151
|
Schmitz DA, Wechsler T, Mignot I, Kümmerli R. Predicting bacterial interaction outcomes from monoculture growth and supernatant assays. ISME COMMUNICATIONS 2024; 4:ycae045. [PMID: 39081364 PMCID: PMC11287475 DOI: 10.1093/ismeco/ycae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024]
Abstract
How to derive principles of community dynamics and stability is a central question in microbial ecology. Bottom-up experiments, in which a small number of bacterial species are mixed, have become popular to address it. However, experimental setups are typically limited because co-culture experiments are labor-intensive and species are difficult to distinguish. Here, we use a four-species bacterial community to show that information from monoculture growth and inhibitory effects induced by secreted compounds can be combined to predict the competitive rank order in the community. Specifically, integrative monoculture growth parameters allow building a preliminary competitive rank order, which is then adjusted using inhibitory effects from supernatant assays. While our procedure worked for two different media, we observed differences in species rank orders between media. We then parameterized computer simulations with our empirical data to show that higher order species interactions largely follow the dynamics predicted from pairwise interactions with one important exception. The impact of inhibitory compounds was reduced in higher order communities because their negative effects were spread across multiple target species. Altogether, we formulated three simple rules of how monoculture growth and supernatant assay data can be combined to establish a competitive species rank order in an experimental four-species community.
Collapse
Affiliation(s)
- Désirée A Schmitz
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, United States
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Ingrid Mignot
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
152
|
Esposito A, Piazza S. Broad Genome Sequencing of Environmental and Clinical Strains and Genotyping. Methods Mol Biol 2024; 2721:171-181. [PMID: 37819522 DOI: 10.1007/978-1-0716-3473-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The Next-Generation Sequencing revolution had a great impact on the genomics of Pseudomonas aeruginosa. Since the first release of the P. aeruginosa PAO1 genome, there are more than 5700 genomes published. This wealth of information has been accompanied by the development of bioinformatic tools for handling genomic and phenotypic data. Bioinformatics, indeed, become de facto a big data science. In this chapter, we give a brief historical overview of the knowledge gained from P. aeruginosa genome sequencing, then we describe the wet-lab procedure to extract the DNA and prepare the library for broad genome sequencing using Illumina MiSeq technology. As last, we describe three user-friendly bioinformatics procedures to infer the P. aeruginosa genotype, starting from NGS data, with the Multi-Locus Sequence Typing method, and visualize it as a minimum spanning tree.
Collapse
Affiliation(s)
- Alfonso Esposito
- Faculty of Medicine and Surgery, "Kore" University of Enna, Enna, Italy.
| | - Silvano Piazza
- Computational Biology Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
153
|
Cornelis P, Dingemans J, Baysse C. Pseudomonas aeruginosa Soluble Pyocins as Antibacterial Weapons. Methods Mol Biol 2024; 2721:125-136. [PMID: 37819519 DOI: 10.1007/978-1-0716-3473-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections and associated with lung infections in cystic fibrosis (CF) patients (Lyczak et al., Microbes Infect 2:1051-1060, 2000). Multiple drug-resistant P. aeruginosa strains pose a serious problem because of antibiotic treatment failure. There is therefore a need for alternative anti-Pseudomonas molecules. Soluble pyocins (S-pyocins) are bacteriocins produced by P. aeruginosa strains that kill sensitive strains of the same species. These bacteriocins and their immunity gene are easily cloned and expressed in E. coli and their activity spectrum against different P. aeruginosa strains can be tested. In this chapter, we describe the procedures for cloning, expression, and sensitivity testing of two different S-pyocins. We also describe how to identify their receptor binding domain in sensitive strains, how to construct chimeric pyocins with extended activity spectra, and how to identify new pyocins in genomes by multiplex PCR.
Collapse
Affiliation(s)
- Pierre Cornelis
- Vrije Universiteit Brussel, Microbiology Group, Brussels, Belgium.
| | - Jozef Dingemans
- Vrije Universiteit Brussel, Microbiology Group, Brussels, Belgium
| | - Christine Baysse
- Institut de Génétique et de Développement de Rennes (IGDR), CNRS UMR 6290, Université de Rennes, Rennes, France
| |
Collapse
|
154
|
Ungor I, Apidianakis Y. Bacterial synergies and antagonisms affecting Pseudomonas aeruginosa virulence in the human lung, skin and intestine. Future Microbiol 2024; 19:141-155. [PMID: 37843410 DOI: 10.2217/fmb-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pseudomonas aeruginosa requires a significant breach in the host defense to cause an infection. While its virulence factors are well studied, its tropism cannot be explained only by studying its interaction with the host. Why are P. aeruginosa infections so rare in the intestine compared with the lung and skin? There is not enough evidence to claim specificity in virulence factors deployed by P. aeruginosa in each anatomical site, and host physiology differences between the lung and the intestine cannot easily explain the observed differences in virulence. This perspective highlights a relatively overlooked parameter in P. aeruginosa virulence, namely, potential synergies with bacteria found in the human skin and lung, as well as antagonisms with bacteria of the human intestine.
Collapse
Affiliation(s)
- Izel Ungor
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| |
Collapse
|
155
|
Schroven K, Voet M, Lavigne R, Hendrix H. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3. Methods Mol Biol 2024; 2793:113-128. [PMID: 38526727 DOI: 10.1007/978-1-0716-3798-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The vast number of unknown phage-encoded ORFan genes and limited insights into the genome organization of phages illustrate the need for efficient genome engineering tools to study bacteriophage genes in their natural context. In addition, there is an application-driven desire to alter phage properties, which is hampered by time constraints for phage genome engineering in the bacterial host. We here describe an optimized CRISPR-Cas3 system in Pseudomonas for straightforward editing of the genome of virulent bacteriophages. The two-vector system combines a broad host range CRISPR-Cas3 targeting plasmid with a SEVA plasmid for homologous directed repair, which enables the creation of clean deletions, insertions, or substitutions in the phage genome within a week. After creating the two plasmids separately, a co-transformation to P. aeruginosa cells is performed. A subsequent infection with the targeted phage allows the CRISPR-Cas3 system to cut the DNA specifically and facilitate or select for homologous recombination. This system has also been successfully applied for P. aeruginosa and Pseudomonas putida genome engineering. The method is straightforward, efficient, and universal, enabling to extrapolate the system to other phage-host pairs.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
156
|
Sanz-García F, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. The Pseudomonas aeruginosa Resistome: Permanent and Transient Antibiotic Resistance, an Overview. Methods Mol Biol 2024; 2721:85-102. [PMID: 37819517 DOI: 10.1007/978-1-0716-3473-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
One of the most concerning characteristics of Pseudomonas aeruginosa is its low susceptibility to several antibiotics of common use in clinics, as well as its facility to acquire increased resistance levels. Consequently, the study of the antibiotic resistance mechanisms of this bacterium is of relevance for human health. For such a study, different types of resistance should be distinguished. The intrinsic resistome is composed of a set of genes, present in the core genome of P. aeruginosa, which contributes to its characteristic, species-specific, phenotype of susceptibility to antibiotics. Acquired resistance refers to those genetic events, such as the acquisition of mutations or antibiotic resistance genes that reduce antibiotic susceptibility. Finally, antibiotic resistance can be transiently acquired in the presence of specific compounds or under some growing conditions. The current article provides information on methods currently used to analyze intrinsic, mutation-driven, and transient antibiotic resistance in P. aeruginosa.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
157
|
Zhou Z, Lian Y, Zhu L, Zhang H, Li Z, Wang M. Platinum Nanoparticles Prevent the Resistance of Pseudomonas aeruginosa to Ciprofloxacin and Imipenem: Mechanism Insights. ACS NANO 2023; 17:24685-24695. [PMID: 38048441 DOI: 10.1021/acsnano.3c04167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Metal nanoparticles (MNPs) have recently gained extensive attention due to their broad-spectrum prospect, particularly in biomedical application. Here, we reveal that long-term exposure to platinum nanoparticles (Pt NPs) increases the susceptibility of Pseudomonas aeruginosa PAO1 to imipenem and ciprofloxacin. We exposed PAO1 to Pt NPs (a series of doses, varying from 0.125 to 35 μg/mL) for 60 days and characterized the evolved strains (ES) and compared with wild type (WT) to understand the mechanism of heightened sensitivity. We found that overexpression of oprD and downregulation of mexEF-oprN facilitate the intracellular accumulation of antibiotic, thus increasing susceptibility. Furthermore, loss-of-function mutations were discovered in regulators lasR and mexT. Cloning intact lasR from wild-type (WT) into ES slightly improves imipenem resistance. Strikingly, cloning mexT from WT into ES reverts the imipenem and ciprofloxacin resistance to the original level. Briefly, the increase of membrane permeability controlled by mexT made PAO1 greatly susceptible to imipenem and ciprofloxacin, and the decrease of quorum sensing mediated by lasR made PAO1 slightly susceptible to imipenem. Overall, these results reveal an antibiotic susceptibility mechanism from prolonged exposure to MNPs, which provides a promising approach to prevent antibiotic resistance.
Collapse
Affiliation(s)
- Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yulu Lian
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Haibo Zhang
- China National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhangqiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| |
Collapse
|
158
|
Benigno V, Carraro N, Sarton-Lohéac G, Romano-Bertrand S, Blanc DS, van der Meer JR. Diversity and evolution of an abundant ICE clc family of integrative and conjugative elements in Pseudomonas aeruginosa. mSphere 2023; 8:e0051723. [PMID: 37902330 PMCID: PMC10732049 DOI: 10.1128/msphere.00517-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Microbial populations swiftly adapt to changing environments through horizontal gene transfer. While the mechanisms of gene transfer are well known, the impact of environmental conditions on the selection of transferred gene functions remains less clear. We investigated ICEs, specifically the ICEclc-type, in Pseudomonas aeruginosa clinical isolates. Our findings revealed co-evolution between ICEs and their hosts, with ICE transfers occurring within strains. Gene functions carried by ICEs are positively selected, including potential virulence factors and heavy metal resistance. Comparison to publicly available P. aeruginosa genomes unveiled widespread antibiotic-resistance determinants within ICEclc clades. Thus, the ubiquitous ICEclc family significantly contributes to P. aeruginosa's adaptation and fitness in diverse environments.
Collapse
Affiliation(s)
- Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Garance Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sara Romano-Bertrand
- Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, Montpellier, France
| | - Dominique S. Blanc
- Prevention and Infection Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
159
|
Kaszab E, Jiang D, Szabó I, Kriszt B, Urbányi B, Szoboszlay S, Sebők R, Bock I, Csenki-Bakos Z. Evaluating the In Vivo Virulence of Environmental Pseudomonas aeruginosa Using Microinjection Model of Zebrafish ( Danio rerio). Antibiotics (Basel) 2023; 12:1740. [PMID: 38136774 PMCID: PMC10740789 DOI: 10.3390/antibiotics12121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Microinjection of zebrafish (Danio rerio) embryos offers a promising model for studying the virulence and potential environmental risks associated with Pseudomonas aeruginosa. (2) Methods: This work aimed to develop a P. aeruginosa infection model using two parallel exposition pathways on zebrafish larvae with microinjection into the yolk and the perivitelline space to simultaneously detect the invasive and cytotoxic features of the examined strains. The microinjection infection model was validated with 15 environmental and clinical strains of P. aeruginosa of various origins, antibiotic resistance profiles, genotypes and phenotypes: both exposition pathways were optimized with a series of bacterial dilutions, different drop sizes (injection volumes) and incubation periods. Besides mortality, sublethal symptoms of the treated embryos were detected and analyzed. (3) Results: According to the statistical evaluation of our results, the optimal parameters (dilution, drop size and incubation period) were determined. (4) Conclusions: The tested zebrafish embryo microinjection infection model is now ready for use to determine the in vivo virulence and ecological risk of environmental P. aeruginosa.
Collapse
Affiliation(s)
- Edit Kaszab
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Dongze Jiang
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Sándor Szoboszlay
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Rózsa Sebők
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| | - Zsolt Csenki-Bakos
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| |
Collapse
|
160
|
Adeniji AA, Ayangbenro AS, Babalola OO. Draft genome sequence of active gold mine isolate Pseudomonas iranensis strain ABS_30. Microbiol Resour Announc 2023; 12:e0084923. [PMID: 37966236 PMCID: PMC10720498 DOI: 10.1128/mra.00849-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Pseudomonas iranensis ABS_30, isolated from gold mining soil, exhibits metal-resistant properties valuable for heavy metal removal. We report the draft genome sequencing of the P. iranensis ABS_30 strain, which is 5.9 Mb in size.
Collapse
Affiliation(s)
- Adetomiwa A. Adeniji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Center for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Ayansina S. Ayangbenro
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola O. Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
161
|
Xu S, Zheng P, Sun P, Chen P, Wu D. Biosynthesis of 3-Hydroxyphloretin Using Rational Design of 4-Hydroxyphenylacetate 3-Monooxygenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19457-19464. [PMID: 38029276 DOI: 10.1021/acs.jafc.3c06479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The compound 3-hydroxyphloretin is a typical dihydrochalcone that can be obtained in plants by the 3-hydroxylation of phloretin. Here, the flavin-dependent two-component monooxygenase (HpaBC) derived from Pseudomonas aeruginosa was used to convert phloretin into 3-hydroxyphloretin. Following molecular docking and sequence alignment, modifications to the substrate pocket and loop of PaHpaBC were rationally designed, and mutant residues were selected. The results showed that the mutant Q212G/F292A/Q376N gave the best yield of 3-hydroxyphloretin and showed improved catalytic efficiency. Under optimal reaction condition, 2.03 g/L of 3-hydroxyphloretin was produced in the whole-cell catalysis experiment. Molecular docking and molecular dynamics simulations were used to analyze mutants and elucidate the potential mechanism. It was found that the increase in 3-hydroxyphloretin yield was due to the improvement in the flexibility of the loop and the expansion of its substrate pocket. This strategy based on loop and substrate pocket modification has significance in the engineering of PaHpaB.
Collapse
Affiliation(s)
- Shuping Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ping Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
162
|
Gil-Gil T, Valverde JR, Martínez JL, Corona F. In vivo genetic analysis of Pseudomonas aeruginosa carbon catabolic repression through the study of CrcZ pseudo-revertants shows that Crc-mediated metabolic robustness is needed for proficient bacterial virulence and antibiotic resistance. Microbiol Spectr 2023; 11:e0235023. [PMID: 37902380 PMCID: PMC10714802 DOI: 10.1128/spectrum.02350-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
IIMPORTANCE Hfq and Crc regulate P. aeruginosa carbon catabolic repression at the post-transcriptional level. In vitro work has shown that Hfq binds the target RNAs and Crc stabilizes the complex. A third element in the regulation is the small RNA CrcZ, which sequesters the Crc-Hfq complex under no catabolic repression conditions, allowing the translation of the target mRNAs. A ΔcrcZ mutant was generated and presented fitness defects and alterations in its virulence potential and antibiotic resistance. Eight pseudo-revertants that present different degrees of fitness compensation were selected. Notably, although Hfq is the RNA binding protein, most mutations occurred in Crc. This indicates that Crc is strictly needed for P. aeruginosa efficient carbon catabolic repression in vivo. The compensatory mutations restore in a different degree the alterations in antibiotic susceptibility and virulence of the ΔcrcZ mutant, supporting that Crc plays a fundamental role linking P. aeruginosa metabolic robustness, virulence, and antibiotic resistance.
Collapse
|
163
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. Microbiol Spectr 2023; 11:e0177323. [PMID: 37877708 PMCID: PMC10714928 DOI: 10.1128/spectrum.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.
Collapse
Affiliation(s)
- Madeline Mei
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
164
|
Alio I, Moll R, Hoffmann T, Mamat U, Schaible UE, Pappenfort K, Alawi M, Schie M, Thünauer R, Stamm J, Rohde H, Streit WR. Stenotrophomonas maltophilia affects the gene expression profiles of the major pathogens Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro multispecies biofilm model. Microbiol Spectr 2023; 11:e0085923. [PMID: 37819084 PMCID: PMC10714729 DOI: 10.1128/spectrum.00859-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.
Collapse
Affiliation(s)
- Ifey Alio
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Raphael Moll
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Tim Hoffmann
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Kai Pappenfort
- Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Malik Alawi
- Bioinformatics Core, UKE Hamburg, Hamburg, Germany
| | - Marcel Schie
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Roland Thünauer
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Johanna Stamm
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| |
Collapse
|
165
|
Schroven K, Putzeys L, Kerremans A, Ceyssens PJ, Vallino M, Paeshuyse J, Haque F, Yusuf A, Koch MD, Lavigne R. The phage-encoded PIT4 protein affects multiple two-component systems of Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0237223. [PMID: 37962408 PMCID: PMC10714779 DOI: 10.1128/spectrum.02372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE More and more Pseudomonas aeruginosa isolates have become resistant to antibiotics like carbapenem. As a consequence, P. aeruginosa ranks in the top three of pathogens for which the development of novel antibiotics is the most crucial. The pathogen causes both acute and chronic infections, especially in patients who are the most vulnerable. Therefore, efforts are urgently needed to develop alternative therapies. One path explored in this article is the use of bacteriophages and, more specifically, phage-derived proteins. In this study, a phage-derived protein was studied that impacts key virulence factors of the pathogen via interaction with multiple histidine kinases of TCSs. The fundamental insights gained for this protein can therefore serve as inspiration for the development of an anti-virulence compound that targets the bacterial TCS.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Leena Putzeys
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | | | | | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Jan Paeshuyse
- Host and Pathogen Interactions, KU Leuven, Leuven, Belgium
| | - Farhana Haque
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ahmed Yusuf
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Matthias D. Koch
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
166
|
Thakare NR, Ingole PG, Hazarika S. Biogenic Synthesis of Nanoparticles from the Edible Plant Polygonum microcephalum for Use in Antimicrobial Fabric. ACS OMEGA 2023; 8:45301-45312. [PMID: 38075803 PMCID: PMC10702177 DOI: 10.1021/acsomega.3c03978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2025]
Abstract
With increasing demand of the public toward antimicrobial textiles, there should be the proper fabrication of such types of clothes, and it is possible with biogenically synthesized metal nanoparticles (NPs). It is necessary to find cheap and eco-friendly resources for such synthesis. In this work, we used Polygonum microcephalum from Assam, India, to synthesize copper and silver (Ag) NPs. As far as we know, this is the first report on the synthesis of AgNPs and copper oxide NPs (CuONPs) from P. microcephalum The synthesis was done from the aqueous leaf extract. The AgNPs and CuONPs formation was observed by the change in the color of the solution and was confirmed by UV-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Characterization of NPs was done with various physicochemical characterization techniques. The synthesized spherical-shaped AgNPs were found to be effective against the representative bacteria, Gram +ve (Staphylococcus Aureus) and Gram -ve (Escherichia Coli and Pseudomonas Aeruginosa), but the flake-shaped CuONPs were not effective due to their bigger size (>200 nm). The results clearly show that the AgNPs used in this study were toxic against three pathogens. The minimum inhibitory concentrations of AgNPs for S. aureus and E. coli were 32 μg/mL. The uptake analysis of AgNPs for both pathogens demonstrates the mechanism of toxic effects. The present study confirms that P. microcephalum leaf extract is effective in AgNP synthesis, and it could be a cost-effective and environmentally friendly resource for the green synthesis of AgNPs.
Collapse
Affiliation(s)
- Neha R. Thakare
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G. Ingole
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Swapnali Hazarika
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
167
|
Maybin JA, Thompson TP, Flynn PB, Skvortsov T, Hickok NJ, Freeman TA, Gilmore BF. Cold atmospheric pressure plasma-antibiotic synergy in Pseudomonas aeruginosa biofilms is mediated via oxidative stress response. Biofilm 2023; 5:100122. [PMID: 37214348 PMCID: PMC10196807 DOI: 10.1016/j.bioflm.2023.100122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Cold atmospheric-pressure plasma (CAP) has emerged as a potential alternative or adjuvant to conventional antibiotics for the treatment of bacterial infections, including those caused by antibiotic-resistant pathogens. The potential of sub-lethal CAP exposures to synergise conventional antimicrobials for the eradication of Pseudomonas aeruginosa biofilms is investigated in this study. The efficacy of antimicrobials following or in the absence of sub-lethal CAP pre-treatment in P. aeruginosa biofilms was assessed. CAP pre-treatment resulted in an increase in both planktonic and biofilm antimicrobial sensitivity for all three strains tested (PAO1, PA14, and PA10548), with both minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs) of individual antimicrobials, being significantly reduced following CAP pre-treatment of the biofilm (512-fold reduction with ciprofloxacin/gentamicin; and a 256-fold reduction with tobramycin). At all concentrations of antimicrobial used, the combination of sub-lethal CAP exposure and antimicrobials was effective at increasing time-to-peak metabolism, as measured by isothermal microcalorimetry, again indicating enhanced susceptibility. CAP is known to damage bacterial cell membranes and DNA by causing oxidative stress through the in situ generation of reactive oxygen and nitrogen species (RONS). While the exact mechanism is not clear, oxidative stress on outer membrane proteins is thought to damage/perturb cell membranes, confirmed by ATP and LDH leakage, allowing antimicrobials to penetrate the bacterial cell more effectively, thus increasing bacterial susceptibility. Transcriptomic analysis, reveals that cold-plasma mediated oxidative stress caused upregulation of P. aeruginosa superoxide dismutase, cbb3 oxidases, catalases, and peroxidases, and upregulation in denitrification genes, suggesting that P. aeruginosa uses these enzymes to degrade RONS and mitigate the effects of cold plasma mediated oxidative stress. CAP treatment also led to an increased production of the signalling molecule ppGpp in P. aeruginosa, indicative of a stringent response being established. Although we did not directly measure persister cell formation, this stringent response may potentially be associated with the formation of persister cells in biofilm cultures. The production of ppGpp and polyphosphate may be associated with protein synthesis inhibition and increase efflux pump activity, factors which can result in antimicrobial tolerance. The transcriptomic analysis also showed that by 6 h post-treatment, there was downregulation in ribosome modulation factor, which is involved in the formation of persister cells, suggesting that the cells had begun to resuscitate/recover. In addition, CAP treatment at 4 h post-exposure caused downregulation of the virulence factors pyoverdine and pyocyanin; by 6 h post-exposure, virulence factor production was increasing. Transcriptomic analysis provides valuable insights into the mechanisms by which P. aeruginosa biofilms exhibits enhanced susceptibility to antimicrobials. Overall, these findings suggest, for the first time, that short CAP sub-lethal pre-treatment can be an effective strategy for enhancing the susceptibility of P. aeruginosa biofilms to antimicrobials and provides important mechanistic insights into cold plasma-antimicrobial synergy. Transcriptomic analysis of the response to, and recovery from, sub-lethal cold plasma exposures in P. aeruginosa biofilms improves our current understanding of cold plasma biofilm interactions.
Collapse
Affiliation(s)
- Jordanne-Amee Maybin
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Thomas P. Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Padrig B. Flynn
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Timofey Skvortsov
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Theresa A. Freeman
- Department of Orthopaedic Surgery Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
168
|
Porzio E, Andrenacci D, Manco G. Thermostable Lactonases Inhibit Pseudomonas aeruginosa Biofilm: Effect In Vitro and in Drosophila melanogaster Model of Chronic Infection. Int J Mol Sci 2023; 24:17028. [PMID: 38069351 PMCID: PMC10707464 DOI: 10.3390/ijms242317028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Pseudomonas aeruginosa is one of the six antimicrobial-resistant pathogens known as "ESKAPE" that represent a global threat to human health and are considered priority targets for the development of novel antimicrobials and alternative therapeutics. The virulence of P. aeruginosa is regulated by a four-chemicals communication system termed quorum sensing (QS), and one main class of QS signals is termed acylhomoserine lactones (acyl-HSLs), which includes 3-Oxo-dodecanoil homoserine lactone (3-Oxo-C12-HSL), which regulates the expression of genes implicated in virulence and biofilm formation. Lactonases, like Paraoxonase 2 (PON2) from humans and the phosphotriesterase-like lactonases (PLLs) from thermostable microorganisms, are able to hydrolyze acyl-HSLs. In this work, we explored in vitro and in an animal model the effect of some lactonases on the production of Pseudomonas virulence factors. This study presents a model of chronic infection in which bacteria were administered by feeding, and Drosophila adults were treated with enzymes and the antibiotic tobramycin, alone or in combination. In vitro, we observed significant effects of lactonases on biofilm formation as well as effects on bacterial motility and the expression of virulence factors. The treatment in vivo by feeding with the lactonase SacPox allowed us to significantly increase the biocidal effect of tobramycin in chronic infection.
Collapse
Affiliation(s)
- Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza” Unit of Bologna, 40136 Bologna, Italy
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
169
|
Valeeva L, Pudova D, Khabipova N, Shigapova L, Shagimardanova E, Rogov A, Tagirova T, Gimadeev Z, Sharipova M. The dataset on the draft whole-genome sequences of two Pseudomonas aeruginosa strains isolated from urine samples of patients with urinary tract diseases. Data Brief 2023; 51:109704. [PMID: 37965601 PMCID: PMC10641123 DOI: 10.1016/j.dib.2023.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Pseudomonas aeruginosa is a widespread multidrug-resistant opportunistic human pathogen with an extremely high mortality rate that leads to urinary tract infection morbidities in particular. Variability and dynamics in genome features and ecological flexibility help these bacteria adapt to many environments and hosts and underlie their broad antibiotic resistance. Overall, studies aimed at obtaining a deeper understanding of the genome organization of UTI-associated P. aeruginosa strains are of high importance for sustainable health care worldwide. Herein, we report the draft assembly of entire genomes of two P. aeruginosa strains, PA18 and PA23, isolated from voided urine of patients with urinary tract diseases (hydronephrosis and urolithiasis, respectively) and determine the most important genetic features for pathogenesis and virulence. Whole-genome sequencing and annotation of genomes revealed high similarity between the two UTI strains along with differences in comparison with other uropathogenic P. aeruginosa and reference strains. The 6 981 635 bp and 6 948 153 bp draft genome sequences with GC contents of 65.9% and 65.8%, respectively, provide new insights into the virulence genetic factors and genes associated with antimicrobial resistance. The whole genome data of PA18 and PA23 have been deposited in the NCBI GenBank database (accession numbers JAQRBF000000000.1 and JAQRBG000000000.1, respectively).
Collapse
Affiliation(s)
- L.R. Valeeva
- Laboratory of Agrobioengineering, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Parizhskoy Kommuny Str., 9, Kazan 420021, Russia
| | - D.S. Pudova
- Laboratory of Agrobioengineering, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Parizhskoy Kommuny Str., 9, Kazan 420021, Russia
| | - N.N. Khabipova
- Laboratory of Agrobioengineering, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Parizhskoy Kommuny Str., 9, Kazan 420021, Russia
| | - L.H. Shigapova
- ‘Regulatory genomics’ Research Center, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Volkova Str. 18, Kazan 420012, Russia
| | - E.I. Shagimardanova
- ‘Regulatory genomics’ Research Center, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Volkova Str. 18, Kazan 420012, Russia
| | - A.M. Rogov
- The Interdisciplinary Center “Analytical Microscopy”, Kazan (Volga Region) Federal University, Kazan (Volga Region) Federal University, Parizhskoy Kommuny Str., 9, Kazan 420021, Russia
| | - T.R. Tagirova
- The Laboratory of clinical bacteriology, the Republican Clinical Hospital of the Republic of Tatarstan, Orenburgskiy trakt, 138, Kazan, 420064, Russia
| | - Z.G. Gimadeev
- The Urological Department of the University Clinic in Kazan, Chekhova Str., 43, Kazan, 420043, Russia
| | - M.R. Sharipova
- Laboratory of Agrobioengineering, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Parizhskoy Kommuny Str., 9, Kazan 420021, Russia
| |
Collapse
|
170
|
Burmeister N, Zorn E, Preuss L, Timm D, Scharnagl N, Rohnke M, Wicha SG, Streit WR, Maison W. Low-Fouling and Antibacterial Polymer Brushes via Surface-Initiated Polymerization of a Mixed Zwitterionic and Cationic Monomer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38033196 DOI: 10.1021/acs.langmuir.3c02657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The use of surface-grafted polymer brushes with combined low-fouling and antibacterial functionality is an attractive strategy to fight biofilm formation. This report describes a new styrene derivative combining a quaternary ammonium group with a sulfobetaine group in one monomer. Surface-initiated polymerization of this monomer on titanium and a polyethylene (PE) base material gave bifunctional polymer brush layers. Grafting was achieved via surface-initiated atom transfer radical polymerization from titanium or heat-induced free-radical polymerization from plasma-activated PE. Both techniques gave charged polymer layers with a thickness of over 750 nm, as confirmed by ToF-SIMS-SPM measurements. The chemical composition of the brush polymers was confirmed by XPS and FT-IR analysis. The surface charge, characterized by the ζ potential, was positive at different pH values, and the number of solvent-accessible excess ammonium groups was found to be ∼1016 N+/cm2. This led to strong antibacterial activity against Gram-positive and Gram-negative bacteria that was superior to a structurally related contact-active polymeric quaternary ammonium brush. In addition to this antibacterial activity, good low-fouling properties of the dual-function polymer brushes against Gram-positive and Gram-negative bacteria were found. This dual functionality is most likely due to the combination of antibacterial quaternary ammonium groups with antifouling sulfobetaines. The combination of both groups in one monomer allows the preparation of bifunctional brush polymers with operationally simple polymerization techniques.
Collapse
Affiliation(s)
- Nils Burmeister
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eilika Zorn
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Lena Preuss
- Department of Microbiology and Biotechnology, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Donovan Timm
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Nico Scharnagl
- Helmholtz-Zentrum Hereon GmbH, Institute of Surface Science, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Marcus Rohnke
- Justus-Liebig-Universität Gießen, Institute of Physical Chemistry, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Sebastian G Wicha
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Wolfgang Maison
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| |
Collapse
|
171
|
Brunetti AE, Lyra ML, Bauermeister A, Bunk B, Boedeker C, Müsken M, Neto FC, Mendonça JN, Caraballo-Rodríguez AM, Melo WG, Pupo MT, Haddad CF, Cabrera GM, Overmann J, Lopes NP. Host macrocyclic acylcarnitines mediate symbiotic interactions between frogs and their skin microbiome. iScience 2023; 26:108109. [PMID: 37867936 PMCID: PMC10587524 DOI: 10.1016/j.isci.2023.108109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/23/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
The host-microbiome associations occurring on the skin of vertebrates significantly influence hosts' health. However, the factors mediating their interactions remain largely unknown. Herein, we used integrated technical and ecological frameworks to investigate the skin metabolites sustaining a beneficial symbiosis between tree frogs and bacteria. We characterize macrocyclic acylcarnitines as the major metabolites secreted by the frogs' skin and trace their origin to an enzymatic unbalance of carnitine palmitoyltransferases. We found that these compounds colocalize with bacteria on the skin surface and are mostly represented by members of the Pseudomonas community. We showed that Pseudomonas sp. MPFS isolated from frogs' skin can exploit acylcarnitines as its sole carbon and nitrogen source, and this metabolic capability is widespread in Pseudomonas. We summarize frogs' multiple mechanisms to filter environmental bacteria and highlight that acylcarnitines likely evolved for another function but were co-opted to provide nutritional benefits to the symbionts.
Collapse
Affiliation(s)
- Andrés E. Brunetti
- Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones N3300LQH, Argentina
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Mariana L. Lyra
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi 129188, United Arab Emirates
| | - Anelize Bauermeister
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Niedersachsen, Germany
| | - Christian Boedeker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Niedersachsen, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Niedersachsen, Germany
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Jacqueline Nakau Mendonça
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Weilan G.P. Melo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Mônica T. Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Célio F.B. Haddad
- Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Gabriela M. Cabrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Buenos Aires C1428EGA, Argentina
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Niedersachsen, Germany
| | - Norberto P. Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
172
|
Hubert T, Madec M, Schalk IJ. Experimental and computational methods to highlight behavioural variations in TonB-dependent transporter expression in Pseudomonas aeruginosa versus siderophore concentration. Sci Rep 2023; 13:20015. [PMID: 37974013 PMCID: PMC10654771 DOI: 10.1038/s41598-023-46585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Iron is a key nutrient for bacterial growth. The source can be either heme or siderophore-Fe complexes. Siderophores are small molecules synthesized by bacteria to scavenge iron from the bacterial environment. The pathogen Pseudomonas aeruginosa can express at least 15 different iron uptake pathways and all but one involve a TonB-dependent transporter (TBDT) for the uptake of iron across the outer membrane. Little is known about how bacteria modulate and adapt the expression of their different iron import pathways according to their environment. Here, we have developed fluorescent reporters between the promoter region of genes encoding a TBDT and the fluorescent reporter mCherry. With these constructs, we can follow the expression of TBDTs under different growth conditions. Mathematical modelling of the data obtained showed the transcription and expression of the gene encoding the TBDT PfeA to have a sigmoidal shape, whereas it was logarithmic for the TBDT gene foxA. Maximum transcription for pfeA was reached in the presence of 3 µM enterobactin, the siderophore recognized by PfeA, whereas the maximum was not reached for foxA with 100 µM nocardamine, the siderophore of FoxA.
Collapse
Affiliation(s)
- Thibaut Hubert
- CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- ICube Laboratory, CNRS, UMR 7357, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Morgan Madec
- ICube Laboratory, CNRS, UMR 7357, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| | - Isabelle J Schalk
- CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| |
Collapse
|
173
|
da Cruz Nizer WS, Adams ME, Inkovskiy V, Beaulieu C, Overhage J. The secondary metabolite hydrogen cyanide protects Pseudomonas aeruginosa against sodium hypochlorite-induced oxidative stress. Front Microbiol 2023; 14:1294518. [PMID: 38033579 PMCID: PMC10687435 DOI: 10.3389/fmicb.2023.1294518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The high pathogenicity of Pseudomonas aeruginosa is attributed to the production of many virulence factors and its resistance to several antimicrobials. Among them, sodium hypochlorite (NaOCl) is a widely used disinfectant due to its strong antimicrobial effect. However, bacteria develop many mechanisms to survive the damage caused by this agent. Therefore, this study aimed to identify novel mechanisms employed by P. aeruginosa to resist oxidative stress induced by the strong oxidizing agent NaOCl. We analyzed the growth of the P. aeruginosa mutants ΔkatA, ΔkatE, ΔahpC, ΔahpF, ΔmsrA at 1 μg/mL NaOCl, and showed that these known H2O2 resistance mechanisms are also important for the survival of P. aeruginosa under NaOCl stress. We then conducted a screening of the P. aeruginosa PA14 transposon insertion mutant library and identified 48 mutants with increased susceptibility toward NaOCl. Among them were 10 mutants with a disrupted nrdJa, bvlR, hcnA, orn, sucC, cysZ, nuoJ, PA4166, opmQ, or thiC gene, which also exhibited a significant growth defect in the presence of NaOCl. We focussed our follow-up experiments (i.e., growth analyzes and kill-kinetics) on mutants with defect in the synthesis of the secondary metabolite hydrogen cyanide (HCN). We showed that HCN produced by P. aeruginosa contributes to its resistance toward NaOCl as it acts as a scavenger molecule, quenching the toxic effects of NaOCl.
Collapse
Affiliation(s)
| | | | | | | | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
174
|
Nazeer RR, Wang M, Welch M. More than just a gel: the extracellular matrixome of Pseudomonas aeruginosa. Front Mol Biosci 2023; 10:1307857. [PMID: 38028553 PMCID: PMC10679415 DOI: 10.3389/fmolb.2023.1307857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Armed with an arsenal of protein secretion systems, antibiotic efflux pumps, and the occasional proclivity for explosive self-destruction, Pseudomonas aeruginosa has become a model for the study of bacterial pathogenesis and biofilm formation. There is accruing evidence to suggest that the biofilm matrix-the bioglue that holds the structure together-acts not only in a structural capacity, but is also a molecular "net" whose function is to capture and retain certain secreted products (including proteins and small molecules). In this perspective, we argue that the biofilm matrixome is a distinct extracellular compartment, and one that is differentiated from the bulk secretome. Some of the points we raise are deliberately speculative, but are becoming increasingly accessible to experimental investigation.
Collapse
Affiliation(s)
| | | | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
175
|
Giovagnorio F, De Vito A, Madeddu G, Parisi SG, Geremia N. Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics (Basel) 2023; 12:1621. [PMID: 37998823 PMCID: PMC10669487 DOI: 10.3390/antibiotics12111621] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium renowned for its resilience and adaptability across diverse environments, including clinical settings, where it emerges as a formidable pathogen. Notorious for causing nosocomial infections, P. aeruginosa presents a significant challenge due to its intrinsic and acquired resistance mechanisms. This comprehensive review aims to delve into the intricate resistance mechanisms employed by P. aeruginosa and to discern how these mechanisms can be inferred by analyzing sensitivity patterns displayed in antibiograms, emphasizing the complexities encountered in clinical management. Traditional monotherapies are increasingly overshadowed by the emergence of multidrug-resistant strains, necessitating a paradigm shift towards innovative combination therapies and the exploration of novel antibiotics. The review accentuates the critical role of accurate antibiogram interpretation in guiding judicious antibiotic use, optimizing therapeutic outcomes, and mitigating the propagation of antibiotic resistance. Misinterpretations, it cautions, can inadvertently foster resistance, jeopardizing patient health and amplifying global antibiotic resistance challenges. This paper advocates for enhanced clinician proficiency in interpreting antibiograms, facilitating informed and strategic antibiotic deployment, thereby improving patient prognosis and contributing to global antibiotic stewardship efforts.
Collapse
Affiliation(s)
- Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | | | - Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale “dell’Angelo”, 30174 Venice, Italy
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| |
Collapse
|
176
|
Low KE, Gheorghita AA, Tammam SD, Whitfield GB, Li YE, Riley LM, Weadge JT, Caldwell SJ, Chong PA, Walvoort MTC, Kitova EN, Klassen JS, Codée JDC, Howell PL. Pseudomonas aeruginosa AlgF is a protein-protein interaction mediator required for acetylation of the alginate exopolysaccharide. J Biol Chem 2023; 299:105314. [PMID: 37797696 PMCID: PMC10641220 DOI: 10.1016/j.jbc.2023.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.
Collapse
Affiliation(s)
- Kristin E Low
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreea A Gheorghita
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie D Tammam
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory B Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yancheng E Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Laura M Riley
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joel T Weadge
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shane J Caldwell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - P Andrew Chong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
177
|
Teng J, Imani S, Zhou A, Zhao Y, Du L, Deng S, Li J, Wang Q. Combatting resistance: Understanding multi-drug resistant pathogens in intensive care units. Biomed Pharmacother 2023; 167:115564. [PMID: 37748408 DOI: 10.1016/j.biopha.2023.115564] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
The escalating misuse and excessive utilization of antibiotics have led to the widespread dissemination of drug-resistant bacteria, posing a significant global healthcare crisis. Of particular concern is the increasing prevalence of multi-drug resistant (MDR) opportunistic pathogens in Intensive Care Units (ICUs), which presents a severe threat to public health and contributes to substantial morbidity and mortality. Among them, MDR ESKAPE pathogens account for the vast majority of these opportunistic pathogens. This comprehensive review provides a meticulous analysis of the current prevalence landscape of MDR opportunistic pathogens in ICUs, especially in ESKAPE pathogens, illuminating their resistance mechanisms against commonly employed first-line antibiotics, including polymyxins, carbapenems, and tigecycline. Furthermore, this review explores innovative strategies aimed at preventing and controlling the emergence and spread of resistance. By emphasizing the urgent need for robust measures to combat nosocomial infections caused by MDR opportunistic pathogens in ICUs, this study serves as an invaluable reference for future investigations in the field of antibiotic resistance.
Collapse
Affiliation(s)
- Jianying Teng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China; The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai, PR China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Lailing Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Shuli Deng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| | - Jun Li
- College of Food Science and Engineering, Jiangxi Agricultural University, 1225 Zhimin Avenue, Nanchang, Jiangxi Province, PR China.
| | - Qingjing Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China.
| |
Collapse
|
178
|
Murase LS, Perez de Souza JV, Meneguello JE, Palomo CT, Fernandes Herculano Ramos Milaré ÁC, Negri M, Dias Siqueira VL, Demarchi IG, Vieira Teixeira JJ, Cardoso RF. Antibacterial and immunological properties of piperine evidenced by preclinical studies: a systematic review. Future Microbiol 2023; 18:1279-1299. [PMID: 37882762 DOI: 10.2217/fmb-2023-0101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To review in vitro, in vivo, and in silico studies examining the antibacterial and immunomodulatory properties of piperine (PPN). Methods: This systematic review followed PRISMA guidelines, and five databases were searched. Results: A total of 40 articles were included in this study. Six aspects of PPN activity were identified, including antibacterial spectrum, association with antibiotics, efflux pump inhibition, biofilm effects, protein target binding, and modulation of immune functions/virulence factors. Most studies focused on Mycobacterium spp. and Staphylococcus aureus. Cell lineages and in vivo models were employed to study PPN antibacterial effects. Conclusion: We highlight PPN as a potential adjuvant in the treatment of bacterial infections. PPN possesses several antibacterial properties that need further exploration to determine the mechanisms behind its pharmacological activity.
Collapse
Affiliation(s)
- Letícia Sayuri Murase
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | - João Vítor Perez de Souza
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Carolina Trevisolli Palomo
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | | | - Melyssa Negri
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Izabel Galhardo Demarchi
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopólis, Santa Catarina, 88040-900, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
179
|
Fu T, Gifford DR, Knight CG, Brockhurst MA. Eco-evolutionary dynamics of experimental Pseudomonas aeruginosa populations under oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001396. [PMID: 37943284 PMCID: PMC10710836 DOI: 10.1099/mic.0.001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Within-host environments are likely to present a challenging and stressful environment for opportunistic pathogenic bacteria colonizing from the external environment. How populations of pathogenic bacteria respond to such environmental challenges and how this varies between strains is not well understood. Oxidative stress is one of the defences adopted by the human immune system to confront invading bacteria. In this study, we show that strains of the opportunistic pathogenic bacterium Pseudomonas aeruginosa vary in their eco-evolutionary responses to hydrogen peroxide stress. By quantifying their 24 h growth kinetics across hydrogen peroxide gradients we show that a transmissible epidemic strain isolated from a chronic airway infection of a cystic fibrosis patient, LESB58, is much more susceptible to hydrogen peroxide than either of the reference strains, PA14 or PAO1, with PAO1 showing the lowest susceptibility. Using a 12 day serial passaging experiment combined with a mathematical model, we then show that short-term susceptibility controls the longer-term survival of populations exposed to subinhibitory levels of hydrogen peroxide, but that phenotypic evolutionary responses can delay population extinction. Our model further suggests that hydrogen peroxide driven extinctions are more likely with higher rates of population turnover. Together, these findings suggest that hydrogen peroxide is likely to be an effective defence in host niches where there is high population turnover, which may explain the counter-intuitively high susceptibility of a strain isolated from chronic lung infection, where such ecological dynamics may be slower.
Collapse
Affiliation(s)
- Taoran Fu
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Danna R. Gifford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PT, UK
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
180
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
181
|
Goodyear MC, Seidel L, Krieger JR, Geddes-McAlister J, Levesque RC, Khursigara CM. Quantitative proteomics reveals unique responses to antimicrobial treatments in clinical Pseudomonas aeruginosa isolates. mSystems 2023; 8:e0049123. [PMID: 37623324 PMCID: PMC10654054 DOI: 10.1128/msystems.00491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
IMPORTANCE Pseudomonas aeruginosa is an important pathogen often associated with hospital-acquired infections and chronic lung infections in people with cystic fibrosis. P. aeruginosa possesses a wide array of intrinsic and adaptive mechanisms of antibiotic resistance, and the regulation of these mechanisms is complex. Label-free quantitative proteomics is a powerful tool to compare susceptible and resistant strains of bacteria and their responses to antibiotic treatments. Here we compare the proteomes of three isolates of P. aeruginosa with different antibiotic resistance profiles in response to five challenge conditions. We uncover unique and shared proteome changes for the widely used laboratory strain PAO1 and two isolates of the Liverpool epidemic strain of P. aeruginosa, LESlike1 and LESB58. Our data set provides insight into antibiotic resistance in clinically relevant Pseudomonas isolates and highlights proteins, including those with uncharacterized functions, which can be further investigated for their role in adaptive responses to antibiotic treatments.
Collapse
Affiliation(s)
- Mara C. Goodyear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Roger C. Levesque
- Institut de biologie integrative et des systems (IBIS), Département de microbiologie-infectiologie et d'immunologie, Université Laval, Laval, Quebec, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
182
|
Cheng M, Chen R, Liao L. T2SS-peptidase XcpA associated with LasR evolutional phenotypic variations provides a fitness advantage to Pseudomonas aeruginosa PAO1. Front Microbiol 2023; 14:1256785. [PMID: 37954251 PMCID: PMC10637944 DOI: 10.3389/fmicb.2023.1256785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa possesses hierarchical quorum sensing (QS) systems. The intricate QS network of P. aeruginosa synchronizes a suite of virulence factors, contributing to the mortality and morbidity linked to the pathogenicity of this bacterium. Previous studies have revealed that variations in the lasR gene are frequently observed in chronic isolates of cystic fibrosis (CF). Specifically, LasRQ45stop was identified as a common variant among CF, lasR mutants during statistical analysis of the clinical lasR mutants in the database. In this study, we introduced LasRQ45stop into the chromosome of P. aeruginosa PAO1 through allelic replacement. The social traits of PAO1 LasRQ45stop were found to be equivalent to those of PAO1 LasR-null isolates. By co-evolving with the wild-type in caseinate broth, elastase-phenotypic-variability variants were derived from the LasRQ45stop subpopulation. Upon further examination of four LasRQ45stop sublines, we determined that the variation of T2SS-peptidase xcpA and mexT genes plays a pivotal role in the divergence of various phenotypes, including public goods elastase secretion and other pathogenicity traits. Furthermore, XcpA mutants demonstrated a fitness advantage compared to parent strains during co-evolution. Numerous phenotypic variations were associated with subline-specific genetic alterations. Collectively, these findings suggest that even within the same parental subline, there is ongoing microevolution of individual mutational trajectory diversity during adaptation.
Collapse
Affiliation(s)
- Mengmeng Cheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ruiyi Chen
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Lisheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
183
|
Schroven K, Putzeys L, Swinnen AL, Hendrix H, Paeshuyse J, Lavigne R. The phage-encoded protein PIT2 impacts Pseudomonas aeruginosa quorum sensing by direct interaction with LasR. iScience 2023; 26:107745. [PMID: 37736037 PMCID: PMC10509696 DOI: 10.1016/j.isci.2023.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
In recent decades, there has been a notable increase in antibiotic-resistant Pseudomonas aeruginosa isolates, necessitating the development of innovative treatments to combat this pathogen. This manuscript explores the potential of different phage proteins to attenuate virulence factors of P. aeruginosa, particularly the type II secretion system (T2SS). PIT2, a protein derived from the lytic Pseudomonas phage LMA2 inhibits the T2SS effectors PrpL and LasA and attenuates the bacterial virulence toward HeLa cells and Galleria mellonella. Using RNAseq-based differential gene expression analysis, PIT2's impact on the LasR regulatory network is revealed, which plays a key role in bacterial quorum sensing. This discovery expands our knowledge on phage-encoded modulators of the bacterial metabolism and offers a promising anti-virulence target in P. aeruginosa. As such, it lays the foundation for a new phage-inspired anti-virulence strategy to combat multidrug resistant pathogens and opens the door for SynBio applications.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, 3000 Heverlee, Belgium
| | - Leena Putzeys
- Laboratory of Gene Technology, KU Leuven, 3000 Heverlee, Belgium
| | | | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, 3000 Heverlee, Belgium
| | - Jan Paeshuyse
- Laboratory for Host Pathogen Interactions in Livestock, KU Leuven, 3000 Heverlee, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3000 Heverlee, Belgium
| |
Collapse
|
184
|
Sass G, Groleau MC, Déziel E, Stevens DA. Simple method for quantification of anionic biosurfactants in aqueous solutions. Front Bioeng Biotechnol 2023; 11:1253652. [PMID: 37885452 PMCID: PMC10598384 DOI: 10.3389/fbioe.2023.1253652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
Biosurfactants are microbial products that have applications as cleaning agents, emulsifiers, and dispersants. Detection and quantification of biosurfactants can be done by various methods, including colorimetric tests, high performance liquid chromatography (HPLC) coupled to several types of detectors, and tests that take advantage of biosurfactants reducing surface tension of aqueous liquids, allowing for spreading and droplet formation of oils. We present a new and simple method for quantifying biosurfactants by their ability, on paper, to reduce surface tension of aqueous solutions, causing droplet dispersion on an oiled surface in correlation with biosurfactant content. We validated this method with rhamnolipids, surfactin, sophorolipids, and ananatoside B; all are anionic microbial surfactants. Linear ranges for quantification in aqueous solutions for all tested biosurfactants were between 10 and 500 µM. Our method showed time-dependent biosurfactant accumulation in cultures of Pseudomonas aeruginosa strains PA14 and PAO1, and Burkholderia thailandensis E264. Mutants in genes responsible for surfactant production showed negligible activity on oiled paper. In summary, our simple assay provides the opportunity to quantify biosurfactant contents of aqueous solutions, for a diversity of surfactants, by means readily available in any laboratory.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA, United States
| | - Marie-Christine Groleau
- Institut National de la Recherche Scientific-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Eric Déziel
- Institut National de la Recherche Scientific-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
185
|
Rattanachak N, Weawsiangsang S, Baldock RA, Jaifoo T, Jongjitvimol T, Jongjitwimol J. A Novel and Quantitative Detection Assay ( effluxR) for Identifying Efflux-Associated Resistance Genes Using Multiplex Digital PCR in Clinical Isolates of Pseudomonas aeruginosa. Methods Protoc 2023; 6:96. [PMID: 37888028 PMCID: PMC10608825 DOI: 10.3390/mps6050096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
The rise of multidrug resistance of Pseudomonas aeruginosa highlights an increased need for selective and precise antimicrobial treatment. Drug efflux pumps are one of the major mechanisms of antimicrobial resistance found in many bacteria, including P. aeruginosa. Detection of efflux genes using a polymerase chain reaction (PCR)-based system would enable resistance detection and aid clinical decision making. Therefore, we aimed to develop and optimize a novel method herein referred to as "effluxR detection assay" using multiplex digital PCR (mdPCR) for detection of mex efflux pump genes in P. aeruginosa strains. The annealing/extension temperatures and gDNA concentrations were optimized to amplify mexB, mexD, and mexY using the multiplex quantitative PCR (mqPCR) system. We established the optimal mqPCR conditions for the assay (Ta of 59 °C with gDNA concentrations at or above 0.5 ng/µL). Using these conditions, we were able to successfully detect the presence of these genes in a quantity-dependent manner. The limit of detection for mex genes using the effluxR detection assay with mdPCR was 0.001 ng/µL (7.04-34.81 copies/µL). Moreover, using blind sample testing, we show that effluxR detection assay had 100% sensitivity and specificity for detecting mex genes in P. aeruginosa. In conclusion, the effluxR detection assay, using mdPCR, is able to identify the presence of multiple mex genes in P. aeruginosa that may aid clinical laboratory decisions and further epidemiological studies.
Collapse
Affiliation(s)
- Nontaporn Rattanachak
- Biomedical Sciences Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (N.R.); (S.W.)
| | - Sattaporn Weawsiangsang
- Biomedical Sciences Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (N.R.); (S.W.)
| | - Robert A. Baldock
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Theerasak Jaifoo
- Master of Science Program in Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Touchkanin Jongjitvimol
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Jirapas Jongjitwimol
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
186
|
Pérez-Vázquez M, López-Causapé C, Corral-Lugo A, McConnell MJ, Oteo-Iglesias J, Oliver A, Martín-Galiano AJ. Mutation Analysis in Regulator DNA-Binding Regions for Antimicrobial Efflux Pumps in 17,000 Pseudomonas aeruginosa Genomes. Microorganisms 2023; 11:2486. [PMID: 37894144 PMCID: PMC10609311 DOI: 10.3390/microorganisms11102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations leading to upregulation of efflux pumps can produce multiple drug resistance in the pathogen Pseudomonas aeruginosa. Changes in their DNA binding regions, i.e., palindromic operators, can compromise pump depression and subsequently enhance resistance against several antibacterials and biocides. Here, we have identified (pseudo)palindromic repeats close to promoters of genes encoding 13 core drug-efflux pumps of P. aeruginosa. This framework was applied to detect mutations in these repeats in 17,292 genomes. Eighty-nine percent of isolates carried at least one mutation. Eight binary genetic properties potentially related to expression were calculated for mutations. These included palindromicity reduction, mutation type, positioning within the repeat and DNA-bending shift. High-risk ST298, ST308 and ST357 clones commonly carried four conserved mutations while ST175 and the cystic fibrosis-linked ST649 clones showed none. Remarkably, a T-to-C transition in the fourth position of the upstream repeat for mexEF-oprN was nearly exclusive of the high-risk ST111 clone. Other mutations were associated with high-risk sublineages using sample geotemporal metadata. Moreover, 1.5% of isolates carried five or more mutations suggesting they undergo an alternative program for regulation of their effluxome. Overall, P. aeruginosa shows a wide range of operator mutations with a potential effect on efflux pump expression and antibiotic resistance.
Collapse
Affiliation(s)
- María Pérez-Vázquez
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28029 Madrid, Spain; (M.P.-V.); (J.O.-I.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (C.L.-C.); (A.O.)
| | - Carla López-Causapé
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (C.L.-C.); (A.O.)
- Microbiology Department-Research Institute Biomedical Islas Baleares (IdISDBa), Hospital Son Espases, 07122 Palma de Mallorca, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Unit, National Centre for Microbiology, ISCIII, Majadahonda, 28029 Madrid, Spain;
| | - Michael J. McConnell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Jesús Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28029 Madrid, Spain; (M.P.-V.); (J.O.-I.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (C.L.-C.); (A.O.)
| | - Antonio Oliver
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (C.L.-C.); (A.O.)
- Microbiology Department-Research Institute Biomedical Islas Baleares (IdISDBa), Hospital Son Espases, 07122 Palma de Mallorca, Spain
| | | |
Collapse
|
187
|
Cai W, Liao H, Lu M, Zhou X, Cheng X, Staehelin C, Dai W. New Evolutionary Insights into RpoA: A Novel Quorum Sensing Reprograming Factor in Pseudomonas aeruginosa. Mol Biol Evol 2023; 40:msad203. [PMID: 37708386 PMCID: PMC10566545 DOI: 10.1093/molbev/msad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Quorum-sensing (QS) coordinates the expression of virulence factors in Pseudomonas aeruginosa, an opportunistic pathogen known for causing severe infections in immunocompromised patients. QS has a master regulator, the lasR gene, but in clinical settings, P. aeruginosa isolates have been found that are QS-active but LasR-null. In this study, we developed an experimental evolutionary approach to identify additional QS-reprogramming determinants. We began the study with a LasR-null mutant with an extra copy of mexT, a transcriptional regulator gene that is known to be able to reprogram QS in laboratory LasR-null strains. In this strain, spontaneous single mexT mutations are expected to have no or little phenotypic consequences. Using this novel method, which we have named "targeted gene duplication followed by mutant screening", we identified QS-active revertants with mutations in genes other than mexT. One QS-active revertant had a point mutation in rpoA, a gene encoding the α-subunit of RNA polymerase. QS activation in this mutant was found to be associated with the downregulated expression of mexEF-oprN efflux pump genes. Our study therefore uncovers a new functional role for RpoA in regulating QS activity. Our results indicate that a RpoA-dependent regulatory circuit controlling the expression of the mexEF-oprN operon is critical for QS-reprogramming. In conclusion, our study reports on the identification of non-MexT proteins associated with QS-reprogramming in a laboratory strain, shedding light on possible QS activation mechanisms in clinical P. aeruginosa isolates.
Collapse
Affiliation(s)
- Wenjie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Huimin Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Mingqi Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xiangting Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Cheng
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
188
|
Khan P, Waheed A, Azeem M, Parveen A, Yameen MA, Iqbal J, Ali M, Wang S, Qayyum S, Noor A, Naqvi TA. Essential Oil from Tagetes minuta Has Antiquorum Sensing and Antibiofilm Potential against Pseudomonas aeruginosa Strain PAO1. ACS OMEGA 2023; 8:35866-35873. [PMID: 37810677 PMCID: PMC10551919 DOI: 10.1021/acsomega.3c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Biofilms are complex communities of microorganisms that are enclosed in a matrix that shows increased resistance to antimicrobial and immunological encounters. Mostly, the traditional methods to control biofilm are exhausted; therefore, the aim is to evaluate the potential of essential oil (EO) from Tagetes minuta to encounter biofilm and other related virulence factors. The EO of T. minuta was extracted through steam-distillation, analyzed on gas chromatography-mass spectrometry, and the biofilm inhibition assays were performed with various concentrations of EO. Mainly the EO from T. minuta contains cis-β-ocimene (29.1%), trans-tagetenone (23.1%), and cis-tagetenone (17.7%). The virulence factors were monitored while applying different concentrations of EO and it was recorded that the EO from T. minuta significantly inhibited the virulence factors linked with quorum sensing (QS), such as pyocyanin production, protease production, and swarming motility. Biofilm formation is one of the most important virulence factors associated with the QS pathway and was inhibited up to 79% in the presence of EO. Antibacterial activity against the PAO1 of EO was not so promising particularly and it has high MIC (325 μg/mL) and MBC (5000 μg/mL). EO is quite efficient to inhibit biofilm in a very small concentration of 20 μg/mL, which confirms that the biofilm inhibition by EO is not by killing bacterial cells but by inhibiting the QS pathway. The study on PAO1 constructs carrying various QS reported genes confirmed that the EO interferes with the QS pathway that ultimately controls various virulence factors caused by PAO1.
Collapse
Affiliation(s)
- Palwasha Khan
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Amara Waheed
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Muhammad Azeem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Amna Parveen
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Muhammad Arfat Yameen
- Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Jamshed Iqbal
- Centre
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad 22044, Pakistan
| | - Muhammad Ali
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| | - Shiwei Wang
- Key
Laboratory of Resources Biology and Biotechnology in Western China,
School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China
| | - Sadaf Qayyum
- Department
of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Hofuf 31982, Al-Hassa, Saudi Arabia
| | - Awal Noor
- Department
of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Hofuf 31982, Al-Hassa, Saudi Arabia
| | - Tatheer Alam Naqvi
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan
| |
Collapse
|
189
|
Di Trani JM, Gheorghita AA, Turner M, Brzezinski P, Ädelroth P, Vahidi S, Howell PL, Rubinstein JL. Structure of the bc1- cbb3 respiratory supercomplex from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2023; 120:e2307093120. [PMID: 37751552 PMCID: PMC10556555 DOI: 10.1073/pnas.2307093120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen Pseudomonas aeruginosa is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized. Here, we determine the structure of a P. aeruginosa SC that forms between the quinol:cytochrome c oxidoreductase (cytochrome bc1) and one of the organism's terminal oxidases, cytochrome cbb3, which is found only in some bacteria. Remarkably, the SC structure also includes two intermediate electron carriers: a diheme cytochrome c4 and a single heme cytochrome c5. Together, these proteins allow electron transfer from ubiquinol in cytochrome bc1 to oxygen in cytochrome cbb3. We also present evidence that different isoforms of cytochrome cbb3 can participate in formation of this SC without changing the overall SC architecture. Incorporating these different subunit isoforms into the SC would allow the bacterium to adapt to different environmental conditions. Bioinformatic analysis focusing on structural motifs in the SC suggests that cytochrome bc1-cbb3 SCs also exist in other bacterial pathogens.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Andreea A. Gheorghita
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Madison Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - P. Lynne Howell
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - John L. Rubinstein
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|
190
|
Guo Q, Xue S, Feng J, Peng C, Zhou C, Qiao Y. AIE-Active Glycomimetics Triggered Bacterial Agglutination and Membrane-Intercalating toward Efficient Photodynamic Antiseptic. Adv Healthc Mater 2023; 12:e2300818. [PMID: 37246869 DOI: 10.1002/adhm.202300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Opportunistic infections caused by Pseudomonas aeruginosa (P. aeruginosa) are particularly difficult to treat due to the altered membrane permeability and inherent resistance to conventional antibiotics. Here, a cationic glycomimetics is designed and synthesized with aggregation-induced emission (AIE) characteristics namely TPyGal, which self-assembles into the spherical aggregates with galactosylated surface. TPyGal aggregates can effectively cluster P. aeruginosa through multivalent carbohydrate-lectin interactions and auxiliary electrostatic interactions and subsequently trigger membrane-intercalating, which results in efficient photodynamic eradication of P. aeruginosa under white light irradiation by in situ singlet oxygen (1 O2 ) burst to disrupt bacterial membrane. Furthermore, the results demonstrate that TPyGal aggregates promote the healing of infected wounds, indicating the potential for clinical treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Qiaoni Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Shaobo Xue
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200435, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Chen Peng
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200435, China
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS) Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
191
|
Pimviriyakul P, Buttranon S, Soithongcharoen S, Supawatkon C, Disayabootr K, Watthaisong P, Tinikul R, Jaruwat A, Chaiyen P, Chitnumsub P, Maenpuen S. Structure and biochemical characterization of an extradiol 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Acinetobacter baumannii. Arch Biochem Biophys 2023; 747:109768. [PMID: 37769893 DOI: 10.1016/j.abb.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
3,4-Dihydroxyphenylacetate (DHPA) 2,3-dioxygenase (EC 1.13.11.15) from Acinetobacter baumannii (AbDHPAO) is an enzyme that catalyzes the 2,3-extradiol ring-cleavage of DHPA in the p-hydroxyphenylacetate (HPA) degradation pathway. While the biochemical reactions of various DHPAOs have been reported, only structures of DHPAO from Brevibacterium fuscum and their homologs are available. Here, we report the X-ray structure and biochemical characterization of an Fe2+-specific AbDHPAO that shares 12% sequence identity to the enzyme from B. fuscum. The 1.8 Å X-ray structure of apo-AbDHPAO was determined with four subunits per asymmetric unit, consistent with a homotetrameric structure. Interestingly, the αβ-sandwiched fold of the AbDHPAO subunit is different from the dual β-barrel-like motif of the well-characterized B. fuscum DHPAO structures; instead, it is similar to the structures of non-DHPA extradiol dioxygenases from Comamonas sp. and Sphingomonas paucimobilis. Similarly, these extradiol dioxygenases share the same chemistry owing to a conserved 2-His-1-carboxylate catalytic motif. Structure analysis and molecular docking suggested that the Fe2+ cofactor and substrate binding sites consist of the conserved residues His12, His57, and Glu238 forming a 2-His-1-carboxylate motif ligating to Fe2+ and DHPA bound with Fe2+ in an octahedral coordination. In addition to DHPA, AbDHPAO can also use other 3,4-dihydroxyphenylacetate derivatives with different aliphatic carboxylic acid substituents as substrates, albeit with low reactivity. Altogether, this report provides a better understanding of the structure and biochemical properties of AbDHPAO and its homologs, which is advancing further modification of DHPAO in future applications.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Supacha Buttranon
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Sahachat Soithongcharoen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Cheerapat Supawatkon
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Kasidis Disayabootr
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| |
Collapse
|
192
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
193
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-Pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538445. [PMID: 37163048 PMCID: PMC10168318 DOI: 10.1101/2023.04.26.538445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chronic, highly antibiotic-resistant infections in cystic fibrosis (CF) lungs contribute to increasing morbidity and mortality. Pseudomonas aeruginosa, a common CF pathogen, exhibits resistance to multiple antibiotics, contributing to antimicrobial resistance (AMR). These bacterial populations display genetic and phenotypic diversity, but it is unclear how this diversity affects susceptibility to bacteriocins. R-pyocins, i.e. bacteriocins produced by P. aeruginosa, are phage tail-like antimicrobials. R-pyocins have potential as antimicrobials, however recent research suggests the diversity of P. aeruginosa variants within CF lung infections leads to varying susceptibility to R-pyocins. This variation may be linked to changes in lipopolysaccharide (LPS), acting as the R-pyocin receptor. Currently, it is unknown how frequently R-pyocin-susceptible strains are in chronic CF lung infection, particularly when considering the heterogeneity within these strains. In this study, we tested R2-pyocin susceptibility of 139 P. aeruginosa variants from 17 sputum samples of seven CF patients and analyzed LPS phenotypes. We found that 83% of sputum samples did not have R2-pyocin-resistant variants, while nearly all samples contained susceptible variants. there was no correlation between LPS phenotype and R2-pyocin susceptibility, though we estimate that about 76% of sputum-derived variants lack an O-specific antigen, 40% lack a common antigen, and 24% have altered LPS cores. The absence of a correlation between LPS phenotype and R-pyocin susceptibility suggests LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Our research supports the potential of R-pyocins as therapeutic agents, as many infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations.
Collapse
Affiliation(s)
- Madeline Mei
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
194
|
Sathe N, Beech P, Croft L, Suphioglu C, Kapat A, Athan E. Pseudomonas aeruginosa: Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. INFECTIOUS MEDICINE 2023; 2:178-194. [PMID: 38073886 PMCID: PMC10699684 DOI: 10.1016/j.imj.2023.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 03/09/2024]
Abstract
Pseudomonas aeruginosa is an aerobic Gram-negative rod-shaped bacterium with a comparatively large genome and an impressive genetic capability allowing it to grow in a variety of environments and tolerate a wide range of physical conditions. This biological flexibility enables the P. aeruginosa to cause a broad range of infections in patients with serious underlying medical conditions, and to be a principal cause of health care associated infection worldwide. The clinical manifestations of P. aeruginosa include mostly health care associated infections and community-acquired infections. P. aeruginosa possesses an array of virulence factors that counteract host defence mechanisms. It can directly damage host tissue while utilizing high levels of intrinsic and acquired antimicrobial resistance mechanisms to counter most classes of antibiotics. P. aeruginosa co-regulates multiple resistance mechanisms by perpetually moving targets poses a significant therapeutic challenge. Thus, there is an urgent need for novel approaches in the development of anti-Pseudomonas agents. Here we review the principal infections caused by P. aeruginosa and we discuss novel therapeutic options to tackle antibiotic resistance and treatment of P. aeruginosa infections that may be further developed for clinical practice.
Collapse
Affiliation(s)
- Nikhil Sathe
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, India
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Peter Beech
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Larry Croft
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood Victoria 3125, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, 75 Pigdons Road, Waurn Ponds Victoria 3216, Australia
| | - Arnab Kapat
- Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, Thane Belapur Road, Rabale, Navi Mumbai 400701, India
| | - Eugene Athan
- School of Medicine, Deakin University, PO Box 281 Geelong 3220, Australia
| |
Collapse
|
195
|
Neidig A, Strempel N, Waeber NB, Nizer WSDC, Overhage J. Knock-out of multidrug efflux pump MexXY-OprM results in increased susceptibility to antimicrobial peptides in Pseudomonas aeruginosa. Microbiol Immunol 2023; 67:422-427. [PMID: 37424105 DOI: 10.1111/1348-0421.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Multidrug efflux systems of the resistance-nodulation-cell division family play a crucial role in resistance of Pseudomonas aeruginosa to a large variety of antibiotics. Here, we investigated the role of clinically relevant efflux pumps MexAB- OprM, MexCD- OprJ, and MexXY- OprM in resistance against different cationic antimicrobial peptides (AMPs). Our results indicate that a knock-out in efflux pump MexXY-OprM increased susceptibility to some AMPs by two- to eightfold. Our data suggest a contribution of MexXY-OprM in resistance to certain AMPs in P. aeruginosa, which should be considered in the future development of new and highly active antimicrobial peptides to fight multidrug resistant infections.
Collapse
Affiliation(s)
- Anke Neidig
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nikola Strempel
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nadine Bianca Waeber
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Giessen, Germany
| | | | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
196
|
Miner KR, Hollis JR, Miller CE, Uckert K, Douglas TA, Cardarelli E, Mackelprang R. Earth to Mars: A Protocol for Characterizing Permafrost in the Context of Climate Change as an Analog for Extraplanetary Exploration. ASTROBIOLOGY 2023; 23:1006-1018. [PMID: 37566539 PMCID: PMC10510695 DOI: 10.1089/ast.2022.0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/02/2023] [Indexed: 08/13/2023]
Abstract
Abstract Permafrost is important from an exobiology and climate change perspective. It serves as an analog for extraplanetary exploration, and it threatens to emit globally significant amounts of greenhouse gases as it thaws due to climate change. Viable microbes survive in Earth's permafrost, slowly metabolizing and transforming organic matter through geologic time. Ancient permafrost microbial communities represent a crucial resource for gaining novel insights into survival strategies adopted by extremotolerant organisms in extraplanetary analogs. We present a proof-of-concept study on ∼22 Kya permafrost to determine the potential for coupling Raman and fluorescence biosignature detection technology from the NASA Mars Perseverance rover with microbial community characterization in frozen soils, which could be expanded to other Earth and off-Earth locations. Besides the well-known utility for biosignature detection and identification, our results indicate that spectral mapping of permafrost could be used to rapidly characterize organic carbon characteristics. Coupled with microbial community analyses, this method has the potential to enhance our understanding of carbon degradation and emissions in thawing permafrost. Further, spectroscopy can be accomplished in situ to mitigate sample transport challenges and in assessing and prioritizing frozen soils for further investigation. This method has broad-range applicability to understanding microbial communities and their associations with biosignatures and soil carbon and mineralogic characteristics relevant to climate science and astrobiology.
Collapse
Affiliation(s)
- Kimberley R. Miner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Charles E. Miller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Kyle Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Emily Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
197
|
Llanos A, Achard P, Bousquet J, Lozano C, Zalacain M, Sable C, Revillet H, Murris M, Mittaine M, Lemonnier M, Everett M. Higher levels of Pseudomonas aeruginosa LasB elastase expression are associated with early-stage infection in cystic fibrosis patients. Sci Rep 2023; 13:14208. [PMID: 37648735 PMCID: PMC10468528 DOI: 10.1038/s41598-023-41333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Pseudomonas aeruginosa is a common pathogen in cystic fibrosis (CF) patients and a major contributor to progressive lung damage. P. aeruginosa elastase (LasB), a key virulence factor, has been identified as a potential target for anti-virulence therapy. Here, we sought to differentiate the P. aeruginosa isolates from early versus established stages of infection in CF patients and to determine if LasB was associated with either stage. The lasB gene was amplified from 255 P. aeruginosa clinical isolates from 70 CF patients from the Toulouse region (France). Nine LasB variants were identified and 69% of the isolates produced detectable levels of LasB activity. Hierarchical clustering using experimental and clinical data distinguished two classes of isolates, designated as 'Early' and 'Established' infection. Multivariate analysis revealed that the isolates from the Early infection class show higher LasB activity, fast growth, tobramycin susceptibility, non-mucoid, pigmented colonies and wild-type lasR genotype. These traits were associated with younger patients with polymicrobial infections and high pFEV1. Our findings show a correlation between elevated LasB activity in P. aeruginosa isolates and early-stage infection in CF patients. Hence, it is this patient group, prior to the onset of chronic disease, that may benefit most from novel therapies targeting LasB.
Collapse
Affiliation(s)
- Agustina Llanos
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France.
| | - Pauline Achard
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Justine Bousquet
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Clarisse Lozano
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Magdalena Zalacain
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Carole Sable
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène, CHU de Toulouse, Toulouse, France
- IRSD, INSERM, Université de Toulouse, INRAE, ENVT, UPS, Toulouse, France
| | - Marlène Murris
- Adult Cystic Fibrosis Centre, Pulmonology Unit, Hôpital Larrey, CHU de Toulouse, Toulouse, France
| | | | - Marc Lemonnier
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Martin Everett
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| |
Collapse
|
198
|
Li Z, Zhou X, Liao D, Liu R, Zhao X, Wang J, Zhong Q, Zeng Z, Peng Y, Tan Y, Yang Z. Comparative genomics and DNA methylation analysis of Pseudomonas aeruginosa clinical isolate PA3 by single-molecule real-time sequencing reveals new targets for antimicrobials. Front Cell Infect Microbiol 2023; 13:1180194. [PMID: 37662009 PMCID: PMC10471985 DOI: 10.3389/fcimb.2023.1180194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Pseudomonas aeruginosa (P.aeruginosa) is an important opportunistic pathogen with broad environmental adaptability and complex drug resistance. Single-molecule real-time (SMRT) sequencing technique has longer read-length sequences, more accuracy, and the ability to identify epigenetic DNA alterations. Methods This study applied SMRT technology to sequence a clinical strain P. aeruginosa PA3 to obtain its genome sequence and methylation modification information. Genomic, comparative, pan-genomic, and epigenetic analyses of PA3 were conducted. Results General genome annotations of PA3 were discovered, as well as information about virulence factors, regulatory proteins (RPs), secreted proteins, type II toxin-antitoxin (TA) pairs, and genomic islands. A genome-wide comparison revealed that PA3 was comparable to other P. aeruginosa strains in terms of identity, but varied in areas of horizontal gene transfer (HGT). Phylogenetic analysis showed that PA3 was closely related to P. aeruginosa 60503 and P. aeruginosa 8380. P. aeruginosa's pan-genome consists of a core genome of roughly 4,300 genes and an accessory genome of at least 5,500 genes. The results of the epigenetic analysis identified one main methylation sites, N6-methyladenosine (m6A) and 1 motif (CATNNNNNNNTCCT/AGGANNNNNNNATG). 16 meaningful methylated sites were picked. Among these, purH, phaZ, and lexA are of great significance playing an important role in the drug resistance and biological environment adaptability of PA3, and the targeting of these genes may benefit further antibacterial studies. Disucssion This study provided a detailed visualization and DNA methylation information of the PA3 genome and set a foundation for subsequent research into the molecular mechanism of DNA methyltransferase-controlled P. aeruginosa pathogenicity.
Collapse
Affiliation(s)
- Zijiao Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Xiang Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Danxi Liao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Ruolan Liu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Xia Zhao
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Zhuo Zeng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Zichen Yang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| |
Collapse
|
199
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
200
|
Wiehlmann L, Klockgether J, Hammerbacher AS, Salunkhe P, Horatzek S, Munder A, Peilert JF, Gulbins E, Eberl L, Tümmler B. A VirB4 ATPase of the mobile accessory genome orchestrates core genome-encoded features of physiology, metabolism, and virulence of Pseudomonas aeruginosa TBCF10839. Front Cell Infect Microbiol 2023; 13:1234420. [PMID: 37577372 PMCID: PMC10413270 DOI: 10.3389/fcimb.2023.1234420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pseudomonas aeruginosa TBCF10839 is a highly virulent strain that can persist and replicate in human neutrophils. Screening of a signature-tagged mutagenesis (STM) TBCF10839 transposon library in phagocytosis tests identified a mutant that carried the transposon in the VirB4 homolog 5PG21 of an integrative and conjugative element (ICE)-associated type IV secretion system of the pKLC102 subtype. 5P21 TBCF10839 insertion mutants were deficient in metabolic versatility, secretion, quorum sensing, and virulence. The mutants were efficiently killed in phagocytosis tests in vitro and were avirulent in an acute murine airway infection model in vivo. The inactivation of 5PG21 silenced the rhl, las, and pqs operons and the gene expression for the synthesis of hydrogen cyanide, the antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid, and the H2- and H3-type VI secretion systems and their associated effectors. The mutants were impaired in the utilization of carbon sources and stored compounds that are not funneled into intermediary metabolism. This showcase demonstrates that a single gene of the mobile accessory genome can become an essential element to operate the core genome-encoded features of metabolism and virulence.
Collapse
Affiliation(s)
- Lutz Wiehlmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anna-Silke Hammerbacher
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Prabhakar Salunkhe
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sonja Horatzek
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | | | - Erich Gulbins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| |
Collapse
|