151
|
Abstract
The cell cycle of eukaryotic cells varies greatly from species to species and tissue to tissue. Since an erroneous control of the cell cycle can have disastrous consequences for cellular life, there are genetically programmed signals, so-called cell cycle checkpoints, which ensure that all events of each stage are completed before beginning the next phase. Among the numerous molecules involved in this process, the most important are the cyclin-dependent kinases (CDKs), proteins that are activated only when bound to cyclins (regulatory proteins with fluctuating concentrations). In general, more CDKs are overexpressed in cancer cells than in normal cells, which explains why cancer cells divide uncontrollably. Succeeding in modulating CDK activity with pharmacological agents could result in decreasing the abnormal proliferation rate of cancer cells. This review offers an overview of CDK-cyclin complexes in relation to different cell cycle phases, an analysis of CDK activation and inhibition of molecular mechanisms, and an extensive report, including clinical trials, regarding four new drugs acting as CDK modulators: alvocidib, P276-00, SNS-032 and seliciclib.
Collapse
|
152
|
Crystal Structure and Mechanism of Activation of TANK-Binding Kinase 1. Cell Rep 2013; 3:734-46. [DOI: 10.1016/j.celrep.2013.01.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/29/2012] [Accepted: 01/28/2013] [Indexed: 11/17/2022] Open
|
153
|
Characterization of Cdc2 kinase in the red claw crayfish (Cherax quadricarinatus): Evidence for its role in regulating oogenesis. Gene 2013; 515:258-65. [DOI: 10.1016/j.gene.2012.11.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/07/2012] [Accepted: 11/20/2012] [Indexed: 11/21/2022]
|
154
|
Grädler U, Schwarz D, Dresing V, Musil D, Bomke J, Frech M, Greiner H, Jäkel S, Rysiok T, Müller-Pompalla D, Wegener A. Structural and biophysical characterization of the Syk activation switch. J Mol Biol 2012; 425:309-33. [PMID: 23154170 DOI: 10.1016/j.jmb.2012.11.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022]
Abstract
Syk is an essential non-receptor tyrosine kinase in intracellular immunological signaling, and the control of Syk kinase function is considered as a valuable target for pharmacological intervention in autoimmune or inflammation diseases. Upon immune receptor stimulation, the kinase activity of Syk is regulated by binding of phosphorylated immune receptor tyrosine-based activating motifs (pITAMs) to the N-terminal tandem Src homology 2 (tSH2) domain and by autophosphorylation with consequences for the molecular structure of the Syk protein. Here, we present the first crystal structures of full-length Syk (fl-Syk) as wild type and as Y348F,Y352F mutant forms in complex with AMP-PNP revealing an autoinhibited conformation. The comparison with the crystal structure of the truncated Syk kinase domain in complex with AMP-PNP taken together with ligand binding studies by surface plasmon resonance (SPR) suggests conformational differences in the ATP sites of autoinhibited and activated Syk forms. This hypothesis was corroborated by studying the thermodynamic and kinetic interaction of three published Syk inhibitors with isothermal titration calorimetry and SPR, respectively. We further demonstrate the modulation of inhibitor binding affinities in the presence of pITAM and discuss the observed differences of thermodynamic and kinetic signatures. The functional relevance of pITAM binding to fl-Syk was confirmed by a strong stimulation of in vitro autophosphorylation. A structural feedback mechanism on the kinase domain upon pITAM binding to the tSH2 domain is discussed in analogy of the related family kinase ZAP-70 (Zeta-chain-associated protein kinase 70). Surprisingly, we observed distinct conformations of the tSH2 domain and the activation switch including Tyr348 and Tyr352 in the interdomain linker of Syk in comparison to ZAP-70.
Collapse
Affiliation(s)
- Ulrich Grädler
- Merck KGaA, Merck Serono Research, Small Molecule Platform/MIB, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Hashimoto K, Rogozin IB, Panchenko AR. Oncogenic potential is related to activating effect of cancer single and double somatic mutations in receptor tyrosine kinases. Hum Mutat 2012; 33:1566-75. [PMID: 22753356 PMCID: PMC3465464 DOI: 10.1002/humu.22145] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 01/16/2023]
Abstract
Aberrant activation of receptor tyrosine kinases (RTKs) is a common feature of many cancer cells. It was previously suggested that the mechanisms of kinase activation in cancer might be linked to transitions between active and inactive states. Here, we estimate the effects of single and double cancer mutations on the stability of active and inactive states of the kinase domains from different RTKs. We show that singleton cancer mutations destabilize active and inactive states; however, inactive states are destabilized more than the active ones, leading to kinase activation. We show that there exists a relationship between the estimate of oncogenic potential of cancer mutation and kinase activation. Namely, more frequent mutations have a higher activating effect, which might allow us to predict the activating effect of the mutations from the mutation spectra. Independent evolutionary analysis of mutation spectra complements this observation and finds the same frequency threshold defining mutation hotspots. We analyze double mutations and report a positive epistasis and additional advantage of doublets with respect to cancer cell fitness. The activation mechanisms of double mutations differ from those of single mutations and double mutation spectrum is found to be dissimilar to the mutation spectrum of singletons.
Collapse
Affiliation(s)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R. Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
156
|
Abstract
In eukaryotes, cell division is controlled by cyclin-dependent kinases (CDKs). Here we summarize a few new developments on the regulation of the cell cycle by CDK-cyclin complexes. We have focused on three aspects in which there has been recent progress: the structural analysis of these complexes, the phenotypes of mice carrying knockouts of CDK inhibitors and the role of proteolysis in the regulation of the cell cycle.
Collapse
Affiliation(s)
- C Martin-Castellanos
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
157
|
Abstract
The Src family of protooncoproteins is required for prc through at least two phases of the cell cycle and for sc cell-type-specific functions. Recent crystal structures of fragments of two representatives reveal a compact am their Src-homology 3 (SH3), SH2 and catalytic domai embodies an unexpected mechanism of regulation. Th. the enzymatic activity of Src is controlled by intramol associations between the SH2 domain and C-tail and SH3 domain and a surprising internal target. The stn highlight a mechanism by which substrates can comp internal sequences for binding to the SH3 and SH2 do thereby stimulating kinase activity. This implies that distinction between upstream activators and downstre will sometimes be ambiguous.
Collapse
|
158
|
Mikolcevic P, Rainer J, Geley S. Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell Cycle 2012; 11:3758-68. [PMID: 22895054 DOI: 10.4161/cc.21592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PCTAIRE kinases (PCTK) are a highly conserved, but poorly characterized, subgroup of cyclin-dependent kinases (CDK). They are characterized by a conserved catalytic domain flanked by N- and C-terminal extensions that are involved in cyclin binding. Vertebrate genomes contain three highly similar PCTAIRE kinases (PCTK1,2,3, a.k.a., CDK16,17,18), which are most abundant in post-mitotic cells in brain and testis. Consistent with this restricted expression pattern, PCTK1 (CDK16) has recently been shown to be essential for spermatogenesis. PCTAIREs are activated by cyclin Y (CCNY), a highly conserved single cyclin fold protein. By binding to N-myristoylated CCNY, CDK16 is targeted to the plasma membrane. Unlike conventional cyclin-CDK interactions, binding of CCNY to CDK16 not only requires the catalytic domain, but also domains within the N-terminal extension. Interestingly, phosphorylation within this domain blocks CCNY binding, providing a novel means of cyclin-CDK regulation. By using these functional characteristics, we analyzed "PCTAIRE" sequence containing protein kinase genes in genomes of various organisms and found that CCNY and CCNY-dependent kinases are restricted to eumetazoa and possibly evolved along with development of a central nervous system. Here, we focus on the structure and regulation of PCTAIREs and discuss their established functions.
Collapse
Affiliation(s)
- Petra Mikolcevic
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|
159
|
Zhao X, Harashima H, Dissmeyer N, Pusch S, Weimer AK, Bramsiepe J, Bouyer D, Rademacher S, Nowack MK, Novak B, Sprunck S, Schnittger A. A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genet 2012; 8:e1002847. [PMID: 22879821 PMCID: PMC3410867 DOI: 10.1371/journal.pgen.1002847] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/05/2012] [Indexed: 01/12/2023] Open
Abstract
The decision to replicate its DNA is of crucial importance for every cell and, in many organisms, is decisive for the progression through the entire cell cycle. A comparison of animals versus yeast has shown that, although most of the involved cell-cycle regulators are divergent in both clades, they fulfill a similar role and the overall network topology of G1/S regulation is highly conserved. Using germline development as a model system, we identified a regulatory cascade controlling entry into S phase in the flowering plant Arabidopsis thaliana, which, as a member of the Plantae supergroup, is phylogenetically only distantly related to Opisthokonts such as yeast and animals. This module comprises the Arabidopsis homologs of the animal transcription factor E2F, the plant homolog of the animal transcriptional repressor Retinoblastoma (Rb)-related 1 (RBR1), the plant-specific F-box protein F-BOX-LIKE 17 (FBL17), the plant specific cyclin-dependent kinase (CDK) inhibitors KRPs, as well as CDKA;1, the plant homolog of the yeast and animal Cdc2⁺/Cdk1 kinases. Our data show that the principle of a double negative wiring of Rb proteins is highly conserved, likely representing a universal mechanism in eukaryotic cell-cycle control. However, this negative feedback of Rb proteins is differently implemented in plants as it is brought about through a quadruple negative regulation centered around the F-box protein FBL17 that mediates the degradation of CDK inhibitors but is itself directly repressed by Rb. Biomathematical simulations and subsequent experimental confirmation of computational predictions revealed that this regulatory circuit can give rise to hysteresis highlighting the here identified dosage sensitivity of CDK inhibitors in this network.
Collapse
Affiliation(s)
- Xin'Ai Zhao
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Hirofumi Harashima
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Strasbourg, France
| | - Nico Dissmeyer
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Stefan Pusch
- Unigruppe am Max-Planck-Institut für Pflanzenzü chtungsforschung, Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany
| | - Annika K. Weimer
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Jonathan Bramsiepe
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Daniel Bouyer
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Svenja Rademacher
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Moritz K. Nowack
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Bela Novak
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Strasbourg, France
- Unigruppe am Max-Planck-Institut für Pflanzenzü chtungsforschung, Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany
- * E-mail:
| |
Collapse
|
160
|
Sim CH, Gabriel K, Mills RD, Culvenor JG, Cheng HC. Analysis of the regulatory and catalytic domains of PTEN-induced kinase-1 (PINK1). Hum Mutat 2012; 33:1408-22. [DOI: 10.1002/humu.22127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 05/15/2012] [Indexed: 01/23/2023]
|
161
|
Shimada M. Regulation of oocyte meiotic maturation by somatic cells. Reprod Med Biol 2012; 11:177-184. [PMID: 29662364 DOI: 10.1007/s12522-012-0130-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 04/26/2012] [Indexed: 01/21/2023] Open
Abstract
In preovulatory follicles, each oocyte is surrounded by numerous layers of cumulus cells, forming the cumulus cell-oocyte complex. An LH surge induces meiotic resumption of the oocyte to progress to metaphase II. Because the expression of LH receptors is not detected in the oocyte and is minimal (negligible) in cumulus cells as compared with granulosa cells, secondary factors from granulosa cells are required to induce the ovulation process. One of the key factors secreted from granulosa cells is an EGF-like factor that activates the EGFR-ERK1/2 pathway in cumulus cells. The activated ERK1/2 pathway is not only involved in gene expression but also essential for the close of gap-junctional communication among cumulus cells and between cumulus cells and the oocyte. Closing gap-junctional communication decreases the amount of cGMP and/or cAMP to transfer into the oocyte, which requires activation of phosphodiesterase type III (PDE3) in the oocyte. PDE3 brakes down cAMP to decrease PKA activity in the oocyte. This decrease in PKA activity induces activation of CDK1 to resume meiosis from the germinal vesicle stage. Thus, the functions of cumulus cells that are regulated by granulosa cell-secreted factors are essential for oocyte meiotic resumption and maturation with developmental competence.
Collapse
Affiliation(s)
- Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi 739-8528 Hiroshima Hiroshima Japan
| |
Collapse
|
162
|
Huang H, Zhao R, Dickson BM, Skeel RD, Post CB. αC helix as a switch in the conformational transition of Src/CDK-like kinase domains. J Phys Chem B 2012; 116:4465-75. [PMID: 22448785 DOI: 10.1021/jp301628r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One mechanism of regulating the catalytic activity of protein kinases is through conformational transitions. Despite great diversity in the structural changes involved in the transitions, a certain set of changes within the kinase domain (KD) has been observed for many kinases including Src and CDK2. We investigated this conformational transition computationally to identify the topological features that are energetically critical to the transition. Results from both molecular dynamics sampling and transition path optimization highlight the displacement of the αC helix as the major energy barrier, mediating the switch of the KD between the active and down-regulated states. The critical role of the αC helix is noteworthy by providing a rationale for a number of activation and deactivation mechanisms known to occur in cells. We find that kinases with the αC helix displacement exist throughout the kinome, suggesting that this feature may have emerged early in evolution.
Collapse
Affiliation(s)
- He Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
163
|
Endicott JA, Noble MEM, Johnson LN. The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 2012; 81:587-613. [PMID: 22482904 DOI: 10.1146/annurev-biochem-052410-090317] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic protein kinases are key regulators of cell processes. Comparison of the structures of protein kinase domains, both alone and in complexes, allows generalizations to be made about the mechanisms that regulate protein kinase activation. Protein kinases in the active state adopt a catalytically competent conformation upon binding of both the ATP and peptide substrates that has led to an understanding of the catalytic mechanism. Docking sites remote from the catalytic site are a key feature of several substrate recognition complexes. Mechanisms for kinase activation through phosphorylation, additional domains or subunits, by scaffolding proteins and by kinase dimerization are discussed.
Collapse
Affiliation(s)
- Jane A Endicott
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
164
|
Tanshinone IIA Inhibits Growth of Keratinocytes through Cell Cycle Arrest and Apoptosis: Underlying Treatment Mechanism of Psoriasis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:927658. [PMID: 22203883 PMCID: PMC3236062 DOI: 10.1155/2012/927658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
The aim of the present investigation was to elucidate the cellular mechanisms whereby Tanshinone IIA (Tan IIA) leads to cell cycle arrest and apoptosis in vitro in keratinocytes, the target cells in psoriasis. Tan IIA inhibited proliferation of mouse keratinocytes in a dose- and time-dependent manner and induced apoptosis, resulting in S phase arrest accompanied by down-regulation of pCdk2 and cyclin A protein expression. Furthermore, Tan IIA-induced apoptosis and mitochondrial membrane potential changes were also further demonstrated by DNA fragmentation, single-cell gel electrophoresis assay (SCGE), and flow cytometry methods. Apoptosis was partially blocked by the caspase-3 inhibitor Ac-DEVD-CHO. Mitochondrial regulation of apoptosis further downstream was investigated, showing changes in the mitochondrial membrane potential, cytochrome c release into the cytoplasm, and enhanced activation of cleaved caspase-3 and Poly ADP-ribose polymerase (PARP). There was also no translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus in apoptotic keratinocytes, indicating Tan IIA-induced apoptosis occurs mainly through the caspase pathway. Our findings provide the molecular mechanisms by which Tan IIA can be used to treat psoriasis and support the traditional use of Salvia miltiorrhiza Bungee (Labiatae) for psoriasis and related skin diseases.
Collapse
|
165
|
Smith GK, Ke Z, Guo H, Hengge AC. Insights into the phosphoryl transfer mechanism of cyclin-dependent protein kinases from ab initio QM/MM free-energy studies. J Phys Chem B 2011; 115:13713-22. [PMID: 21999515 DOI: 10.1021/jp207532s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensible role in cellular signaling, and their malfunctioning is implicated in many diseases. A better understanding of the catalytic mechanism will help design novel and effective mechanism-based inhibitors of these enzymes. In this work, ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a dissociative, metaphosphate-like structure, stabilized by the Mg(2+) ion and several hydrogen bonds. The calculated free-energy barrier is consistent with experimental values. Implications of our results in this and other protein kinases are discussed.
Collapse
Affiliation(s)
- Gregory K Smith
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
166
|
Leibly DJ, Newling PA, Abendroth J, Guo W, Kelley A, Stewart LJ, Van Voorhis W. Structure of a cyclin-dependent kinase from Giardia lamblia. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1084-9. [PMID: 21904054 PMCID: PMC3169406 DOI: 10.1107/s1744309111018070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/12/2011] [Indexed: 11/10/2022]
Abstract
Giardia lamblia is the etiologic agent of giardiasis, a water-borne infection that is prevalent throughout the world. The need for new therapeutics for the treatment of giardiasis is of paramount importance. Owing to the ubiquitous nature of kinases and their vital importance in organisms, they are potential drug targets. In this paper, the first structure of a cyclin-dependent kinase (CDK) from G. lamblia (GlCDK; UniProt A8BZ95) is presented. CDKs are cell-cycle-associated kinases that are actively being pursued as targets for anticancer drugs as well as for antiparasitic chemotherapy. Generally, a CDK forms a complex with its associated cyclin. This CDK-cyclin complex is active and acts as a serine/threonine protein kinase. Typically, CDKs are responsible for the transition to the next phase of the cell cycle. Although the structure of GlCDK with its associated cyclin was not solved, the 1.85 Å resolution structure of apo GlCDK and a 2.0 Å resolution structure of GlCDK in complex with adenosine monophosphate are presented and the structural differences from the orthologous human CDK2 and CDK3 are discussed.
Collapse
Affiliation(s)
- David J. Leibly
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| | - Paul A. Newling
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald BioStructures Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Wenjin Guo
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomed, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Angela Kelley
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| | - Lance J. Stewart
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald BioStructures Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Wesley Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Box 356423, Seattle, WA 98195-6423, USA
| |
Collapse
|
167
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
168
|
Xu M, Yu L, Wan B, Yu L, Huang Q. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. PLoS One 2011; 6:e22644. [PMID: 21818358 PMCID: PMC3144914 DOI: 10.1371/journal.pone.0022644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/03/2011] [Indexed: 11/19/2022] Open
Abstract
Protein kinases have been found to possess two characteristic conformations in their activation-loops: the active DFG-in conformation and the inactive DFG-out conformation. Recently, it has been very interesting to develop type-II inhibitors which target the DFG-out conformation and are more specific than the type-I inhibitors binding to the active DFG-in conformation. However, solving crystal structures of kinases with the DFG-out conformation remains a challenge, and this seriously hampers the application of the structure-based approaches in development of novel type-II inhibitors. To overcome this limitation, here we present a computational approach for predicting the DFG-out inactive conformation using the DFG-in active structures, and develop related conformational selection protocols for the uses of the predicted DFG-out models in the binding pose prediction and virtual screening of type-II ligands. With the DFG-out models, we predicted the binding poses for known type-II inhibitors, and the results were found in good agreement with the X-ray crystal structures. We also tested the abilities of the DFG-out models to recognize their specific type-II inhibitors by screening a database of small molecules. The AUC (area under curve) results indicated that the predicted DFG-out models were selective toward their specific type-II inhibitors. Therefore, the computational approach and protocols presented in this study are very promising for the structure-based design and screening of novel type-II kinase inhibitors.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Wan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
169
|
Kalia M, Kukol A. Structure and dynamics of the kinase IKK-β--A key regulator of the NF-kappa B transcription factor. J Struct Biol 2011; 176:133-42. [PMID: 21820058 DOI: 10.1016/j.jsb.2011.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/29/2022]
Abstract
The inhibitor κB kinase-β (IKK-β) phosphorylates the NF-κB inhibitor protein IκB leading to the translocation of the transcription factor NF-κB to the nucleus. The transcription factor NF-κB and consequently IKK-β are central to signal transduction pathways of mammalian cells. The purpose of this research was to develop a 3D structural model of the IKK-β kinase domain with its ATP cofactor and investigate its dynamics and ligand binding potential. Through a combination of comparative modelling and simulated heating/annealing molecular dynamics (SAMD) simulation in explicit water the model accuracy could be substantially improved compared to comparative modelling on its own as shown by model validation measures. The structure revealed the details of ATP/Mg(2+) binding indicating hydrophobic interactions with the adenine base and a significant contribution of Mg(2+) as a bridge between ATP phosphate groups and negatively charged side chains. The molecular dynamics trajectories of the ATP-bound and free enzyme showed two conformations in each case, which contributed to the majority of the trajectory. The ATP-free enzyme revealed a novel binding site distant from the ATP binding site that was not encountered in the ATP bound enzyme. Based on the overall structural flexibility, it is suggested that a truncated version of the kinase domain from Ala14 to Leu265 should be subjected to crystallisation trials. The 3D structure of this enzyme will enable rational design of new ligands and analysis of protein-protein interactions. Furthermore, our results may provide a new impetus for wet-lab based structural investigation focussing on a truncated kinase domain.
Collapse
Affiliation(s)
- Munishikha Kalia
- School of Life Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | | |
Collapse
|
170
|
Adén J, Wallgren M, Storm P, Weise CF, Christiansen A, Schröder WP, Funk C, Wolf-Watz M. Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1880-90. [PMID: 21798375 DOI: 10.1016/j.bbapap.2011.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022]
Abstract
Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin-dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted the resolving cysteine, generating an intramolecular disulfide bond and release of a second water molecule. PrxQ is recycled to the active state by a thioredoxin-dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here, we have performed a detailed study of the activity, structure and dynamics of PrxQ in both the oxidized and reduced states. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Analysis of NMR spin relaxation rates shows that PrxQ is monomeric in both oxidized and reduced states. As evident from R(2) relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of this conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
Collapse
Affiliation(s)
- Jörgen Adén
- Department of Chemistry, Umea University, Umea, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Martić S, Rains MK, Freeman D, Kraatz HB. Use of 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates having poly(ethylene glycol) spacers in kinase-catalyzed phosphorylations. Bioconjug Chem 2011; 22:1663-72. [PMID: 21696155 DOI: 10.1021/bc200229y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates (3 and 4), containing the poly(ethylene glycol) spacers, were synthesized and compared to a hydrophobic analogue as co-substrates for the following protein kinases: sarcoma related kinase (Src), cyclin-dependent kinase (CDK), casein kinase II (CK2α), and protein kinase A (PKA). Electrochemical kinase assays indicate that the hydrophobic Fc-ATP analogue was an optimal co-substrate for which K(M) values were determined to be in the 30-200 μM range, depending on the particular protein kinase. The luminescence kinase assay demonstrated the kinase utility for all Fc-ATP conjugates, which is in line with the electrochemical data. Moreover, Fc-ATP bioconjugates exhibit competitive behavior with respect to ATP. Relatively poor performance of the polar Fc-ATP bioconjugates as co-substrates for protein kinases was presumably due to the additional H-bonding and electrostatic interactions of the poly(ethylene glycol) linkers of Fc-ATP with the kinase catalytic site and the target peptides. Phosphorylation of the full-length protein, His-tagged pro-caspase-3, was demonstrated through Fc-phosphoamide transfer to the Ser residues of the surface-bound protein by electrochemical means. These results suggest that electrochemical detection of the peptide and protein Fc-phosphorylation via tailored Fc-ATP co-substrates may be useful for probing protein-protein interactions.
Collapse
Affiliation(s)
- Sanela Martić
- Chemistry Department, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
172
|
Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol Cell 2011; 42:9-22. [PMID: 21474065 DOI: 10.1016/j.molcel.2011.03.004] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/23/2022]
Abstract
In contrast to the active conformations of protein kinases, which are essentially the same for all kinases, inactive kinase conformations are structurally diverse. Some inactive conformations are, however, observed repeatedly in different kinases, perhaps reflecting an important role in catalysis. In this review, we analyze one of these recurring conformations, first identified in CDK and Src kinases, which turned out to be central to understanding of how kinase domain of the EGF receptor is activated. This mechanism, which involves the stabilization of the active conformation of an α helix, has features in common with mechanisms operative in several other kinases.
Collapse
Affiliation(s)
- Natalia Jura
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
173
|
Liang H, Liu T, Chen F, Liu Z, Liu S. A full-length 3D structure for MAPK/ERK kinase 2 (MEK2). SCIENCE CHINA-LIFE SCIENCES 2011; 54:336-41. [PMID: 21509657 DOI: 10.1007/s11427-011-4156-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/30/2010] [Indexed: 11/27/2022]
Abstract
As a pivotal signal pathway, the Ras/Raf/MEK/ERK cascade can be activated by multiple extracellular stimuli and can transmit signals to diverse substrates. It remains to be elucidated how so many different signals can be variously transferred by only two MEK molecules (MEK1 and MEK2). Because of technological limitations the complete structures of the MEKs are still unavailable. Here, we report the full-length structure of MEK2 obtained by homology modeling and molecular dynamics simulations. The simulations show that the N-terminal part of MEK2 is highly flexible and this flexibility may enable MEK2 to interact with ERKs and other ligands in diverse manners that correspond to various upstream signals and downstream consequences.
Collapse
Affiliation(s)
- Hao Liang
- State Key Laboratory of Proteomics, Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China
| | | | | | | | | |
Collapse
|
174
|
Chawla A, Chakrabarti S, Ghosh G, Niwa M. Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. ACTA ACUST UNITED AC 2011; 193:41-50. [PMID: 21444691 PMCID: PMC3082189 DOI: 10.1083/jcb.201008071] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations that impair activity of the ER stress response kinase Ire1 inhibit resolution of the unfolded protein response (see also a related paper by Rubio et al. in this issue). The unfolded protein response (UPR) activates Ire1, an endoplasmic reticulum (ER) resident transmembrane kinase and ribonuclease (RNase), in response to ER stress. We used an in vivo assay, in which disappearance of the UPR-induced spliced HAC1 messenger ribonucleic acid (mRNA) correlates with the recovery of the ER protein-folding capacity, to investigate the attenuation of the UPR in yeast. We find that, once activated, spliced HAC1 mRNA is sustained in cells expressing Ire1 carrying phosphomimetic mutations within the kinase activation loop, suggesting that dephosphorylation of Ire1 is an important step in RNase deactivation. Additionally, spliced HAC1 mRNA is also sustained after UPR induction in cells expressing Ire1 with mutations in the conserved DFG kinase motif (D828A) or a conserved residue (F842) within the activation loop. The importance of proper Ire1 RNase attenuation is demonstrated by the inability of cells expressing Ire1-D828A to grow under ER stress. We propose that the activity of the Ire1 kinase domain plays a role in attenuating its RNase activity when ER function is recovered.
Collapse
Affiliation(s)
- Aditi Chawla
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
175
|
Ding R, He Y, Xu J, Liu H, Wang X, Feng M, Qi C, Zhang J, Peng C. Preparation and bioevaluation of 99mTc nitrido radiopharmaceuticals with pyrazolo[1,5-a]pyrimidine as tumor imaging agents. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9558-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
176
|
Covy JP, Giasson BI. α-Synuclein, leucine-rich repeat kinase-2, and manganese in the pathogenesis of Parkinson disease. Neurotoxicology 2011; 32:622-9. [PMID: 21238487 DOI: 10.1016/j.neuro.2011.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/29/2010] [Accepted: 01/07/2011] [Indexed: 01/14/2023]
Abstract
Parkinson disease (PD) is the most common movement disorder. It is characterized by bradykinesia, postural instability, resting tremor, and rigidity associated with the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Another pathological hallmark of PD is the presence of α-synuclein proteiniacous inclusions, known as Lewy bodies and Lewy neurites, in some of the remaining dopaminergic neurons. Mounting evidence indicates that both genetic and environmental factors contribute to the etiology of PD. For example, genetic mutations (duplications, triplications or missense mutations) in the α-synuclein gene can lead to PD, but even in these patients, age-dependent physiological changes or environmental exposures appear to be involved in disease presentation. Several additional alterations in many other genes have been established to either cause or increase the risk of parkinson disease. More specifically, autosomal dominant missense mutations in the gene for leucine-rich repeat kinase 2 (LRRK2/PARK8) are the most common known cause of PD. Recently it was shown that G2019S, the most common diseasing-causing mutant of LRRK2, has dramatic effects on the kinase activity of LRRK2: while activity of wild-type LRRK2 is inhibited by manganese, the G2019S mutation abrogates this inhibition. Based on the in vitro kinetic properties of LRRK2 in the presence of manganese, we proposed that LRRK2 may be a sensor of cytoplasmic manganese levels and that the G2019S mutant has lost this function. This finding, alongside a growing number of studies demonstrating an interaction between PD-associated proteins and manganese, suggest that dysregulation of neuronal manganese homeostasis over a lifetime can play an important role in the etiology of PD.
Collapse
Affiliation(s)
- Jason P Covy
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
177
|
Abstract
Major progress has been made in unravelling of regulatory mechanisms in eukaryotic cells. Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. The phospho-status of a protein is dynamically controlled by protein kinases and counteracting phosphatases. Therefore, monitoring of kinase and phosphatase activities, identification of specific phosphorylation sites, and assessment of their functional significance are of crucial importance to understand development and homeostasis. Recent advances in the area of molecular biology and biochemistry, for instance, mass spectrometry-based phosphoproteomics or fluorescence spectroscopical methods, open new possibilities to reach an unprecidented depth and a proteome-wide understanding of phosphorylation processes in plants and other species. In addition, the growing number of model species allows now deepening evolutionary insights into signal transduction cascades and the use of kinase/phosphatase systems. Thus, this is the age where we move from an understanding of the structure and function of individual protein modules to insights how these proteins are organized into pathways and networks. In this introductory chapter, we briefly review general definitions, methodology, and current concepts of the molecular mechanisms of protein kinase function as a foundation for this methods book. We briefly review biochemistry and structural biology of kinases and provide selected examples for the role of kinases in biological systems.
Collapse
|
178
|
Overlap between folding and functional energy landscapes for adenylate kinase conformational change. Nat Commun 2010; 1:111. [DOI: 10.1038/ncomms1106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/05/2010] [Indexed: 11/09/2022] Open
|
179
|
Abstract
M-ORBIS is a Molecular Cartography approach that performs integrative high-throughput analysis of structural data to localize all types of binding sites and associated partners by homology and to characterize their properties and behaviors in a systemic way. The robustness of our binding site inferences was compared to four curated datasets corresponding to protein heterodimers and homodimers and protein–DNA/RNA assemblies. The Molecular Cartographies of structurally well-detailed proteins shows that 44% of their surfaces interact with non-solvent partners. Residue contact frequencies with water suggest that ∼86% of their surfaces are transiently solvated, whereas only 15% are specifically solvated. Our analysis also reveals the existence of two major binding site families: specific binding sites which can only bind one type of molecule (protein, DNA, RNA, etc.) and polyvalent binding sites that can bind several distinct types of molecule. Specific homodimer binding sites are for instance nearly twice as hydrophobic than previously described and more closely resemble the protein core, while polyvalent binding sites able to form homo and heterodimers more closely resemble the surfaces involved in crystal packing. Similarly, the regions able to bind DNA and to alternatively form homodimers, are more hydrophobic and less polar than previously described DNA binding sites.
Collapse
|
180
|
Covy JP, Giasson BI. The G2019S pathogenic mutation disrupts sensitivity of leucine-rich repeat kinase 2 to manganese kinase inhibition. J Neurochem 2010; 115:36-46. [PMID: 20626563 DOI: 10.1111/j.1471-4159.2010.06894.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in leucine-rich repeat kinase-2 (LRRK2) are the most common cause of late-onset Parkinson disease. Previously, we showed that the G2019S pathogenic mutation can cause a dramatic increase (approximately 10-fold) in kinase activity, far above other published studies. A notable experimental difference was the use of Mn-ATP as a substrate. Therefore, the effects of metal cation-ATP cofactors on LRRK2 kinase activity were investigated. It is shown, using several divalent metal cations, that only Mg(2+) or Mn(2+) can support LRRK2 kinase activity. However, for wild-type, I2020T, and R1441C LRRK2, Mn(2+) was significantly less effective at supporting kinase activity. In sharp contrast, both Mn(2+) and Mg(2+) were effective at supporting the activity of G2019S LRRK2. These divergent effects associated with divalent cation usage and the G2019S mutation were predominantly because of differences in catalytic rates. However, LRRK2 was shown to have much lower (approximately 40-fold) ATP K(m) for Mn-ATP compared with Mg-ATP. Consequently, sub-stoichiometric concentrations of Mn(2+) can act to inhibit the kinase activity of wild-type, but not G2019S LRRK2 in the presence of Mg(2+) . From these findings, a new model is proposed for a possible function of LRRK2 and the consequence of the G2019S LRRK2 pathogenic mutation.
Collapse
Affiliation(s)
- Jason P Covy
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | |
Collapse
|
181
|
Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Proteus in the world of proteins: conformational changes in protein kinases. Arch Pharm (Weinheim) 2010; 343:193-206. [PMID: 20336692 DOI: 10.1002/ardp.201000028] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The 512 protein kinases encoded by the human genome are a prime example of nature's ability to create diversity by introducing variations to a highly conserved theme. The activity of each kinase domain is controlled by layers of regulatory mechanisms involving different combinations of post-translational modifications, intramolecular contacts, and intermolecular interactions. Ultimately, they all achieve their effect by favoring particular conformations that promote or prevent the kinase domain from catalyzing protein phosphorylation. The central role of kinases in various diseases has encouraged extensive investigations of their biological function and three-dimensional structures, yielding a more detailed understanding of the mechanisms that regulate protein kinase activity by conformational changes. In the present review, we discuss these regulatory mechanisms and show how conformational changes can be exploited for the design of specific inhibitors that lock protein kinases in inactive conformations. In addition, we highlight recent developments to monitor ligand-induced structural changes in protein kinases and for screening and identifying inhibitors that stabilize enzymatically incompetent kinase conformations.
Collapse
Affiliation(s)
- Matthias Rabiller
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
182
|
Phosphorylation and ATP-binding induced conformational changes in the PrkC, Ser/Thr kinase from B. subtilis. J Comput Aided Mol Des 2010; 24:733-47. [PMID: 20563625 DOI: 10.1007/s10822-010-9370-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Recent studies on the PrkC, serine-threonine kinase show that that the enzyme is located at the inner membrane of endospores and is responsible for triggering spore germination. The activity of the protein increases considerably after phosphorylation of four threonine residues placed on the activation loop and one serine placed in the C-terminal lobe of the PrkC. The molecular relationship between phosphorylation of these residues and enzyme activity is not known. In this work molecular dynamics simulation is performed on four forms of the protein kinase PrkC from B. subtilis-phosphorylated or unphosphorylated; with or without ATP bound-in order to gain insight into phosphorylation and ATP binding on the conformational changes and functions of the protein kinase. Our results show how phosphorylation, as well as the presence of ATP, is important for the activity of the enzyme through its molecular interaction with the catalytic core residues. Three of four threonine residues were found to be involved in the interactions with conservative motifs important for the enzyme activity. Two of the threonine residues (T167 and T165) are involved in ionic interactions with an arginine cluster from alphaC-helix. The third residue (T163) plays a crucial role, interacting with His-Arg-Asp triad (HRD). Last of the threonine residues (T162), as well as the serine (S214), were indicated to play a role in the substrate recognition or dimerization of the enzyme. The presence of ATP in the unphosphorylated model induced conformational instability of the activation loop and Asp-Phe-Gly motif (DFG). Based on our calculations we put forward a hypothesis suggesting that the ATP binds after phosphorylation of the activation loop to create a fully active conformation in the closed position.
Collapse
|
183
|
Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. PLoS One 2010; 5:e11157. [PMID: 20585391 PMCID: PMC2886835 DOI: 10.1371/journal.pone.0011157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/21/2010] [Indexed: 12/29/2022] Open
Abstract
The JAK2 V617F mutation present in over 95% of Polycythemia Vera patients and in 50% of Essential Thrombocythemia and Primary Myelofibrosis patients renders the kinase constitutively active. In the absence of a three-dimensional structure for the full-length protein, the mechanism of activation of JAK2 V617F has remained elusive. In this study, we used functional mutagenesis to investigate the involvement of the JH2 αC helix in the constitutive activation of JAK2 V617F. We show that residue F595, located in the middle of the αC helix of JH2, is indispensable for the constitutive activity of JAK2 V617F. Mutation of F595 to Ala, Lys, Val or Ile significantly decreases the constitutive activity of JAK2 V617F, but F595W and F595Y are able to restore it, implying an aromaticity requirement at position 595. Substitution of F595 to Ala was also able to decrease the constitutive activity of two other JAK2 mutants, T875N and R683G, as well as JAK2 K539L, albeit to a lower extent. In contrast, the F595 mutants are activated by erythropoietin-bound EpoR. We also explored the relationship between the dimeric conformation of EpoR and several JAK2 mutants. Since residue F595 is crucial to the constitutive activation of JAK2 V617F but not to initiation of JAK2 activation by cytokines, we suggest that small molecules that target the region around this residue might specifically block oncogenic JAK2 and spare JAK2 wild-type.
Collapse
Affiliation(s)
- Alexandra Dusa
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Céline Mouton
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Christian Pecquet
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Murielle Herman
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Stefan N. Constantinescu
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
184
|
Yousafzai FK, Al-Kaff N, Moore G. Structural and functional relationship between the Ph1 locus protein 5B2 in wheat and CDK2 in mammals. Funct Integr Genomics 2010; 10:157-66. [PMID: 20422243 DOI: 10.1007/s10142-010-0170-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/18/2010] [Accepted: 03/27/2010] [Indexed: 11/24/2022]
Abstract
The Ph1 locus in hexaploid wheat is responsible for restricting chromosome pairing at meiosis to true homologues by suppressing homoeologous pairing. Based on detailed modelling studies and predicted ability to form complexes with cyclin-A and cyclin-dependent kinase inhibitor such as p27, Triticum aestivum-5B2 (( Ta ) 5B2) is suggested to be a wheat analogue of human CDK2 enzyme. A blast analysis of the protein data bank using the amino acid sequence of the protein expressed by the 5B2 copy of the cdk-like cluster of genes at the Ph1 locus (( Ta ) 5B2) identified humans CDK2 as a top hit. In this analysis, the canonical cyclin binding motif PSTAIRE of CDK2 is replaced by a novel DARTLRE motif and Thr160 residue, phosphorylation of which is required for positive regulation of CDK2, is replaced by a tyrosine (Tyr174) in ( Ta ) 5B2. Despite these differences, detailed analyses show that all residues known to be important for cyclin binding are either fully conserved or whenever there is alteration in ( Ta ) 5B2, a corresponding but comparable alteration is also observed in plant cyclins notably cyclin-A of Arabidopsis thaliana. Moreover, the Thr160/Tyr174 substitution is also accommodated by suitable alterations in the 3D space around Tyr174 and the 3D model of ( Ta ) 5B2 predicts Tyr174 to play the same role as Thr160 plays in CDK2.
Collapse
|
185
|
Chu MLH, Lang Z, Chavas LMG, Neres J, Fedorova OS, Tabernero L, Cherry M, Williams DH, Douglas KT, Eyers PA. Biophysical and X-ray crystallographic analysis of Mps1 kinase inhibitor complexes. Biochemistry 2010; 49:1689-701. [PMID: 20099905 DOI: 10.1021/bi901970c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The dual-specificity protein kinase monopolar spindle 1 (Mps1) is a central component of the mitotic spindle assembly checkpoint (SAC), a sensing mechanism that prevents anaphase until all chromosomes are bioriented on the metaphase plate. Partial depletion of Mps1 protein levels sensitizes transformed, but not untransformed, human cells to therapeutic doses of the anticancer agent Taxol, making it an attractive novel therapeutic cancer target. We have previously determined the X-ray structure of the catalytic domain of human Mps1 in complex with the anthrapyrazolone kinase inhibitor SP600125. In order to validate distinct inhibitors that target this enzyme and improve our understanding of nucleotide binding site architecture, we now report a biophysical and structural evaluation of the Mps1 catalytic domain in the presence of ATP and the aspecific model kinase inhibitor staurosporine. Collective in silico, enzymatic, and fluorescent screens also identified several new lead quinazoline Mps1 inhibitors, including a low-affinity compound termed Compound 4 (Cpd 4), whose interaction with the Mps1 kinase domain was further characterized by X-ray crystallography. A novel biophysical analysis demonstrated that the intrinsic fluorescence of SP600125 changed markedly upon Mps1 binding, allowing spectrophotometric displacement analysis and determination of dissociation constants for ATP-competitive Mps1 inhibitors. By illuminating the structure of the Mps1 ATP-binding site our results provide novel biophysical insights into Mps1-ligand interactions that will be useful for the development of specific Mps1 inhibitors, including those employing a therapeutically validated quinazoline template.
Collapse
Affiliation(s)
- Matthew L H Chu
- Wolfson Centre for Structure-Based Rational Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Merrick KA, Fisher RP. Putting one step before the other: distinct activation pathways for Cdk1 and Cdk2 bring order to the mammalian cell cycle. Cell Cycle 2010; 9:706-14. [PMID: 20139727 DOI: 10.4161/cc.9.4.10732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cell division is controlled by the activity of cyclin-dependent kinases (CDKs). Cdk1 and Cdk2, which function at different stages of the mammalian cell cycle, both require cyclin-binding and phosphorylation of the activation (T-) loop for full activity, but differ with respect to the order in which the two steps occur in vivo. To form stable complexes with either of its partners-cyclins A and B-Cdk1 must be phosphorylated on its T-loop, but that phosphorylation in turn depends on the presence of cyclin. Cdk2 can follow a kinetically distinct path to activation in which T-loop phosphorylation precedes cyclin-binding, and thereby out-compete the more abundant Cdk1 for limiting amounts of cyclin A. Mathematical modeling suggests this could be a principal basis for the temporal ordering of CDK activation during S phase, which may dictate the sequence in which replication origins fire. Still to be determined are how: (1) the activation machinery discriminates between closely related CDKs, and (2) coordination of the cell cycle is affected when this mechanism of pathway insulation breaks down.
Collapse
Affiliation(s)
- Karl A Merrick
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
187
|
Mateo F, Vidal-Laliena M, Canela N, Zecchin A, Martínez-Balbás M, Agell N, Giacca M, Pujol MJ, Bachs O. The transcriptional co-activator PCAF regulates cdk2 activity. Nucleic Acids Res 2010; 37:7072-84. [PMID: 19773423 PMCID: PMC2790897 DOI: 10.1093/nar/gkp777] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cyclin dependent kinases (cdks) regulate cell cycle progression and transcription. We report here that the transcriptional co-activator PCAF directly interacts with cdk2. This interaction is mainly produced during S and G2/M phases of the cell cycle. As a consequence of this association, PCAF inhibits the activity of cyclin/cdk2 complexes. This effect is specific for cdk2 because PCAF does not inhibit either cyclin D3/cdk6 or cyclin B/cdk1 activities. The inhibition is neither competitive with ATP, nor with the substrate histone H1 suggesting that somehow PCAF disturbs cyclin/cdk2 complexes. We also demonstrate that overexpression of PCAF in the cells inhibits cdk2 activity and arrests cell cycle progression at S and G2/M. This blockade is dependent on cdk2 because it is rescued by the simultaneous overexpression of this kinase. Moreover, we also observed that PCAF acetylates cdk2 at lysine 33. As this lysine is essential for the interaction with ATP, acetylation of this residue inhibits cdk2 activity. Thus, we report here that PCAF inhibits cyclin/cdk2 activity by two different mechanisms: (i) by somehow affecting cyclin/cdk2 interaction and (ii) by acetylating K33 at the catalytic pocket of cdk2. These findings identify a previously unknown mechanism that regulates cdk2 activity.
Collapse
Affiliation(s)
- Francesca Mateo
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Lesuisse D, Dutruc-Rosset G, Tiraboschi G, Dreyer MK, Maignan S, Chevalier A, Halley F, Bertrand P, Burgevin MC, Quarteronet D, Rooney T. Rational design of potent GSK3beta inhibitors with selectivity for Cdk1 and Cdk2. Bioorg Med Chem Lett 2010; 20:1985-9. [PMID: 20167481 DOI: 10.1016/j.bmcl.2010.01.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 11/19/2022]
Abstract
From an HTS hit, a series of potent and selective inhibitors of GSK3beta have been designed based on a Cdk2-homology model and with the help of several crystal structures of the compounds within Cdk2.
Collapse
Affiliation(s)
- Dominique Lesuisse
- Medicinal Chemistry, 13 Quai Jules Guesde, 94300 Vitry-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Mascarenhas NM, Bhattacharyya D, Ghoshal N. Why pyridine containing pyrido[2,3-d]pyrimidin-7-ones selectively inhibit CDK4 than CDK2: insights from molecular dynamics simulation. J Mol Graph Model 2010; 28:695-706. [PMID: 20153225 DOI: 10.1016/j.jmgm.2010.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/11/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Designing selective cyclin-dependent kinase 4 (CDK4) inhibitors is an area of intense research to develop potential anticancer drugs. The molecular basis governing the selective inhibition of CDK4 by lig17 (6-bromo-8-cyclopentyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)-8H-pyrido[2,3-d]pyrimidin-7-one) has been investigated using molecular dynamics simulation. The positive charge on the ligand was determined to be an important contributor for CDK4 selectivity due to the electronegative nature of its active site. Similar studies on CDK2 indicated that Lys89 intrudes into the active site displacing the positive charge on lig17 away from the active center. This intrusion was observed to propel a drastic conformational change in lig17, weakening its binding interactions with the protein. The pyridine nitrogen (N(AR)) of lig17 was capable of interacting with His95 (CDK4) through hydrogen bonding. N(AR) also showed a strong tendency to mediate protein-ligand interactions through a bridged water molecule, only when bound to CDK4. The G-loop of CDK4 was observed to fluctuate extensively when complexed with lig17 and a novel "flipping-out" mechanism exhibited by Tyr17(CDK4/CDK4-17) is reported in this study. Although these proteins have similar folds, the results from principal component analysis (PCA) indicate that CDK4 and CDK2 follow an anti-correlated behavior towards the accessibility of the active site.
Collapse
Affiliation(s)
- Nahren Manuel Mascarenhas
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology (CSIR), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | | | | |
Collapse
|
190
|
Babu AP, Chitti S, Rajesh B, Prasanth VV, Kishen RJV, Vali KR. In silico Based Ligand Design and Docking Studies of GSK-3β Inhibitors. CHEM-BIO INFORMATICS JOURNAL 2010. [DOI: 10.1273/cbij.10.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ajay P Babu
- Translational Research Institute of Molecular Sciences (TRIMS)
| | | | - B Rajesh
- Translational Research Institute of Molecular Sciences (TRIMS)
| | | | - Radha JV Kishen
- Translational Research Institute of Molecular Sciences (TRIMS)
| | - Khadar R Vali
- Translational Research Institute of Molecular Sciences (TRIMS)
| |
Collapse
|
191
|
Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A 2009; 106:21608-13. [PMID: 20007378 DOI: 10.1073/pnas.0912101106] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kinase domain of human epidermal growth factor receptor (HER) 3/ErbB3, a member of the EGF receptor (EGFR) family, lacks several residues that are critical for catalysis. Because catalytic activity in EGFR family members is switched on by an allosteric interaction between kinase domains in an asymmetric kinase domain dimer, HER3 might be specialized to serve as an activator of other EGFR family members. We have determined the crystal structure of the HER3 kinase domain and show that it appears to be locked into an inactive conformation that resembles that of EGFR and HER4. Although the crystal structure shows that the HER3 kinase domain binds ATP, we confirm that it is catalytically inactive but can serve as an activator of the EGFR kinase domain. The HER3 kinase domain forms a dimer in the crystal, mediated by hydrophobic contacts between the N-terminal lobes of the kinase domains. This N-lobe dimer closely resembles a dimer formed by inactive HER4 kinase domains in crystal structures determined previously, and molecular dynamics simulations suggest that the HER3 and HER4 N-lobe dimers are stable. The kinase domains of HER3 and HER4 form similar chains in their respective crystal lattices, in which N-lobe dimers are linked together by reciprocal exchange of C-terminal tails. The conservation of this tiling pattern in HER3 and HER4, which is the closest evolutionary homolog of HER3, might represent a general mechanism by which this branch of the HER receptors restricts ligand-independent formation of active heterodimers with other members of the EGFR family.
Collapse
|
192
|
Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2. PLoS One 2009; 4:e8044. [PMID: 19956600 PMCID: PMC2779450 DOI: 10.1371/journal.pone.0008044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 10/19/2009] [Indexed: 11/19/2022] Open
Abstract
The p90 ribosomal protein kinase 2 (RSK2) is a highly expressed Ser/Thr kinase activated by growth factors and is involved in cancer cell proliferation and tumor promoter-induced cell transformation. RSK2 possesses two non-identical kinase domains, and the structure of its N-terminal domain (NTD), which is responsible for phosphorylation of a variety of substrates, is unknown. The crystal structure of the NTD RSK2 was determined at 1.8 Å resolution in complex with AMP-PNP. The N-terminal kinase domain adopted a unique active conformation showing a significant structural diversity of the kinase domain compared to other kinases. The NTD RSK2 possesses a three-stranded βB-sheet inserted in the N-terminal lobe, resulting in displacement of the αC-helix and disruption of the Lys-Glu interaction, classifying the kinase conformation as inactive. The purified protein was phosphorylated at Ser227 in the T-activation loop and exhibited in vitro kinase activity. A key characteristic is the appearance of a new contact between Lys216 (βB-sheet) and the β-phosphate of AMP-PNP. Mutation of this lysine to alanine impaired both NTDs in vitro and full length RSK2 ex vivo activity, emphasizing the importance of this interaction. Even though the N-terminal lobe undergoes structural re-arrangement, it possesses an intact hydrophobic groove formed between the αC-helix, the β4-strand, and the βB-sheet junction, which is occupied by the N-terminal tail. The presence of a unique βB-sheet insert in the N-lobe suggests a different type of activation mechanism for RSK2.
Collapse
|
193
|
Stability of an autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts T cell receptor response. Proc Natl Acad Sci U S A 2009; 106:20699-704. [PMID: 19920178 DOI: 10.1073/pnas.0911512106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The delivery of signals from the activated T cell antigen receptor (TCR) inside the cell relies on the protein tyrosine kinase ZAP-70 (zeta-associated protein of 70 kDa). A recent crystal structure of inactive full-length ZAP-70 suggests that a central interface formed by the docking of the two SH2 domains of ZAP-70 onto the kinase domain is crucial for suppressing catalytic activity. Here we validate the significance of this autoinhibitory interface for the regulation of ZAP-70 catalytic activity and the T cell response. For this purpose, we perform in vitro catalytic activity assays and binding experiments using ZAP-70 proteins purified from insect cells to examine activation of ZAP-70. Furthermore, we use cell lines stably expressing wild-type or mutant ZAP-70 to monitor proximal events in T cell signaling, including TCR-induced phosphorylation of ZAP-70 substrates, activation of the MAP kinase pathway, and intracellular Ca(2+) levels. Taken together, our results directly correlate the stability of the autoinhibitory interface with the activation of these key events in the T cell response.
Collapse
|
194
|
Sunami T, Byrne N, Diehl RE, Funabashi K, Hall DL, Ikuta M, Patel SB, Shipman JM, Smith RF, Takahashi I, Zugay-Murphy J, Iwasawa Y, Lumb KJ, Munshi SK, Sharma S. Structural basis of human p70 ribosomal S6 kinase-1 regulation by activation loop phosphorylation. J Biol Chem 2009; 285:4587-94. [PMID: 19864428 DOI: 10.1074/jbc.m109.040667] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3'-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3'-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors.
Collapse
Affiliation(s)
- Tomoko Sunami
- Department of Chemistry, Tsukuba Research Institute, Banyu Pharmaceutical Company, Limited, Tsukuba, Ibaraki, 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Fischmann TO, Smith CK, Mayhood TW, Myers JE, Reichert P, Mannarino A, Carr D, Zhu H, Wong J, Yang RS, Le HV, Madison VS. Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry 2009; 48:2661-74. [PMID: 19161339 DOI: 10.1021/bi801898e] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MEK1 is a member of the MAPK signal transduction pathway that responds to growth factors and cytokines. We have determined that the kinase domain spans residues 35-382 by proteolytic cleavage. The complete kinase domain has been crystallized and its X-ray crystal structure as a complex with magnesium and ATP-gammaS determined at 2.1 A. Unlike crystals of a truncated kinase domain previously published, the crystals of the intact domain can be grown either as a binary complex with a nucleotide or as a ternary complex with a nucleotide and one of a multitude of allosteric inhibitors. Further, the crystals allow for the determination of costructures with ATP competitive inhibitors. We describe the structures of nonphosphorylated MEK1 (npMEK1) binary complexes with ADP and K252a, an ATP-competitive inhibitor (see Table 1), at 1.9 and 2.7 A resolution, respectively. Ternary complexes have also been solved between npMEK1, a nucleotide, and an allosteric non-ATP competitive inhibitor: ATP-gammaS with compound 1 and ADP with either U0126 or the MEK1 clinical candidate PD325089 at 1.8, 2.0, and 2.5 A, respectively. Compound 1 is structurally similar to PD325901. These structures illustrate fundamental differences among various mechanisms of inhibition at the molecular level. Residues 44-51 have previously been shown to play a negative regulatory role in MEK1 activity. The crystal structure of the integral kinase domain provides a structural rationale for the role of these residues. They form helix A and repress enzymatic activity by stabilizing an inactive conformation in which helix C is displaced from its active state position. Finally, the structure provides for the first time a molecular rationale that explains how mutations in MEK may lead to the cardio-facio-cutaneous syndrome.
Collapse
|
196
|
Abstract
Phosphorylation plays essential roles in nearly every aspect of cell life. Protein kinases regulate signalling pathways and cellular processes that mediate metabolism, transcription, cell-cycle progression, differentiation, cytoskeleton arrangement and cell movement, apoptosis, intercellular communication, and neuronal and immunological functions. Protein kinases share a conserved catalytic domain, which catalyses the transfer of the γ-phosphate of ATP to a serine, threonine or tyrosine residue in protein substrates. The kinase can exist in an active or inactive state regulated by a variety of mechanisms in different kinases that include control by phosphorylation, regulation by additional domains that may target other molecules, binding and regulation by additional subunits, and control by protein–protein association. This Novartis Medal Lecture was delivered at a meeting on protein evolution celebrating the 200th anniversary of Charles Darwin's birth. I begin with a summary of current observations from protein sequences of kinase phylogeny. I then review the structural consequences of protein phosphorylation using our work on glycogen phosphorylase to illustrate one of the more dramatic consequences of phosphorylation. Regulation of protein phosphorylation is frequently disrupted in the diseased state, and protein kinases have become high-profile targets for drug development. Finally, I consider recent advances on protein kinases as drug targets and describe some of our recent work with CDK9 (cyclin-dependent kinase 9)–cyclin T, a regulator of transcription.
Collapse
|
197
|
Au-Yeung BB, Deindl S, Hsu LY, Palacios EH, Levin SE, Kuriyan J, Weiss A. The structure, regulation, and function of ZAP-70. Immunol Rev 2009; 228:41-57. [PMID: 19290920 DOI: 10.1111/j.1600-065x.2008.00753.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tyrosine ZAP-70 (zeta-associated protein of 70 kDa) kinase plays a critical role in activating many downstream signal transduction pathways in T cells following T-cell receptor (TCR) engagement. The importance of ZAP-70 is evidenced by the severe combined immunodeficiency that occurs in ZAP-70-deficient mice and humans. In this review, we describe recent analyses of the ZAP-70 crystal structure, revealing a complex regulatory mechanism of ZAP-70 activity, the differential requirements for ZAP-70 and spleen tyrosine kinase (SyK) in early T-cell development, as well as the role of ZAP-70 in chronic lymphocytic leukemia and autoimmunity. Thus, the critical importance of ZAP-70 in TCR signaling and its predominantly T-cell-restricted expression pattern make ZAP-70 an attractive drug target for the inhibition of pathological T-cell responses in disease.
Collapse
Affiliation(s)
- Byron B Au-Yeung
- Department of Medicine, Rosalind Russell Medical Research Center for Arthritis, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143-0795, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Seeliger MA, Ranjitkar P, Kasap C, Shan Y, Shaw DE, Shah NP, Kuriyan J, Maly DJ. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Cancer Res 2009; 69:2384-92. [PMID: 19276351 DOI: 10.1158/0008-5472.can-08-3953] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Imatinib is an inhibitor of the Abl tyrosine kinase domain that is effective in the treatment of chronic myelogenic leukemia. Although imatinib binds tightly to the Abl kinase domain, its affinity for the closely related kinase domain of c-Src is at least 2,000-fold lower. Imatinib recognition requires a specific inactive conformation of the kinase domain, in which a conserved Asp-Phe-Gly (DFG) motif is flipped with respect to the active conformation. The inability of c-Src to readily adopt this flipped DFG conformation was thought to underlie the selectivity of imatinib for Abl over c-Src. Here, we present a series of inhibitors (DSA compounds) that are based on the core scaffold of imatinib but which bind with equally high potency to c-Src and Abl. The DSA compounds bind to c-Src in the DFG-flipped conformation, as confirmed by crystal structures and kinetic analysis. The origin of the high affinity of these compounds for c-Src is suggested by the fact that they also inhibit clinically relevant Abl variants bearing mutations in a structural element, the P-loop, that normally interacts with the phosphate groups of ATP but is folded over a substructure of imatinib in Abl. Importantly, several of the DSA compounds block the growth of Ba/F3 cells harboring imatinib-resistant BCR-ABL mutants, including the Thr315Ile "gatekeeper" mutation, but do not suppress the growth of parental Ba/F3 cells.
Collapse
Affiliation(s)
- Markus A Seeliger
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkely, USA
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Orzáez M, Gortat A, Mondragón L, Bachs O, Pérez-Payá E. ATP-noncompetitive inhibitors of CDK-cyclin complexes. ChemMedChem 2009; 4:19-24. [PMID: 19039815 DOI: 10.1002/cmdc.200800185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Progression through the cell division cycle is controlled by a family of cyclin-dependent kinases (CDKs), the activity of which depends on their binding to regulatory partners (cyclins A-H). Deregulation of the activity of CDKs has been associated with the development of infectious, neurodegenerative, and proliferative diseases such as Alzheimer's, Parkinson's, or cancer. Most cancer cells contain mutations in the pathways that control the activity of CDKs. This observation led this kinase family to become a central target for the development of new drugs for cancer therapy. A range of structurally diverse molecules has been shown to inhibit the activity of CDKs through their activity as ATP antagonists. Nevertheless, the ATP binding sites on CDKs are highly conserved, limiting the kinase specificity of these inhibitors. Various genetic and crystallographic approaches have provided essential information about the mechanism of formation and activation of CDK-cyclin complexes, providing new ways to implement novel research strategies toward the discovery of new, more effective and selective drugs. Herein we review the progress made in the development of ATP-noncompetitive CDK-cyclin inhibitors.
Collapse
Affiliation(s)
- Mar Orzáez
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, 46012, Valencia, Spain.
| | | | | | | | | |
Collapse
|
200
|
Crystal structure of human CDK4 in complex with a D-type cyclin. Proc Natl Acad Sci U S A 2009; 106:4166-70. [PMID: 19237565 DOI: 10.1073/pnas.0809645106] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cyclin D1-cyclin-dependent kinase 4 (CDK4) complex is a key regulator of the transition through the G(1) phase of the cell cycle. Among the cyclin/CDKs, CDK4 and cyclin D1 are the most frequently activated by somatic genetic alterations in multiple tumor types. Thus, aberrant regulation of the CDK4/cyclin D1 pathway plays an essential role in oncogenesis; hence, CDK4 is a genetically validated therapeutic target. Although X-ray crystallographic structures have been determined for various CDK/cyclin complexes, CDK4/cyclin D1 has remained highly refractory to structure determination. Here, we report the crystal structure of CDK4 in complex with cyclin D1 at a resolution of 2.3 A. Although CDK4 is bound to cyclin D1 and has a phosphorylated T-loop, CDK4 is in an inactive conformation and the conformation of the heterodimer diverges from the previously known CDK/cyclin binary complexes, which suggests a unique mechanism for the process of CDK4 regulation and activation.
Collapse
|