151
|
|
152
|
Oral Migalastat HCl Leads to Greater Systemic Exposure and Tissue Levels of Active α-Galactosidase A in Fabry Patients when Co-Administered with Infused Agalsidase. PLoS One 2015; 10:e0134341. [PMID: 26252393 PMCID: PMC4529213 DOI: 10.1371/journal.pone.0134341] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified. TRIAL REGISTRATION ClinicalTrials.gov NCT01196871.
Collapse
|
153
|
Parmeggiani C, Catarzi S, Matassini C, D'Adamio G, Morrone A, Goti A, Paoli P, Cardona F. Human Acid β-Glucosidase Inhibition by Carbohydrate Derived Iminosugars: Towards New Pharmacological Chaperones for Gaucher Disease. Chembiochem 2015; 16:2054-64. [DOI: 10.1002/cbic.201500292] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Camilla Parmeggiani
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CNR-INO; U.O.S. Sesto Fiorentino and LENS; Via Nello Carrara 1 50019 Sesto Fiorentino Italy
| | - Serena Catarzi
- Paediatric Neurology Unit and Laboratories; Neuroscience Department; Meyer Children's Hospital; Department of Neurosciences; Pharmacology and Child Health; University of Florence; Viale Pieraccini n. 24 50139 Firenze Italy
| | - Camilla Matassini
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Giampiero D'Adamio
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories; Neuroscience Department; Meyer Children's Hospital; Department of Neurosciences; Pharmacology and Child Health; University of Florence; Viale Pieraccini n. 24 50139 Firenze Italy
| | - Andrea Goti
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences; University of Florence; Viale Morgagni 50 50134 Florence Italy
| | - Francesca Cardona
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| |
Collapse
|
154
|
Coformulation of a Novel Human α-Galactosidase A With the Pharmacological Chaperone AT1001 Leads to Improved Substrate Reduction in Fabry Mice. Mol Ther 2015; 23:1169-1181. [PMID: 25915924 PMCID: PMC4817779 DOI: 10.1038/mt.2015.87] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene that encodes α-galactosidase A and is characterized by pathological accumulation of globotriaosylceramide and globotriaosylsphingosine. Earlier, the authors demonstrated that oral coadministration of the pharmacological chaperone AT1001 (migalastat HCl; 1-deoxygalactonojirimycin HCl) prior to intravenous administration of enzyme replacement therapy improved the pharmacological properties of the enzyme. In this study, the authors investigated the effects of coformulating AT1001 with a proprietary recombinant human α-galactosidase A (ATB100) into a single intravenous formulation. AT1001 increased the physical stability and reduced aggregation of ATB100 at neutral pH in vitro, and increased the potency for ATB100-mediated globotriaosylceramide reduction in cultured Fabry fibroblasts. In Fabry mice, AT1001 coformulation increased the total exposure of active enzyme, and increased ATB100 levels in cardiomyocytes, cardiac vascular endothelial cells, renal distal tubular epithelial cells, and glomerular cells, cell types that do not show substantial uptake with enzyme replacement therapy alone. Notably, AT1001 coformulation also leads to greater tissue globotriaosylceramide reduction when compared with ATB100 alone, which was positively correlated with reductions in plasma globotriaosylsphingosine. Collectively, these data indicate that intravenous administration of ATB100 coformulated with AT1001 may provide an improved therapy for Fabry disease and thus warrants further investigation.
Collapse
|
155
|
Parenti G, Andria G, Valenzano KJ. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders. Mol Ther 2015; 23:1138-1148. [PMID: 25881001 DOI: 10.1038/mt.2015.62] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Lysosomal storage disorders (LSDs) are a group of inborn metabolic diseases caused by mutations in genes that encode proteins involved in different lysosomal functions, in most instances acidic hydrolases. Different therapeutic approaches have been developed to treat these disorders. Pharmacological chaperone therapy (PCT) is an emerging approach based on small-molecule ligands that selectively bind and stabilize mutant enzymes, increase their cellular levels, and improve lysosomal trafficking and activity. Compared to other approaches, PCT shows advantages, particularly in terms of oral administration, broad biodistribution, and positive impact on patients' quality of life. After preclinical in vitro and in vivo studies, PCT is now being translated in the first clinical trials, either as monotherapy or in combination with enzyme replacement therapy, for some of the most prevalent LSDs. For some LSDs, the results of the first clinical trials are encouraging and warrant further development. Future research in the field of PCT will be directed toward the identification of novel chaperones, including new allosteric drugs, and the exploitation of synergies between chaperone treatment and other therapeutic approaches.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| | - Generoso Andria
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | |
Collapse
|
156
|
Affiliation(s)
- Sherif F Nagueh
- From the Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX.
| |
Collapse
|
157
|
Abstract
Many mutations responsible of Fabry disease destabilize lysosomal alpha-galactosidase, but retain the enzymatic activity. These mutations are associated to a milder phenotype and are potentially curable with a pharmacological therapy either with chaperones or with drugs that modulate proteostasis. We demonstrate the effectiveness of molecular dynamics simulations to correlate the genotype to the severity of the disease. We studied the relation between protein flexibility and residual enzymatic activity of pathological missense mutants in the cell. We found that mutations occurring at flexible sites are likely to retain activity in vivo. The usefulness of molecular dynamics for diagnostic purposes is not limited to lysosomal galactosidase because destabilizing mutations are widely encountered in other proteins, too, and represent a large share of all the ones associated to human diseases. Residual alpha-galactosidase activity may relate to mild phenotype in Fabry disease. Molecular dynamics identifies flexible residues in lysosomal alpha-galactosidase. Mutations at flexible sites tend to maintain residual alpha-galactosidase activity.
Collapse
|
158
|
Abstract
Pharmacological chaperone therapy is an emerging approach to treat lysosomal storage diseases. Small-molecule chaperones interact with mutant enzymes, favor their correct conformation and enhance their stability. This approach shows significant advantages when compared with existing therapies, particularly in terms of the bioavailability of drugs, oral administration and positive impact on the quality of patients' lives. On the other hand, future research in this field must confront important challenges. The identification of novel chaperones is indispensable to expanding the number of patients amenable to this treatment and to optimize therapeutic efficacy. It is important to develop new allosteric drugs, to address the risk of inhibiting target enzymes. Future research must also be directed towards the exploitation of synergies between chaperone treatment and other therapeutic approaches.
Collapse
|
159
|
Kato A, Hirokami Y, Kinami K, Tsuji Y, Miyawaki S, Adachi I, Hollinshead J, Nash RJ, Kiappes JL, Zitzmann N, Cha JK, Molyneux RJ, Fleet GWJ, Asano N. Isolation and SAR studies of bicyclic iminosugars from Castanospermum australe as glycosidase inhibitors. PHYTOCHEMISTRY 2015; 111:124-131. [PMID: 25583438 DOI: 10.1016/j.phytochem.2014.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
We report the isolation and structural determination of fourteen iminosugars, containing five pyrrolizidines and five indolizidines, from Castanospermum australe. The structure of a new alkaloid was elucidated by spectroscopic methods as 6,8-diepi-castanospermine (13). Our side-by-side comparison between bicyclic and corresponding monocyclic iminosugars revealed that inhibition potency and spectrum against each enzyme are clearly changed by their core structures. Castanospermine (10) and 1-deoxynojirimycin (DNJ) have a common d-gluco configuration, and they showed the expected similar inhibition potency and spectrum. In sharp contrast, 6-epi-castanospermine (12) and 1-deoxymannojirimycin (manno-DNJ) both have the d-manno configuration but the α-mannosidase inhibition of 6-epi-castanospermine (12) was much better than that of manno-DNJ. 6,8-Diepi-castanospermine (13) could be regarded as a bicyclic derivative of talo-DNJ, but it showed a complete loss of α-galactosidase A inhibition. This behavior against α-galactosidase A is similar to that observed for 1-epi-australine (6) and altro-DMDP.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan.
| | - Yuki Hirokami
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Kyoko Kinami
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yutaro Tsuji
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Shota Miyawaki
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Jackie Hollinshead
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - Robert J Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - J L Kiappes
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jin K Cha
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, United States
| | - George W J Fleet
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.
| | - Naoki Asano
- BioApply Co., Ltd., 1-95 Tsuchishimizu, Kanazawa 920-0955, Japan
| |
Collapse
|
160
|
A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide synthesis. Biochem J 2015; 456:373-83. [PMID: 24094090 DOI: 10.1042/bj20130825] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fabry disease is a lysosomal storage disorder in which neutral glycosphingolipids, predominantly Gb3 (globotriaosylceramide), accumulate due to deficient α-Gal A (α-galactosidase A) activity. The GLAko (α-Gal A-knockout) mouse has been used as a model for Fabry disease, but it does not have any symptomatic abnormalities. In the present study, we generated a symptomatic mouse model (G3Stg/GLAko) by cross-breeding GLAko mice with transgenic mice expressing human Gb3 synthase. G3Stg/GLAko mice had high Gb3 levels in major organs, and their serum Gb3 level at 5-25 weeks of age was 6-10-fold higher than that in GLAko mice of the same age. G3Stg/GLAko mice showed progressive renal impairment, with albuminuria at 3 weeks of age, decreased urine osmolality at 5 weeks, polyuria at 10 weeks and increased blood urea nitrogen at 15 weeks. The urine volume and urinary albumin concentration were significantly reduced in the G3Stg/GLAko mice when human recombinant α-Gal A was administered intravenously. These data suggest that Gb3 accumulation is a primary pathogenic factor in the symptomatic phenotype of G3Stg/GLAko mice, and that this mouse line is suitable for studying the pathogenesis of Fabry disease and for preclinical studies of candidate therapies.
Collapse
|
161
|
Yadav AK, Shen DL, Shan X, He X, Kermode AR, Vocadlo DJ. Fluorescence-quenched substrates for live cell imaging of human glucocerebrosidase activity. J Am Chem Soc 2015; 137:1181-9. [PMID: 25562638 DOI: 10.1021/ja5106738] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deficiency of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) leads to abnormal accumulation of glucosyl ceramide in lysosomes and the development of the lysosomal storage disease known as Gaucher's disease. More recently, mutations in the GBA1 gene that encodes GCase have been uncovered as a major genetic risk factor for Parkinson's disease (PD). Current therapeutic strategies to increase GCase activity in lysosomes involve enzyme replacement therapy (ERT) and molecular chaperone therapy. One challenge associated with developing and optimizing these therapies is the difficulty in determining levels of GCase activity present within the lysosomes of live cells. Indeed, visualizing the activity of endogenous levels of any glycoside hydrolases, including GCase, has proven problematic within live mammalian cells. Here we describe the successful modular design and synthesis of fluorescence-quenched substrates for GCase. The selection of a suitable fluorophore and quencher pair permits the generation of substrates that allow convenient time-dependent monitoring of endogenous GCase activity within cells as well as localization of activity within lysosomes. These efficiently quenched (∼99.9%) fluorescent substrates also permit assessment of GCase inhibition in live cells by either confocal microscopy or high content imaging. Such substrates should enable improved understanding of GCase in situ as well the optimization of small-molecule chaperones for this enzyme. These findings also suggest routes to generate fluorescence-quenched substrates for other mammalian glycoside hydrolases for use in live cell imaging.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, ‡Department of Biological Sciences, and §Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | |
Collapse
|
162
|
Johnson FK, Mudd PN, Janmohamed SG. Relative bioavailability and the effect of meal type and timing on the pharmacokinetics of migalastat in healthy volunteers. Clin Pharmacol Drug Dev 2014; 4:193-202. [DOI: 10.1002/cpdd.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/10/2014] [Indexed: 11/12/2022]
|
163
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
164
|
Enzyme enhancers for the treatment of Fabry and Pompe disease. Mol Ther 2014; 23:456-64. [PMID: 25409744 DOI: 10.1038/mt.2014.224] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.
Collapse
|
165
|
Ohgane K, Karaki F, Noguchi-Yachide T, Dodo K, Hashimoto Y. Structure–activity relationships of oxysterol-derived pharmacological chaperones for Niemann–Pick type C1 protein. Bioorg Med Chem Lett 2014; 24:3480-5. [DOI: 10.1016/j.bmcl.2014.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 11/30/2022]
|
166
|
Tao YX, Conn PM. Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocr Rev 2014; 35:602-47. [PMID: 24661201 PMCID: PMC4105357 DOI: 10.1210/er.2013-1121] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology (Y.-X.T.), College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519; and Departments of Internal Medicine and Cell Biology (P.M.C.), Texas Tech University Health Science Center, Lubbock, Texas 79430-6252
| | | |
Collapse
|
167
|
Yu Y, Mena-Barragán T, Higaki K, Johnson JL, Drury JE, Lieberman RL, Nakasone N, Ninomiya H, Tsukimura T, Sakuraba H, Suzuki Y, Nanba E, Mellet CO, García Fernández JM, Ohno K. Molecular basis of 1-deoxygalactonojirimycin arylthiourea binding to human α-galactosidase a: pharmacological chaperoning efficacy on Fabry disease mutants. ACS Chem Biol 2014; 9:1460-9. [PMID: 24783948 DOI: 10.1021/cb500143h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the GLA gene often leading to missense α-galactosidase A (α-Gal A) variants that undergo premature endoplasmic reticulum-associated degradation due to folding defects. We have synthesized and characterized a new family of neutral amphiphilic pharmacological chaperones, namely 1-deoxygalactonojirimycin-arylthioureas (DGJ-ArTs), capable of stabilizing α-Gal A and restoring trafficking. Binding to the enzyme is reinforced by a strong hydrogen bond involving the aryl-N'H thiourea proton and the catalytic aspartic acid acid D231 of α-Gal A, as confirmed by a 2.55 Å resolution cocrystal structure. Selected candidates enhanced α-Gal A activity and ameliorate globotriaosylceramide (Gb3) accumulation and autophagy impairments in FD cell cultures. Moreover, they acted synergistically with the proteostasis regulator 4-phenylbutyric acid, appearing to be promising leads as pharmacological chaperones for FD.
Collapse
Affiliation(s)
- Yi Yu
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
- Division
of Child Neurology, Institute of Neurological Sciences, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Teresa Mena-Barragán
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Katsumi Higaki
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Jennifer L. Johnson
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Jason E. Drury
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, Georgia United States
| | - Naoe Nakasone
- Department
of Biomedical Regulation, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Haruaki Ninomiya
- Department
of Biomedical Regulation, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Takahiro Tsukimura
- Department
of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Hitoshi Sakuraba
- Department
of Clinical Genetics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Yoshiyuki Suzuki
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan
| | - Eiji Nanba
- Division
of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Carmen Ortiz Mellet
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | | | - Kousaku Ohno
- Division
of Child Neurology, Institute of Neurological Sciences, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
168
|
Das D, Halder J, Bhuniya R, Nanda S. Stereoselective Synthesis of Enantiopure Oxetanes, a Carbohydrate Mimic, an ϵ-Lactone, and Cyclitols from Biocatalytically Derived β-Hydroxy Esters as Chiral Precursors. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
169
|
Arora I, Kashyap VK, Singh AK, Dasgupta A, Kumar B, Shaw AK. Design, synthesis and biological evaluation of bicyclic iminosugar hybrids: conformational constraint as an effective tool for tailoring the selectivity of α-glucosidase inhibitors. Org Biomol Chem 2014; 12:6855-68. [DOI: 10.1039/c4ob00486h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
170
|
Muntau AC, Leandro J, Staudigl M, Mayer F, Gersting SW. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. J Inherit Metab Dis 2014; 37:505-23. [PMID: 24687294 DOI: 10.1007/s10545-014-9701-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
To attain functionality, proteins must fold into their three-dimensional native state. The intracellular balance between protein synthesis, folding, and degradation is constantly challenged by genetic or environmental stress factors. In the last ten years, protein misfolding induced by missense mutations was demonstrated to be the seminal molecular mechanism in a constantly growing number of inborn errors of metabolism. In these cases, loss of protein function results from early degradation of missense-induced misfolded proteins. Increasing knowledge on the proteostasis network and the protein quality control system with distinct mechanisms in different compartments of the cell paved the way for the development of new treatment strategies for conformational diseases using small molecules. These comprise proteostasis regulators that enhance the capacity of the proteostasis network and pharmacological chaperones that specifically bind and rescue misfolded proteins by conformational stabilization. They can be used either alone or in combination, the latter to exploit synergistic effects. Many of these small molecule compounds currently undergo preclinical and clinical pharmaceutical development and two have been approved: saproterin dihydrochloride for the treatment of phenylketonuria and tafamidis for the treatment of transthyretin-related hereditary amyloidosis. Different technologies are exploited for the discovery of new small molecule compounds that belong to the still young class of pharmaceutical products discussed here. These compounds may in the near future improve existing treatment strategies or even offer a first-time treatment to patients suffering from nowadays-untreatable inborn errors of metabolism.
Collapse
Affiliation(s)
- Ania C Muntau
- Department of Molecular Pediatrics, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Lindwurmstrasse 4, 80337, Munich, Germany,
| | | | | | | | | |
Collapse
|
171
|
Hollak CEM, Wijburg FA. Treatment of lysosomal storage disorders: successes and challenges. J Inherit Metab Dis 2014; 37:587-98. [PMID: 24820227 DOI: 10.1007/s10545-014-9718-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 01/29/2023]
Abstract
Treatment options for a number of lysosomal storage disorders have rapidly expanded and currently include enzyme replacement therapy, substrate reduction, chaperone treatment, hematopoietic stem cell transplantation, and gene-therapy. Combination treatments are also explored. Most therapies are not curative but change the phenotypic expression of the disease. The effectiveness of treatment varies considerably between the different diseases, but also between sub-groups of patients with a specific lysosomal storage disorder. The heterogeneity of the patient populations complicates the prediction of benefits of therapy, specifically in patients with milder disease manifestations. In addition, there is a lack of data on the natural history of diseases and disease phenotypes. Initial trial data show benefits on relevant short-term endpoints, but the real world situation may reveal different outcomes. Collaborative international studies are much needed to study the long-term clinical efficacy of treatments, and to detect new complications or associated conditions of the diseases. This review summarizes the available treatment modalities for lysosomal storage disorders and the challenges associated with long term clinical care for these patients.
Collapse
Affiliation(s)
- Carla E M Hollak
- Department of Internal Medicine, Division of Endocrinology and Metabolism, SPHINX, Amsterdam Lysosome Center, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands,
| | | |
Collapse
|
172
|
Ingemann L, Kirkegaard T. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res 2014; 55:2198-210. [PMID: 24837749 DOI: 10.1194/jlr.r048090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.
Collapse
|
173
|
Luna-Freire KR, Scaramal JPS, Resende JA, Tormena CF, Oliveira FL, Aparicio R, Coelho F. An asymmetric substrate-controlled Morita–Baylis–Hillman reaction as approach for the synthesis of pyrrolizidinones and pyrrolizidines. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
174
|
Using pharmacological chaperones to restore proteostasis. Pharmacol Res 2014; 83:3-9. [PMID: 24747662 DOI: 10.1016/j.phrs.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Abstract
Normal organismal physiology depends on the maintenance of proteostasis in each cellular compartment to achieve a delicate balance between protein synthesis, folding, trafficking, and degradation while minimizing misfolding and aggregation. Defective proteostasis leads to numerous protein misfolding diseases. Pharmacological chaperones are cell-permeant small molecules that promote the proper folding and trafficking of a protein via direct binding to that protein. They stabilize their target protein in a protein-pharmacological chaperone state, increasing the natively folded protein population that can effectively engage trafficking machinery for transport to the final destination for function. Here, as regards the application of pharmacological chaperones, we focus on their capability to promote the folding and trafficking of lysosomal enzymes, G protein coupled receptors (GPCRs), and ion channels, each of which is presently an important drug target. Pharmacological chaperones hold great promise as potential therapeutics to ameliorate a variety of protein misfolding diseases.
Collapse
|
175
|
Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 2014; 7:421-34. [PMID: 24719117 PMCID: PMC3974453 DOI: 10.1242/dmm.014563] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.
Collapse
Affiliation(s)
- Vaishali Kakkar
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melanie Meister-Broekema
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melania Minoia
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Serena Carra
- Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, via G. Campi 287, 41125 Modena, Italy
| | - Harm H. Kampinga
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
176
|
Abstract
A growing body of evidence suggests that misfolding of a mutant protein followed by its aggregation or premature degradation in the endoplasmic reticulum is one of the main mechanisms that underlie inherited neurodegenerative diseases, including lysosomal storage diseases. Chemical or pharmacological chaperones are small molecules that bind to and stabilize mutant lysosomal enzyme proteins in the endoplasmic reticulum. A number of chaperone compounds for lysosomal hydrolases have been identified in the last decade. They have gained attention because they can be orally administrated, and also because they can penetrate the blood-brain barrier. In this article, we describe two chaperone candidates for the treatment of GM1-gangliosidosis. We also discuss the future direction of this strategy targeting other lysosomal storage diseases as well as protein misfolding diseases in general.
Collapse
|
177
|
Docking and SAR studies of calystegines: binding orientation and influence on pharmacological chaperone effects for Gaucher's disease. Bioorg Med Chem 2014; 22:2435-41. [PMID: 24657053 DOI: 10.1016/j.bmc.2014.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022]
Abstract
We report on the identification of the required configuration and binding orientation of nor-tropane alkaloid calystegines against β-glucocerebrosidase. Calystegine B2 is a potent competitive inhibitor of human lysosomal β-glucocerebrosidase with Ki value of 3.3 μM. A molecular docking study revealed that calystegine B2 had a favorable van der Waals interactions (Phe128, Trp179, and Phe246) and the hydrogen bonding (Glu235, Glu340, Asp127, Trp179, Asn234, Trp381 and Asn396) was similar to that of isofagomine. All calystegine isomers bound into the same active site as calystegine B2 and the essential hydrogen bonds formed to Asp127, Glu235 and Glu340 were maintained. However, their binding orientations were obviously different. Calystegine A3 bound to β-glucocerebrosidase with the same orientations as calystegine B2 (Type 1), while calystegine B3 and B4 had different binding orientations (Type 2). It is noteworthy that Type 1 orientated calystegines B2 and A3 effectively stabilized β-glucocerebrosidase, and consequently increased intracellular β-glucocerebrosidase activities in N370S fibroblasts, while Type 2 orientated calystegines B3 and B4 could not keep the enzyme activity. These results clearly indicate that the binding orientations of calystegines are changed by the configuration of the hydroxyl groups on the nor-tropane ring and the suitable binding orientation is a requirement for achieving a strong affinity to β-glucocerebrosidase.
Collapse
|
178
|
Shayman JA, Larsen SD. The development and use of small molecule inhibitors of glycosphingolipid metabolism for lysosomal storage diseases. J Lipid Res 2014; 55:1215-25. [PMID: 24534703 DOI: 10.1194/jlr.r047167] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycosphingolipid (GSL) storage diseases have been the focus of efforts to develop small molecule therapeutics from design, experimental proof of concept studies, and clinical trials. Two primary alternative strategies that have been pursued include pharmacological chaperones and GSL synthase inhibitors. There are theoretical advantages and disadvantages to each of these approaches. Pharmacological chaperones are specific for an individual glycoside hydrolase and for the specific mutation present, but no candidate chaperone has been demonstrated to be effective for all mutations leading to a given disorder. Synthase inhibitors target single enzymes such as glucosylceramide synthase and inhibit the formation of multiple GSLs. A glycolipid synthase inhibitor could potentially be used to treat multiple diseases, but at the risk of lowering nontargeted cellular GSLs that are important for normal health. The basis for these strategies and specific examples of compounds that have led to clinical trials is the focus of this review.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine and Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
179
|
Martin GM, Chen PC, Devaraneni P, Shyng SL. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 2013; 4:386. [PMID: 24399968 PMCID: PMC3870925 DOI: 10.3389/fphys.2013.00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Prasanna Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
180
|
Chaperone therapy for GM2 gangliosidosis: effects of pyrimethamine on β-hexosaminidase activity in Sandhoff fibroblasts. Mol Neurobiol 2013; 50:159-67. [PMID: 24356898 DOI: 10.1007/s12035-013-8605-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/08/2013] [Indexed: 12/20/2022]
Abstract
Sphingolipidoses are inherited genetic diseases due to mutations in genes encoding proteins involved in the lysosomal catabolism of sphingolipids. Despite a low incidence of each individual disease, altogether, the number of patients involved is relatively high and resolutive approaches for treatment are still lacking. The chaperone therapy is one of the latest pharmacological approaches to these storage diseases. This therapy allows the mutated protein to escape its natural removal and to increase its quantity in lysosomes, thus partially restoring the metabolic functions. Sandhoff disease is an autosomal recessive inherited disorder resulting from β-hexosaminidase deficiency and characterized by large accumulation of GM2 ganglioside in brain. No enzymatic replacement therapy is currently available, and the use of inhibitors of glycosphingolipid biosynthesis for substrate reduction therapy, although very promising, is associated with serious side effects. The chaperone pyrimethamine has been proposed as a very promising drug in those cases characterized by a residual enzyme activity. In this review, we report the effect of pyrimethamine on the recovery of β-hexosaminidase activity in cultured fibroblasts from Sandhoff patients.
Collapse
|
181
|
Joosten A, Decroocq C, de Sousa J, Schneider JP, Etamé E, Bodlenner A, Butters TD, Compain P. A Systematic Investigation of Iminosugar Click Clusters as Pharmacological Chaperones for the Treatment of Gaucher Disease. Chembiochem 2013; 15:309-19. [DOI: 10.1002/cbic.201300442] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Indexed: 01/08/2023]
|
182
|
Ruiz de Garibay AP, Solinís MA, Rodríguez-Gascón A. Gene therapy for fabry disease: a review of the literature. BioDrugs 2013; 27:237-46. [PMID: 23575647 DOI: 10.1007/s40259-013-0032-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of the lysosomal enzyme, α-galactosidase A. The lack of adequate enzymatic activity results in a systemic accumulation of neutral glycosphingolipids, predominantly globotriaosylceramide, in the lysosomes of, especially, endothelial and smooth muscle cells of blood vessels. Enzyme replacement therapy is at present the only available specific treatment for Fabry disease; however, this therapy has important drawbacks. Gene-mediated enzyme replacement is a reasonable and highly promising approach for the treatment of Fabry disease. It corresponds to a single gene disorder in which moderately low levels of enzyme activity should be sufficient for clinical efficacy and, thanks to cross-correction mechanisms, the transfection of a small number of cells will potentially correct distant cells too. This article summarizes the studies that have been carried out concerning gene therapy for the treatment of Fabry disease. We briefly review the literature from earlier studies in the 1990s to the current achievements.
Collapse
Affiliation(s)
- Aritz Perez Ruiz de Garibay
- Pharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
183
|
Schulze H, Sandhoff K. Sphingolipids and lysosomal pathologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:799-810. [PMID: 24184515 DOI: 10.1016/j.bbalip.2013.10.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 01/12/2023]
Abstract
Endocytosed (glyco)sphingolipids are degraded, together with other membrane lipids in a stepwise fashion by endolysosomal enzymes with the help of small lipid binding proteins, the sphingolipid activator proteins (SAPs), at the surface of intraluminal lysosomal vesicles. Inherited defects in a sphingolipid-degrading enzyme or SAP cause the accumulation of the corresponding lipid substrates, including cytotoxic lysosphingolipids, such as galactosylsphingosine and glucosylsphingosine, and lead to a sphingolipidosis. Analysis of patients with prosaposin deficiency revealed the accumulation of intra-endolysosmal vesicles and membrane structures (IM). Feeding of prosaposin reverses the storage, suggesting inner membrane structures as platforms of sphingolipid degradation. Water soluble enzymes can hardly attack sphingolipids embedded in the membrane of inner endolysosomal vesicles. The degradation of sphingolipids with few sugar residues therefore requires the help of the SAPs, and is strongly stimulated by anionic membrane lipids. IMs are rich in anionic bis(monoacylglycero)phosphate (BMP). This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Heike Schulze
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53115 Bonn, Germany
| | - Konrad Sandhoff
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53115 Bonn, Germany.
| |
Collapse
|
184
|
Abstract
Gaucher disease is a progressive lysosomal storage disorder caused by a deficiency in the activity of β-glucocerebrosidase and is characterized by the accumulation of the glycosphingolipid glucosylceramide in the lysosomes of macrophages that leads to dysfunction in multiple organ system. An emerging strategy for the treatment of Gaucher disease is pharmacological chaperone therapy, based on the use of β-glucocerebrosidase inhibitors that are capable of enhancing residual hydrolytic activity at subinhibitory concentrations. In this article, the most common lysosomal storage disorder, Gaucher disease, is introduced and the current therapeutic strategies based on the use of enzyme inhibitors to ameliorate this disease are discussed, with a focus on the efforts being made toward finding and optimizing novel molecules as pharmacological chaperones for Gaucher disease that offer the promise to remedy this malady.
Collapse
|
185
|
Corkran HM, Munneke S, Dangerfield EM, Stocker BL, Timmer MSM. Applications and Limitations of the I2-Mediated Carbamate Annulation for the Synthesis of Piperidines: Five- versus Six-Membered Ring Formation. J Org Chem 2013; 78:9791-802. [DOI: 10.1021/jo401512h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hilary M. Corkran
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Stefan Munneke
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Emma M. Dangerfield
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Bridget L. Stocker
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Mattie S. M. Timmer
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| |
Collapse
|
186
|
Moreno-Clavijo E, Carmona AT, Moreno-Vargas AJ, Molina L, Wright DW, Davies GJ, Robina I. Exploring a Multivalent Approach to α-L-Fucosidase Inhibition. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
187
|
Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 2013; 12:2623-40. [PMID: 23339312 DOI: 10.2174/1568026611212220014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation are widely implicated in an increasing number of human diseases providing for new therapeutic opportunities targeting protein homeostasis (proteostasis). The cellular response to proteotoxicity is highly regulated by stress signaling pathways, molecular chaperones, transport and clearance machineries that function as a proteostasis network (PN) to protect the stability and functional properties of the proteome. Consequently, the PN is essential at the cellular and organismal level for development and lifespan. However, when challenged during aging, stress, and disease, the folding and clearance machineries can become compromised leading to both gain-of-function and loss-of-function proteinopathies. Here, we assess the role of small molecules that activate the heat shock response, the unfolded protein response, and clearance mechanisms to increase PN capacity and protect cellular proteostasis against proteotoxicity. We propose that this strategy to enhance cell stress pathways and chaperone activity establishes a cytoprotective state against misfolding and/or aggregation and represents a promising therapeutic avenue to prevent the cellular damage associated with the variety of protein conformational diseases.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University, Durham, NC, USA
| | | |
Collapse
|
188
|
Cheng WC, Weng CY, Yun WY, Chang SY, Lin YC, Tsai FJ, Huang FY, Chen YR. Rapid modifications of N-substitution in iminosugars: Development of new β-glucocerebrosidase inhibitors and pharmacological chaperones for Gaucher disease. Bioorg Med Chem 2013; 21:5021-8. [DOI: 10.1016/j.bmc.2013.06.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/21/2022]
|
189
|
Karaki F, Ohgane K, Dodo K, Hashimoto Y. Structure–activity relationship studies of Niemann-Pick type C1-like 1 (NPC1L1) ligands identified by screening assay monitoring pharmacological chaperone effect. Bioorg Med Chem 2013; 21:5297-309. [DOI: 10.1016/j.bmc.2013.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 11/30/2022]
|
190
|
Abstract
Gangliosides are the main glycolipids of neuronal plasma membranes. Their surface patterns are generated by coordinated processes, involving biosynthetic pathways of the secretory compartments, catabolic steps of the endolysosomal system, and intracellular trafficking. Inherited defects in ganglioside biosynthesis causing fatal neurodegenerative diseases have been described so far almost exclusively in mouse models, whereas inherited defects in ganglioside catabolism causing various clinical forms of GM1- and GM2-gangliosidoses have long been known. For digestion, gangliosides are endocytosed and reach intra-endosomal vesicles. At the level of late endosomes, they are depleted of membrane-stabilizing lipids like cholesterol and enriched with bis(monoacylglycero)phosphate (BMP). Lysosomal catabolism is catalyzed at acidic pH values by cationic sphingolipid activator proteins (SAPs), presenting lipids to their respective hydrolases, electrostatically attracted to the negatively charged surface of the luminal BMP-rich vesicles. Various inherited defects of ganglioside hydrolases, e.g., of β-galactosidase and β-hexosaminidases, and of GM2-activator protein, cause infantile (with tetraparesis, dementia, blindness) and different protracted clinical forms of GM1- and GM2-gangliosidoses. Mutations yielding proteins with small residual catabolic activities in the lysosome give rise to juvenile and adult clinical forms with a wide range of clinical symptomatology. Apart from patients' differences in their genetic background, clinical heterogeneity may be caused by rather diverse substrate specificities and functions of lysosomal hydrolases, multifunctional properties of SAPs, and the strong regulation of ganglioside catabolism by membrane lipids. Currently, there is no treatment available for neuronal ganglioside storage diseases. Therapeutic approaches in mouse models and patients with juvenile forms of gangliosidoses are discussed.
Collapse
|
191
|
Wright DW, Moreno-Vargas AJ, Carmona AT, Robina I, Davies GJ. Three dimensional structure of a bacterial α-l-fucosidase with a 5-membered iminocyclitol inhibitor. Bioorg Med Chem 2013; 21:4751-4. [DOI: 10.1016/j.bmc.2013.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/26/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
192
|
Ino H, Takahashi N, Terao T, Mudd PN, Hirama T. Pharmacokinetics, safety, and tolerability following single-dose migalastat hydrochloride (GR181413A/AT1001) in healthy male Japanese subjects. J Drug Assess 2013; 2:87-93. [PMID: 27536442 PMCID: PMC4937648 DOI: 10.3109/21556660.2013.827117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/30/2022] Open
Abstract
Objective Fabry disease is a rare X-linked disease caused by mutations to the GLA gene, resulting in a deficiency of the lysosomal enzyme alpha-galactosidase A. This study evaluated the pharmacokinetics, safety, and tolerability of ascending single doses of oral migalastat hydrochloride (HCl), an investigational drug, in healthy Japanese volunteers. Methods In this phase I, randomized, placebo-controlled, single-blind, ascending single-dose, cross-over study, migalastat HCl (50 mg, 150 mg, or 450 mg) or placebo was administered orally to 14 fasting male Japanese volunteers (aged 20–55 years) on 4 non-consecutive days. Main plasma and urine pharmacokinetic end-points included maximum observed plasma concentration (Cmax), time to Cmax (tmax), area under the plasma concentration–time curve (AUC), apparent terminal-phase half-life (t1/2), urinary recovery of unchanged drug, renal clearance, and percentage of drug excreted in urine. Safety end-points included adverse events, clinical signs and symptoms (e.g., hematology, chemistry, and urinalysis), vital signs (blood pressure and heart rate), and 12-lead electrocardiogram. Clinical trial registration number ClinicalTrials.gov registration identifier is NCT01853852. Results Median tmax of migalastat was 3.0–3.5 h. Migalastat HCl concentrations declined relatively rapidly, with a mean t1/2 of 3.2–4.0 h. The amount of migalastat HCl recovered in the urine and the percentage of migalastat HCl excreted unchanged over 24 h were consistent (∼45–50%) across the dose range. The AUC and Cmax of migalastat HCl were dose proportional from 50–450 mg. Safety results were similar to those observed in non-Japanese populations. Conclusions This study demonstrated that ascending single doses of migalastat HCl (50 mg, 150 mg, 450 mg) are absorbed at a moderate rate and eliminated relatively rapidly, with a safety profile consistent with that observed in non-Japanese populations. These results confirm the dose-proportional pharmacokinetics of migalastat HCl from 50–450 mg. This study was limited by a small subject population and a short-term follow-up.
Collapse
Affiliation(s)
- Hiroko Ino
- Medicines Development, Japan Development & Medical Affairs Division, GlaxoSmithKline K.K., TokyoJapan
| | - Naoki Takahashi
- Medicines Development, Japan Development & Medical Affairs Division, GlaxoSmithKline K.K., TokyoJapan
| | - Takumi Terao
- Biomedical Data Sciences Department, GlaxoSmithKline K.K., TokyoJapan
| | - Paul N Mudd
- Clinical Pharmacology, GlaxoSmithKline, Research Triangle Park, NCUSA
| | - Toshiyasu Hirama
- Medicines Development, Japan Development & Medical Affairs Division, GlaxoSmithKline K.K., TokyoJapan
| |
Collapse
|
193
|
Kumar KSA, Rathee JS, Subramanian M, Chattopadhyay S. Divergent Synthesis of 4-epi-Fagomine, 3,4-Dihydroxypipecolic Acid, and a Dihydroxyindolizidine and Their β-Galactosidase Inhibitory and Immunomodulatory Activities. J Org Chem 2013; 78:7406-13. [DOI: 10.1021/jo400448p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- K. S. Ajish Kumar
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - J. S. Rathee
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - M. Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S. Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
194
|
A rapid and sensitive method for measuring N-acetylglucosaminidase activity in cultured cells. PLoS One 2013; 8:e68060. [PMID: 23840811 PMCID: PMC3695942 DOI: 10.1371/journal.pone.0068060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/25/2013] [Indexed: 11/19/2022] Open
Abstract
A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination therapies.
Collapse
|
195
|
Li Z, Li T, Dai S, Xie X, Ma X, Zhao W, Zhang W, Li J, Wang PG. New Insights into the Pharmacological Chaperone Activity of C2-Substituted Glucoimidazoles for the Treatment of Gaucher Disease. Chembiochem 2013; 14:1239-47. [DOI: 10.1002/cbic.201300197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 12/23/2022]
|
196
|
Chaperone therapy update: Fabry disease, GM1-gangliosidosis and Gaucher disease. Brain Dev 2013; 35:515-23. [PMID: 23290321 DOI: 10.1016/j.braindev.2012.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 11/21/2022]
Abstract
Chaperone therapy is a newly developed molecular therapeutic approach to lysosomal diseases, a group of human genetic diseases causing severe brain damage. Based on early molecular studies during the last decade of the 20th century and early years of the 21st century, mainly on Fabry disease and GM1-gangliosidosis, we found some mutant enzyme proteins were unstable in the cell, and unable to express catalytic activities. Subsequently galactose and other active-site binding substrate analogs were found stabilized and enhance the mutant enzyme activity in culture cells. We concluded that the mutant misfolding enzyme protein and substrate analog competitive inhibitor (chemical chaperone) form a stable complex to be transported to the lysosome, to restore the catalytic activity of mutant enzyme after spontaneous dissociation under the acidic condition. This gene mutation-specific molecular interaction is a paradoxical phenomenon that an enzyme inhibitor in vitro serves as an enzyme stabilizer in situ. First we developed a commercially available compound 1-deoxygalactonojirimycin (DGJ) for Fabry disease, and confirmed the above molecular phenomenon. Currently DGJ has become a new candidate of oral medicine for Fabry disease, generalized vasculopathy involving the kidneys, heart and central nervous system in the middle age. This drug development has reached the phase 3 of human clinical study. Then we found two valienamine derivatives, N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV), as promising therapeutic agents for human β-galactosidase deficiency disorders (GM1-gangliosidosis and Morquio B disease) and β-glucosidase deficiency disorders (phenotypic variations of Gaucher disease), respectively. Originally NOEV and NOV had been discovered as competitive inhibitors, and then their paradoxical bioactivities as chaperones were confirmed in cultured fibroblasts from patients with these disorders. Subsequently GM1-gangliosidosis model mice have been used for confirmation of clinical effectiveness, adverse effects and pharmacokinetic studies. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced substrate storage, and improved neurological deterioration clinically. Computational analysis revealed pH-dependent enzyme-chaperone interactions. Our recent study indicated chaperone activity of a new DGJ derivative, MTD118, for β-galactosidase complementary to NOEV. NOV also showed the chaperone effect toward several β-glucosidase gene mutants in Gaucher disease. Furthermore a commercial expectorant drug ambroxol was found to be a chaperone for β-glucosidase. A few Gaucher patients responded to this drug with remarkable improvement of oculomotor dysfunction and myoclonus. We hope chaperone therapy will become available for some patients with Fabry disease, GM1-gangliosidosis, Gaucher disease, and other lysosomal storage diseases particularly with central nervous system involvement.
Collapse
|
197
|
|
198
|
Chen YM, Zhou Y, Go G, Marmerstein JT, Kikkawa Y, Miner JH. Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. J Am Soc Nephrol 2013; 24:1223-33. [PMID: 23723427 DOI: 10.1681/asn.2012121149] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the laminin β2 gene (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. LAMB2 is a component of the laminin-521 (α5β2γ1) trimer, an important constituent of the glomerular basement membrane (GBM). The C321R-LAMB2 missense mutation leads to congenital nephrotic syndrome but only mild extrarenal symptoms; the mechanisms underlying the development of proteinuria with this mutation are unclear. We generated three transgenic mouse lines, in which rat C321R-LAMB2 replaced mouse LAMB2 in the GBM. During the first postnatal month, expression of C321R-LAMB2 attenuated the severe proteinuria exhibited by Lamb2(-/-) mice in a dose-dependent fashion; proteinuria eventually increased, however, leading to renal failure. The C321R mutation caused defective secretion of laminin-521 from podocytes to the GBM accompanied by podocyte endoplasmic reticulum (ER) stress, likely resulting from protein misfolding. Moreover, ER stress preceded the onset of significant proteinuria and was manifested by induction of the ER-initiated apoptotic signal C/EBP homologous protein (CHOP), ER distention, and podocyte injury. Treatment of cells expressing C321R-LAMB2 with the chemical chaperone taurodeoxycholic acid (TUDCA), which can facilitate protein folding and trafficking, greatly increased the secretion of the mutant LAMB2. Taken together, these results suggest that the mild variant of Pierson syndrome caused by the C321R-LAMB2 mutation may be a prototypical ER storage disease, which may benefit from treatment approaches that target the handling of misfolded proteins.
Collapse
Affiliation(s)
- Ying Maggie Chen
- Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
199
|
Jones RE, Zheng W, McKew JC, Chen CZ. An alternative direct compound dispensing method using the HP D300 digital dispenser. ACTA ACUST UNITED AC 2013; 18:367-74. [PMID: 23708834 DOI: 10.1177/2211068213491094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evaluation of compound activity in vitro is crucial to drug discovery efforts and require that the compounds be accurately and reliably titrated and dispensed to the assay wells. The HP D300 dispenser uses inkjet technology to achieve small-volume dispensing that allows concentration-response testing using the direct dilution paradigm. Although inkjet technology has been long in existence, it is new to the field of screening and drug development. We have evaluated the D300 dispenser in a biochemical assay, a cell-based reporter gene assay, and a cytotoxicity assay. The software for this instrument is user friendly, and the compound-dispensing process is streamlined. However, a limitation is that this dispenser is currently applicable to only 96-well and 384-well plate formats and not to 1536-well high-density plates. Our results indicate that the D300 generates clean and reproducible results that correlate with those produced with more commonly used instruments such as the pin tool. We found that the instrument is useful and can improve the throughput of compound dispensing in 96-well and 384-well plates.
Collapse
Affiliation(s)
- Raisa E Jones
- 1National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
200
|
Shimizu T. [Structural basis for β-galactosidase associated with lysosomal disease]. YAKUGAKU ZASSHI 2013; 133:509-17. [PMID: 23649392 DOI: 10.1248/yakushi.13-00001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G(M1)-gangliosidosis and Morquio B are rare lysosomal storage diseases associated with a neurodegenerative disorder or dwarfism and skeletal abnormalities, respectively. These diseases are caused by deficiencies in the lysosomal enzyme human β-D-galactosidase (h-β-GAL), which lead to accumulations of the h-β-GAL substrates, G(M1) ganglioside and keratan sulfate due to mutations in the h-β-GAL gene. H-β-GAL is an exoglycosidase that catalyzes the hydrolysis of terminal β-linked galactose residues. Here, we present the crystal structures of h-β-GAL in complex with its catalytic product galactose or with its inhibitor 1-deoxygalactonojirimycin. H-β-GAL showed a novel homodimer structure; each monomer was comprised of a catalytic TIM barrel domain followed by β-domain 1 and β-domain 2. The long loop region connecting the TIM barrel domain with β-domain 1 was responsible for the dimerization. To gain structural insight into the molecular defects of h-β-GAL in the above diseases, the disease-causing mutations were mapped onto the three-dimensional structure. Finally, the possible causes of the diseases are discussed.
Collapse
Affiliation(s)
- Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.
| |
Collapse
|