposed strategy provides a facile method for preparing MOF-based composites under mild conditions, facilitating the applications of MOF in the fields of biocatalyst construction, biomolecule encapsulation, and drug delivery.
Collapse
Affiliation(s)
- Yingjie Du
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Jing Gao
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Liya Zhou
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Li Ma
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Ying He
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Xuefang Zheng
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Zhihong Huang
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Yanjun Jiang
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| |
Collapse
|
194
|
Xu Y, Liu SY, Liu J, Zhang L, Chen D, Chen J, Ma Y, Zhang JP, Dai Z, Zou X. In Situ Enzyme Immobilization with Oxygen-Sensitive Luminescent Metal-Organic Frameworks to Realize "All-in-One" Multifunctions. Chemistry 2019; 25:5463-5471. [PMID: 30719775 DOI: 10.1002/chem.201806146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Metal-organic frameworks (MOFs) for enzyme immobilization have already shown superior tunable and designable characteristics, however, their diverse responsive properties have rarely been exploited. In this work we integrated a responsive MOF into a MOF-enzyme composite with the purpose of designing an "all-in-one" multifunctional composite with catalytic and luminescence functions incorporated into a single particle. As a proof-of-concept, glucose oxidase (GOx) was encapsulated in situ within an oxygen (O2 )-sensitive, noble-metal-free, luminescent CuI triazolate framework (MAF-2), denoted as GOx@MAF-2. Owing to the rigid scaffold of MAF-2 and confinement effect, the GOx@MAF-2 composite showed significantly improved stability (shelf life of 60 days and heat resistance up to 80 °C) as well as good selectivity and recyclability. More importantly, owing to the O2 sensitivity of MAF-2, the GOx@MAF-2 composite exhibited a rapid and reversible response towards dissolved O2 , thereby allowing direct and ratiometric sensing of glucose without the need for chromogenic substrates, cascade enzymatic reactions, or electrode systems. High sensitivity with a detection limit of 1.4 μm glucose was achieved, and the glucose levels in human sera were accurately determined. This strategy has led to a new application for MOFs that can be facilely extended to other MOF-enzyme composites due to the multifunctionality of MOFs.
Collapse
Affiliation(s)
- Yuzhi Xu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.,Research Institute of Sun Yat-Sen, University in Shenzhen, Shenzhen, 518000, P. R. China
| | - Si-Yang Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.,Research Institute of Sun Yat-Sen, University in Shenzhen, Shenzhen, 518000, P. R. China
| | - Junling Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Li Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Danping Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yingjun Ma
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jie-Peng Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zong Dai
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.,Research Institute of Sun Yat-Sen, University in Shenzhen, Shenzhen, 518000, P. R. China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.,Research Institute of Sun Yat-Sen, University in Shenzhen, Shenzhen, 518000, P. R. China
| |
Collapse
|
195
|
Navarro-Sánchez J, Almora-Barrios N, Lerma-Berlanga B, Ruiz-Pernía JJ, Lorenz-Fonfria VA, Tuñón I, Martí-Gastaldo C. Translocation of enzymes into a mesoporous MOF for enhanced catalytic activity under extreme conditions. Chem Sci 2019; 10:4082-4088. [PMID: 31049190 PMCID: PMC6469195 DOI: 10.1039/c9sc00082h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/27/2019] [Indexed: 11/21/2022] Open
Abstract
Enzymatic catalysis is of great importance to the chemical industry. However, we are still scratching the surface of the potential of biocatalysis due to the limited operating range of enzymes in harsh environments or their low recyclability. The role of Metal-Organic Frameworks (MOFs) as active supports to help overcome these limitations, mainly by immobilization and stabilization of enzymes, is rapidly expanding. Here we make use of mild heating and a non-polar medium during incubation to induce the translocation of a small enzyme like protease in the mesoporous MOF MIL-101(Al)-NH2. Our proteolytic tests demonstrate that protease@MIL-101(Al)-NH2 displays higher activity than the free enzyme under all the conditions explored and, more importantly, its usability can be extended to extreme conditions of pH and high temperatures. MOF immobilization is also effective in providing the biocomposite with long-term stability, recyclability and excellent compatibility with competing enzymes. This simple, one-step infiltration strategy might accelerate the discovery of new MOF-enzyme biocatalysts that meet the requirements for biotechnological applications.
Collapse
Affiliation(s)
- José Navarro-Sánchez
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , Catedrático José Beltrán-2 , Paterna , 46980 , Spain .
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , Catedrático José Beltrán-2 , Paterna , 46980 , Spain .
| | - Belén Lerma-Berlanga
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , Catedrático José Beltrán-2 , Paterna , 46980 , Spain .
| | - J Javier Ruiz-Pernía
- Departamento de Química Física , Universidad de Valencia , Doctor Moliner-50 , Burjassot , 46100 , Spain
| | - Victor A Lorenz-Fonfria
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , Catedrático José Beltrán-2 , Paterna , 46980 , Spain .
| | - Iñaki Tuñón
- Departamento de Química Física , Universidad de Valencia , Doctor Moliner-50 , Burjassot , 46100 , Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , Catedrático José Beltrán-2 , Paterna , 46980 , Spain .
| |
Collapse
|
196
|
Sava Gallis DF, Butler KS, Agola JO, Pearce CJ, McBride AA. Antibacterial Countermeasures via Metal-Organic Framework-Supported Sustained Therapeutic Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7782-7791. [PMID: 30682243 DOI: 10.1021/acsami.8b21698] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Long-term antimicrobial therapies are necessary to treat infections caused by virulent intracellular pathogens, including biothreat agents. Current treatment plans include injectable therapeutics given multiple times daily over a period for up to 8 weeks. Here, we present a metal-organic framework (MOF), zeolitic imidazolate framework-8 (ZIF-8), as a robust platform to support the sustained release of ceftazidime, an important antimicrobial agent for many critical bacterial infections. Detailed material characterization confirms the successful encapsulation of ceftazidime within the ZIF-8 matrix, indicating sustained drug release for up to a week. The antibacterial properties of ceftazidime@ZIF-8 particles were confirmed against Escherichia coli, chosen here as a representative of Gram-negative bacteria infection model in a proof-of-concept study. Further, we showed that this material system is compatible with macrophage and lung epithelial cell lines, relevant targets for antibacterial therapy for pulmonary and intracellular infections. A promising methodology to enhance the treatment of intracellular infections is to deliver the antibiotic cargo intracellularly. Importantly, this is the first study to unequivocally demonstrate direct MOF particle internalization using confocal microscopy via 3D reconstructions of z-stacks, taking advantage of the intrinsic emission properties of ZIF-8. This is an important development as it circumvents the need to use any staining dyes and addresses current methodology limitations concerning false impression of cargo uptake in the event of the carrier particle breakdown within biological media.
Collapse
Affiliation(s)
| | | | - Jacob O Agola
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | | | | |
Collapse
|
197
|
Wang S, Chen Y, Wang S, Li P, Mirkin CA, Farha OK. DNA-Functionalized Metal-Organic Framework Nanoparticles for Intracellular Delivery of Proteins. J Am Chem Soc 2019; 141:2215-2219. [PMID: 30669839 DOI: 10.1021/jacs.8b12705] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to their large size, charged surfaces, and environmental sensitivity, proteins do not naturally cross cell-membranes in intact form and, therefore, are difficult to deliver for both diagnostic and therapeutic purposes. Based upon the observation that clustered oligonucleotides can naturally engage scavenger receptors that facilitate cellular transfection, nucleic acid-metal organic framework nanoparticle (MOF NP) conjugates have been designed and synthesized from NU-1000 and PCN-222/MOF-545, respectively, and phosphate-terminated oligonucleotides. They have been characterized structurally and with respect to their ability to enter mammalian cells. The MOFs act as protein hosts, and their densely functionalized, oligonucleotide-rich surfaces make them colloidally stable and ensure facile cellular entry. With insulin as a model protein, high loading and a 10-fold enhancement of cellular uptake (as compared to that of the native protein) were achieved. Importantly, this approach can be generalized to facilitate the delivery of a variety of proteins as biological probes or potential therapeutics.
Collapse
Affiliation(s)
- Shunzhi Wang
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Yijing Chen
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Shuya Wang
- Interdepartmental Biological Sciences , 2205 Tech Drive , Evanston , Illinois 60208 , United States
| | - Peng Li
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Chad A Mirkin
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Omar K Farha
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
198
|
Nowroozi-Nejad Z, Bahramian B, Hosseinkhani S. Efficient immobilization of firefly luciferase in a metal organic framework: Fe-MIL-88(NH2) as a mighty support for this purpose. Enzyme Microb Technol 2019; 121:59-67. [DOI: 10.1016/j.enzmictec.2018.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/13/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023]
|
199
|
Drout RJ, Robison L, Farha OK. Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
200
|
Wang F, Wang H, Li T. Seaming the interfaces between topologically distinct metal-organic frameworks using random copolymer glues. NANOSCALE 2019; 11:2121-2125. [PMID: 30667029 DOI: 10.1039/c8nr09777a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Creating novel and multifunctional MOF-on-MOF hetero-architectures to achieve desired properties is a new frontier in MOF research. Herein, we demonstrate a generalizable method to construct core-shell MOFs using rationally designed random copolymer (RCP) glues as mediators to seam the interfaces between MOFs with mismatched topologies and coordination chemistry. The key advantage of this method is that the composition and functionality of the RCPs can be systematically tuned through judicious monomer selection to optimize the shell quality and potentially meet the demand for different core-shell MOFs.
Collapse
Affiliation(s)
- Fang Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | | | | |
Collapse
|