151
|
Abstract
Vertebrate DNA can be chemically modified by methylation of the 5 position of the cytosine base in the context of CpG dinucleotides. This modification creates a binding site for MBD (methyl-CpG-binding domain) proteins which target chromatin-modifying activities that are thought to contribute to transcriptional repression and maintain heterochromatic regions of the genome. In contrast with DNA methylation, which is found broadly across vertebrate genomes, non-methylated DNA is concentrated in regions known as CGIs (CpG islands). Recently, a family of proteins which encode a ZF-CxxC (zinc finger-CxxC) domain have been shown to specifically recognize non-methylated DNA and recruit chromatin-modifying activities to CGI elements. For example, CFP1 (CxxC finger protein 1), MLL (mixed lineage leukaemia protein), KDM (lysine demethylase) 2A and KDM2B regulate lysine methylation on histone tails, whereas TET (ten-eleven translocation) 1 and TET3 hydroxylate methylated cytosine bases. In the present review, we discuss the most recent advances in our understanding of how ZF-CxxC domain-containing proteins recognize non-methylated DNA and describe their role in chromatin modification at CGIs.
Collapse
|
152
|
Kamata K, Goswami G, Kashio S, Urano T, Nakagawa R, Uchida H, Oki M. The N-terminus and Tudor domains of Sgf29 are important for its heterochromatin boundary formation function. ACTA ACUST UNITED AC 2013; 155:159-71. [DOI: 10.1093/jb/mvt108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
153
|
Abstract
This review focuses on a structure-based analysis of histone posttranslational modification (PTM) readout, where the PTMs serve as docking sites for reader modules as part of larger complexes displaying chromatin modifier and remodeling activities, with the capacity to alter chromatin architecture and templated processes. Individual topics addressed include the diversity of reader-binding pocket architectures and common principles underlying readout of methyl-lysine and methyl-arginine marks, their unmodified counterparts, as well as acetyl-lysine and phosphoserine marks. The review also discusses the impact of multivalent readout of combinations of PTMs localized at specific genomic sites by linked binding modules on processes ranging from gene transcription to repair. Additional topics include cross talk between histone PTMs, histone mimics, epigenetic-based diseases, and drug-based therapeutic intervention. The review ends by highlighting new initiatives and advances, as well as future challenges, toward the promise of enhancing our structural and mechanistic understanding of the readout of histone PTMs at the nucleosomal level.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
154
|
Khan DH, Gonzalez C, Cooper C, Sun JM, Chen HY, Healy S, Xu W, Smith KT, Workman JL, Leygue E, Davie JR. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing. Nucleic Acids Res 2013; 42:1656-70. [PMID: 24234443 PMCID: PMC3919583 DOI: 10.1093/nar/gkt1134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA.
Collapse
Affiliation(s)
- Dilshad H Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, Manitoba, R3E 3P4, Canada, Department of Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba, R3E0V9, Canada and Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Pieters B, Belle R, Mecinović J. The effect of the length of histone H3K4me3 on recognition by reader proteins. Chembiochem 2013; 14:2408-12. [PMID: 24307373 DOI: 10.1002/cbic.201300525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Bas Pieters
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (The Netherlands)
| | | | | |
Collapse
|
156
|
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc Natl Acad Sci U S A 2013; 110:17290-5. [PMID: 24101474 DOI: 10.1073/pnas.1314754110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.
Collapse
|
157
|
van Nuland R, Schram AW, van Schaik FMA, Jansen PWTC, Vermeulen M, Marc Timmers HT. Multivalent engagement of TFIID to nucleosomes. PLoS One 2013; 8:e73495. [PMID: 24039962 PMCID: PMC3770614 DOI: 10.1371/journal.pone.0073495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/20/2013] [Indexed: 12/20/2022] Open
Abstract
The process of eukaryotic transcription initiation involves the assembly of basal transcription factor complexes on the gene promoter. The recruitment of TFIID is an early and important step in this process. Gene promoters contain distinct DNA sequence elements and are marked by the presence of post-translationally modified nucleosomes. The contributions of these individual features for TFIID recruitment remain to be elucidated. Here, we use immobilized reconstituted promoter nucleosomes, conventional biochemistry and quantitative mass spectrometry to investigate the influence of distinct histone modifications and functional DNA-elements on the binding of TFIID. Our data reveal synergistic effects of H3K4me3, H3K14ac and a TATA box sequence on TFIID binding in vitro. Stoichiometry analyses of affinity purified human TFIID identified the presence of a stable dimeric core. Several peripheral TAFs, including those interacting with distinct promoter features, are substoichiometric yet present in substantial amounts. Finally, we find that the TAF3 subunit of TFIID binds to poised promoters in an H3K4me3-dependent manner. Moreover, the PHD-finger of TAF3 is important for rapid induction of target genes. Thus, fine-tuning of TFIID engagement on promoters is driven by synergistic contacts with both DNA-elements and histone modifications, eventually resulting in a high affinity interaction and activation of transcription.
Collapse
Affiliation(s)
- Rick van Nuland
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Andrea W. Schram
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Frederik M. A. van Schaik
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Pascal W. T. C. Jansen
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (MV); (HTMT)
| | - H. T. Marc Timmers
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
- * E-mail: (MV); (HTMT)
| |
Collapse
|
158
|
Lu R, Wang GG. Tudor: a versatile family of histone methylation 'readers'. Trends Biochem Sci 2013; 38:546-55. [PMID: 24035451 DOI: 10.1016/j.tibs.2013.08.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/28/2022]
Abstract
The Tudor domain comprises a family of motifs that mediate protein-protein interactions required for various DNA-templated biological processes. Emerging evidence demonstrates a versatility of the Tudor family domains by identifying their specific interactions to a wide variety of histone methylation marks. Here, we discuss novel functions of a number of Tudor-containing proteins [including Jumonji domain-containing 2A (JMJD2A), p53-binding protein 1 (53BP1), SAGA-associated factor 29 (SGF29), Spindlin1, ubiquitin-like with PHD and RING finger domains 1 (UHRF1), PHD finger protein 1 (PHF1), PHD finger protein 19 (PHF19), and SAWADEE homeodomain homolog 1 (SHH1)] in 'reading' unique methylation events on histones in order to facilitate DNA damage repair or regulate transcription. This review covers our recent understanding of the molecular bases for histone-Tudor interactions and their biological outcomes. As deregulation of Tudor-containing proteins is associated with certain human disorders, pharmacological targeting of Tudor interactions could provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Rui Lu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
159
|
Murakami S, Chishima S, Uemoto H, Sakamoto E, Sato T, Kurabe N, Kawasaki Y, Shibata T, Akiyama H, Tashiro F. The male-specific factor Sry harbors an oncogenic function. Oncogene 2013; 33:2978-86. [PMID: 23893245 DOI: 10.1038/onc.2013.262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 12/19/2022]
Abstract
Sgf29, a component of the SPT-ADA-GCN5 acetyltransferase (SAGA) complex, binds H3K4me2/3 marks and leads to histone H3 acetylation. Previously, we found that downregulation of Sgf29 suppresses c-Myc-mediated malignant transformation. Nonetheless, the upstream regulator of the Sgf29 gene is not yet known. Here, we report that Sry (sex-determining region Y), an HMG (high-mobility group) domain containing transcription factor, directly upregulates Sgf29 gene expression. Sry expression was deregulated in two out of the four tested male rodent hepatocellular carcinoma (rHCC) cell lines. Luciferase reporter and chromatin immunoprecipitation assays indicated that Sry could bind HMG-boxes in the proximal promoter region of the Sgf29 gene. Knockdown of Sry robustly lowered anchorage-independent growth, invasiveness and tumorigenicity of rHCC cells, whereas ectopic expression of Sry conferred more malignant properties. Thus, these data show that Sry is involved in male-specific malignant conversion of rHCCs via Sgf29 upregulation.
Collapse
Affiliation(s)
- S Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - S Chishima
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - H Uemoto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - E Sakamoto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - T Sato
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - N Kurabe
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Y Kawasaki
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - T Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - H Akiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - F Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
160
|
Schram AW, Baas R, Jansen PWTC, Riss A, Tora L, Vermeulen M, Timmers HTM. A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation. PLoS One 2013; 8:e70035. [PMID: 23894581 PMCID: PMC3720948 DOI: 10.1371/journal.pone.0070035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/14/2013] [Indexed: 02/02/2023] Open
Abstract
The SGF29 protein binds to tri-methylated lysine-4 of histone H3 (H3K4me3), which is a histone modification associated with active promoters. Human SGF29 is a subunit of the histone acetyltransferase module of the SAGA (Spt-Ada-Gcn5 acetyltransferase) and ATAC (Ada-Two-A-containing 2A) co-activator complexes. Previous work revealed that the SAGA complex is recruited to endoplasmic reticulum (ER) stress target genes and required for their induction. Here, we report the involvement of SGF29 in the survival of human cells from ER stress. SGF29 knockdown results in impaired transcription of the ER stress genes GRP78 and CHOP. Besides histone H3K14 acetylation, we find that SGF29 is also required for the maintenance of H3K4me3 at these genes, which is already present prior to ER stress. Reduced levels of H3K4me3 in the absence of SGF29 correlate with a decreased association of ASH2L, which is a core component of the SET1/MLL complexes, to GFP78 and CHOP. In conclusion, our results suggest that the H3K4me3-binding protein SGF29 plays a central and dual role in the ER stress response. Prior to ER stress, the protein coordinates H3K4me3 levels, thereby maintaining a ‘poised’ chromatin state on ER stress target gene promoters. Following ER stress induction, SGF29 is required for increased H3K14 acetylation on these genes, which then results in full transcriptional activation, thereby promoting cell survival.
Collapse
Affiliation(s)
- Andrea W. Schram
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roy Baas
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal W. T. C. Jansen
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne Riss
- Cellular Signaling and Nuclear Dynamics Program, Institut de Génétique et de Biologie, Université de Strasbourg, Illkirch, France
| | - Laszlo Tora
- Cellular Signaling and Nuclear Dynamics Program, Institut de Génétique et de Biologie, Université de Strasbourg, Illkirch, France
| | - Michiel Vermeulen
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (MV); (HTMT)
| | - H. Th. Marc Timmers
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (MV); (HTMT)
| |
Collapse
|
161
|
Kamata K, Hatanaka A, Goswami G, Shinmyozu K, Nakayama JI, Urano T, Hatashita M, Uchida H, Oki M. C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function. Genes Cells 2013; 18:823-37. [DOI: 10.1111/gtc.12075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/22/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Kazuma Kamata
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Akira Hatanaka
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Gayatri Goswami
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Kaori Shinmyozu
- Center for Developmental Biology; Laboratory for Chromatin Dynamics; RIKEN; Kobe 650-0047; Japan
| | | | - Takeshi Urano
- Department of Biochemistry; Shimane University Faculty of Medicine; Izumo 693-8501; Japan
| | - Masanori Hatashita
- Research and Development Department; Wakasa Wan Energy Research Center; Tsuruga 914-0192; Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | | |
Collapse
|
162
|
Georgakopoulos P, Lockington RA, Kelly JM. The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex in Aspergillus nidulans. PLoS One 2013; 8:e65221. [PMID: 23762321 PMCID: PMC3676421 DOI: 10.1371/journal.pone.0065221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/23/2013] [Indexed: 01/15/2023] Open
Abstract
A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.
Collapse
Affiliation(s)
- Paraskevi Georgakopoulos
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Robin A. Lockington
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Joan M. Kelly
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
163
|
Kimura H. Histone modifications for human epigenome analysis. J Hum Genet 2013; 58:439-45. [PMID: 23739122 DOI: 10.1038/jhg.2013.66] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 12/12/2022]
Abstract
Histones function both positively and negatively in the regulation of gene expression, mainly governed by post-translational modifications on specific amino acid residues. Although histone modifications are not necessarily prerequisite codes, they may still serve as good epigenetic indicators of chromatin state associated with gene activation or repression. In particular, six emerging classes of histone H3 modifications are subjected for epigenome profiling by the International Human Epigenome Consortium. In general, transcription start sites of actively transcribed genes are marked by trimethylated H3K4 (H3K4me3) and acetylated H3K27 (H3K27ac), and active enhancers can be identified by enrichments of both monomethylated H3K4 (H3K4me1) and H3K27ac. Gene bodies of actively transcribed genes are associated with trimethylated H3K36 (H3K36me3). Gene repression can be mediated through two distinct mechanisms involving trimethylated H3K9 (H3K9me3) and trimethylated H3K27 (H3K27me3). Enrichments of these histone modifications on specific loci, or in genome wide, in given cells can be analyzed by chromatin immunoprecipitation (ChIP)-based methods using an antibody directed against the site-specific modification. When performing ChIP experiments, one should be careful about the specificity of antibody, as this affects the data interpretation. If cell samples with preserved histone-DNA contacts are available, evaluation of histone modifications, in addition to DNA methylaion, at specific gene loci would be useful for deciphering the epigenome state for human genetics studies.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
164
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
165
|
Perner J, Chung HR. Chromatin signaling and transcription initiation. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.856038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
166
|
Abstract
Methylation of histone lysine and arginine residues constitutes a highly complex control system directing diverse functions of the genome. Owing to their immense signaling potential with distinct sites of methylation and defined methylation states of mono-, di- or trimethylation as well as their higher biochemical stability compared with other histone modifications, these marks are thought to be part of epigenetic regulatory networks. Biological principles of how histone methylation is read and translated have emerged over the last few years. Only very few methyl marks directly impact chromatin. Conversely, a large number of histone methylation binding proteins has been identified. These contain specialized modules that are recruited to chromatin in a methylation site- and state-specific manner. Besides the molecular mechanisms of interaction, patterns of regulation of the binding proteins are becoming evident.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
167
|
Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:573-83. [PMID: 23450643 PMCID: PMC3583463 DOI: 10.1534/g3.112.005389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/17/2013] [Indexed: 01/05/2023]
Abstract
Spt10 is a putative acetyltransferase of Saccharomyces cerevisiae that directly activates the transcription of histone genes. Deletion of SPT10 causes a severe slow growth phenotype, showing that Spt10 is critical for normal cell division. To gain insight into the function of Spt10, we identified mutations that impair or improve the growth of spt10 null (spt10Δ) mutants. Mutations that cause lethality in combination with spt10Δ include particular components of the SAGA complex as well as asf1Δ and hir1Δ. Partial suppressors of the spt10Δ growth defect include mutations that perturb cell-cycle progression through the G1/S transition, S phase, and G2/M. Consistent with these results, slowing of cell-cycle progression by treatment with hydroxyurea or growth on medium containing glycerol as the carbon source also partially suppresses the spt10Δ slow-growth defect. In addition, mutations that impair the Lsm1-7-Pat1 complex, which regulates decapping of polyadenylated mRNAs, also partially suppress the spt10Δ growth defect. Interestingly, suppression of the spt10Δ growth defect is not accompanied by a restoration of normal histone mRNA levels. These findings suggest that Spt10 has multiple roles during cell division.
Collapse
|
168
|
Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 2013; 19:1218-27. [PMID: 23211769 DOI: 10.1038/nsmb.2436] [Citation(s) in RCA: 595] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTMs) of histones provide a fine-tuned mechanism for regulating chromatin structure and dynamics. PTMs can alter direct interactions between histones and DNA and serve as docking sites for protein effectors, or readers, of these PTMs. Binding of the readers recruits or stabilizes various components of the nuclear signaling machinery at specific genomic sites, mediating fundamental DNA-templated processes, including gene transcription and DNA recombination, replication and repair. In this review, we highlight the latest advances in characterizing histone-binding mechanisms and identifying new epigenetic readers and summarize the functional significance of PTM recognition.
Collapse
|
169
|
Crystal structure of the human SUV39H1 chromodomain and its recognition of histone H3K9me2/3. PLoS One 2012; 7:e52977. [PMID: 23285239 PMCID: PMC3532415 DOI: 10.1371/journal.pone.0052977] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/22/2012] [Indexed: 01/08/2023] Open
Abstract
SUV39H1, the first identified histone lysine methyltransferase in human, is involved in chromatin modification and gene regulation. SUV39H1 contains a chromodomain in its N-terminus, which potentially plays a role in methyl-lysine recognition and SUV39H1 targeting. In this study, the structure of the chromodomain of human SUV39H1 was determined by X-ray crystallography. The SUV39H1 chromodomain displays a generally conserved structure fold compared with other solved chromodomains. However, different from other chromodomains, the SUV39H1 chromodomain possesses a much longer helix at its C-terminus. Furthermore, the SUV39H1 chromodomain was shown to recognize histone H3K9me2/3 specifically.
Collapse
|
170
|
Tudor domains of the PRC2 components PHF1 and PHF19 selectively bind to histone H3K36me3. Biochem Biophys Res Commun 2012; 430:547-53. [PMID: 23228662 DOI: 10.1016/j.bbrc.2012.11.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 01/30/2023]
Abstract
PRC2 is the major H3K27 methyltransferase and is responsible for maintaining repressed gene expression patterns throughout development. It contains four core components: EZH2, EED, SUZ12 and RbAp46/48 and some cell-type specific components. In this study, we focused on characterizing the histone binding domains of PHF1 and PHF19, and found that the Tudor domains of PHF1 and PHF19 selectively bind to histone H3K36me3. Structural analysis of these Tudor domains also shed light on how these Tudor domains selectively bind to histone H3K36me3. The histone H3K36me3 binding by the Tudor domains of PHF1, PHF19 and likely MTF2 provide another recruitment and regulatory mechanism for the PRC2 complex. In addition, we found that the first PHD domains of PHF1 and PHF19 do not exhibit histone H3K4 binding ability, nor do they affect the Tudor domain binding to histones.
Collapse
|
171
|
Baird AM, Leonard J, Naicker KM, Kilmartin L, O'Byrne KJ, Gray SG. IL-23 is pro-proliferative, epigenetically regulated and modulated by chemotherapy in non-small cell lung cancer. Lung Cancer 2012; 79:83-90. [PMID: 23116756 DOI: 10.1016/j.lungcan.2012.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/20/2012] [Accepted: 10/05/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND IL-23 is a member of the IL-6 super-family and plays key roles in cancer. Very little is currently known about the role of IL-23 in non-small cell lung cancer (NSCLC). METHODS RT-PCR and chromatin immunopreciptiation (ChIP) were used to examine the levels, epigenetic regulation and effects of various drugs (DNA methyltransferase inhibitors, Histone Deacetylase inhibitors and Gemcitabine) on IL-23 expression in NSCLC cells and macrophages. The effects of recombinant IL-23 protein on cellular proliferation were examined by MTT assay. Statistical analysis consisted of Student's t-test or one way analysis of variance (ANOVA) where groups in the experiment were three or more. RESULTS In a cohort of primary non-small cell lung cancer (NSCLC) tumours, IL-23A expression was significantly elevated in patient tumour samples (p < 0.05). IL-23A expression is epigenetically regulated through histone post-translational modifications and DNA CpG methylation. Gemcitabine, a chemotherapy drug indicated for first-line treatment of NSCLC also induced IL-23A expression. Recombinant IL-23 significantly increased cellular proliferation in NSCLC cell lines. CONCLUSIONS These results may therefore have important implications for treating NSCLC patients with either epigenetic targeted therapies or Gemcitabine.
Collapse
Affiliation(s)
- Anne-Marie Baird
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
172
|
Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2012; 109:18505-10. [PMID: 23091032 DOI: 10.1073/pnas.1202070109] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of transcription initiation, but how H3K4me3 is demethylated during gene repression is poorly understood. Jhd2, a JmjC domain protein, was recently identified as the major H3K4me3 histone demethylase (HDM) in Saccharomyces cerevisiae. Although JHD2 is required for removal of methylation upon gene repression, deletion of JHD2 does not result in increased levels of H3K4me3 in bulk histones, indicating that this HDM is unable to demethylate histones during steady-state conditions. In this study, we showed that this was due to the negative regulation of Jhd2 activity by histone H3 lysine 14 acetylation (H3K14ac), which colocalizes with H3K4me3 across the yeast genome. We demonstrated that loss of the histone H3-specific acetyltransferases (HATs) resulted in genome-wide depletion of H3K4me3, and this was not due to a transcription defect. Moreover, H3K4me3 levels were reestablished in HAT mutants following loss of JHD2, which suggested that H3-specific HATs and Jhd2 serve opposing functions in regulating H3K4me3 levels. We revealed the molecular basis for this suppression by demonstrating that H3K14ac negatively regulated Jhd2 demethylase activity on an acetylated peptide in vitro. These results revealed the existence of a general mechanism for removal of H3K4me3 following gene repression.
Collapse
|
173
|
Distinct mode of methylated lysine-4 of histone H3 recognition by tandem tudor-like domains of Spindlin1. Proc Natl Acad Sci U S A 2012; 109:17954-9. [PMID: 23077255 DOI: 10.1073/pnas.1208517109] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recognition of methylated histone tail lysine residues by tudor domains plays important roles in epigenetic control of gene expression and DNA damage response. Previous studies revealed the binding of methyllysine in a cage of aromatic residues, but the molecular mechanism by which the sequence specificity for surrounding histone tail residues is achieved remains poorly understood. In the crystal structure of a trimethylated histone H3 lysine 4 (H3K4) peptide bound to the tudor-like domains of Spindlin1 presented here, an atypical mode of methyllysine recognition by an aromatic pocket of Spindlin1 is observed. Furthermore, the histone sequence is recognized in a distinct manner involving the amino terminus and a pair of arginine residues of histone H3, and disruption of the binding impaired stimulation of pre-RNA expression by Spindlin1. Our analysis demonstrates considerable diversities of methyllysine recognition and sequence-specific binding of histone tails by tudor domains, and the revelation furthers the understanding of tudor domain proteins in deciphering epigenetic marks on histone tails.
Collapse
|
174
|
Rizzardi LF, Dorn ES, Strahl BD, Cook JG. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Genetics 2012; 192:371-84. [PMID: 22851644 PMCID: PMC3454870 DOI: 10.1534/genetics.112.142349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 12/18/2022] Open
Abstract
DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.
Collapse
Affiliation(s)
- Lindsay F. Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Elizabeth S. Dorn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brian D. Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
175
|
Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 2012; 13:424. [PMID: 22920947 PMCID: PMC3473242 DOI: 10.1186/1471-2164-13-424] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
Background Transcription regulation in pluripotent embryonic stem (ES) cells is a complex process that involves multitude of regulatory layers, one of which is post-translational modification of histones. Acetylation of specific lysine residues of histones plays a key role in regulating gene expression. Results Here we have investigated the genome-wide occurrence of two histone marks, acetylation of histone H3K9 and K14 (H3K9ac and H3K14ac), in mouse embryonic stem (mES) cells. Genome-wide H3K9ac and H3K14ac show very high correlation between each other as well as with other histone marks (such as H3K4me3) suggesting a coordinated regulation of active histone marks. Moreover, the levels of H3K9ac and H3K14ac directly correlate with the CpG content of the promoters attesting the importance of sequences underlying the specifically modified nucleosomes. Our data provide evidence that H3K9ac and H3K14ac are also present over the previously described bivalent promoters, along with H3K4me3 and H3K27me3. Furthermore, like H3K27ac, H3K9ac and H3K14ac can also differentiate active enhancers from inactive ones. Although, H3K9ac and H3K14ac, a hallmark of gene activation exhibit remarkable correlation over active and bivalent promoters as well as distal regulatory elements, a subset of inactive promoters is selectively enriched for H3K14ac. Conclusions Our study suggests that chromatin modifications, such as H3K9ac and H3K14ac, are part of the active promoter state, are present over bivalent promoters and active enhancers and that the extent of H3K9 and H3K14 acetylation could be driven by cis regulatory elements such as CpG content at promoters. Our study also suggests that a subset of inactive promoters is selectively and specifically enriched for H3K14ac. This observation suggests that histone acetyl transferases (HATs) prime inactive genes by H3K14ac for stimuli dependent activation. In conclusion our study demonstrates a wider role for H3K9ac and H3K14ac in gene regulation than originally thought.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, BP 10142-67404 ILLKIRCH Cedex, CU de Strasbourg, France
| | | | | | | | | |
Collapse
|
176
|
Owen-Hughes T, Gkikopoulos T. Making sense of transcribing chromatin. Curr Opin Cell Biol 2012; 24:296-304. [PMID: 22410403 PMCID: PMC3432231 DOI: 10.1016/j.ceb.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 11/03/2022]
Abstract
Eukaryotic cells package their genomes into a nucleoprotein form called chromatin. The basic unit of chromatin is the nucleosome, formed by the wrapping of ∼147bp of DNA around an octameric complex of core histones. Advances in genomic technologies have enabled the locations of nucleosomes to be mapped across genomes. This has revealed a striking organisation with respect to transcribed genes in a diverse range of eukaryotes. This consists of a nucleosome depleted region upstream of promoters, with an array of well spaced nucleosomes extending into coding regions. This observation reinforces the links between chromatin organisation and transcription. Central to this is the paradox that while chromatin is required by eukaryotes to restrict inappropriate access to DNA, this must be overcome in order for genetic information to be expressed. This conundrum is at its most flagrant when considering the need for nucleic acid polymerase's to transit 1000's of based pairs of DNA wrapped as arrays of nucleosomes.
Collapse
Affiliation(s)
- Tom Owen-Hughes
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
177
|
Xu C, Jin J, Bian C, Lam R, Tian R, Weist R, You L, Nie J, Bochkarev A, Tempel W, Tan CS, Wasney GA, Vedadi M, Gish GD, Arrowsmith CH, Pawson T, Yang XJ, Min J. Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock. Sci Signal 2012; 5:ra39. [PMID: 22649097 DOI: 10.1126/scisignal.2002979] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ankyrin repeat family A protein 2 (ANKRA2) interacts with the plasma membrane receptor megalin and the class IIa histone deacetylases HDAC4 and HDAC5. We report that the ankyrin repeat domains of ANKRA2 and its close paralog regulatory factor X-associated ankyrin-containing protein (RFXANK) recognize a PxLPxI/L motif found in diverse binding proteins, including HDAC4, HDAC5, HDAC9, megalin, and regulatory factor X, 5 (RFX5). Crystal structures of the ankyrin repeat domain of ANKRA2 in complex with its binding peptides revealed that each of the middle three ankyrin repeats of ANKRA2 recognizes a residue from the PxLPxI/L motif in a tumbler-lock binding mode, with ANKRA2 acting as the lock and the linear binding motif serving as the key. Structural analysis showed that three disease-causing mutations in RFXANK affect residues that are critical for binding to RFX5. These results suggest a fundamental principle of longitudinal recognition of linear sequences by a repeat-type domain. In addition, phosphorylation of serine 350, a residue embedded within the PxLPxI/L motif of HDAC4, impaired the binding of ANKRA2 but generated a high-affinity docking site for 14-3-3 proteins, which may help sequester this HDAC in the cytoplasm. Thus, the binding preference of the PxLPxI/L motif is signal-dependent. Furthermore, proteome-wide screening suggested that a similar phosphorylation-dependent switch may operate in other pathways. Together, our findings uncover a previously uncharacterized sequence- and signal-dependent peptide recognition mode for a repeat-type protein domain.
Collapse
Affiliation(s)
- Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Spedale G, Timmers HTM, Pijnappel WWMP. ATAC-king the complexity of SAGA during evolution. Genes Dev 2012; 26:527-41. [PMID: 22426530 DOI: 10.1101/gad.184705.111] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) coactivator complex exerts functions in gene expression, including activator interaction, histone acetylation, histone deubiquitination, mRNA export, chromatin recognition, and regulation of the basal transcription machinery. These diverse functions involve distinct modules within this multiprotein complex. It has now become clear that yeast SAGA has diverged during metazoan evolution into two related complexes, SAGA and ATAC, which exist in two flavors in vertebrates. The compositions of metazoan ATAC and SAGA complexes have been characterized, and functional analyses indicate that these complexes have important but distinct roles in transcription, histone modification, signaling pathways, and cell cycle regulation.
Collapse
Affiliation(s)
- Gianpiero Spedale
- Molecular Cancer Research, Netherlands Proteomics Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
179
|
Ruan J, Ouyang H, Amaya MF, Ravichandran M, Loppnau P, Min J, Zang J. Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a. PLoS One 2012; 7:e35376. [PMID: 22514736 PMCID: PMC3325965 DOI: 10.1371/journal.pone.0035376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/15/2012] [Indexed: 01/03/2023] Open
Abstract
Background HP1 proteins are highly conserved heterochromatin proteins, which have been identified to be structural adapters assembling a variety of macromolecular complexes involved in regulation of gene expression, chromatin remodeling and heterochromatin formation. Much evidence shows that HP1 proteins interact with numerous proteins including methylated histones, histone methyltransferases and so on. Cbx3 is one of the paralogues of HP1 proteins, which has been reported to specifically recognize trimethylated histone H3K9 mark, and a consensus binding motif has been defined for the Cbx3 chromodomain. Methodology/Principal Findings Here, we found that the Cbx3 chromodomain can bind to H1K26me2 and G9aK185me3 with comparable binding affinities compared to H3K9me3. We also determined the crystal structures of the human Cbx3 chromodomain in complex with dimethylated histone H1K26 and trimethylated G9aK185 peptides, respectively. The complex structures unveil that the Cbx3 chromodomain specifically bind methylated histone H1K26 and G9aK185 through a conserved mechanism. Conclusions/Significance The Cbx3 chromodomain binds with comparable affinities to all of the methylated H3K9, H1K26 and G9aK185 peptides. It is suggested that Cbx3 may regulate gene expression via recognizing both histones and non-histone proteins.
Collapse
Affiliation(s)
- Jianbin Ruan
- Hefei National Laboratory for Physical Sciences, Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
| | - Hui Ouyang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Maria F. Amaya
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mani Ravichandran
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (JM); (JZ)
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences, Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
- * E-mail: (JM); (JZ)
| |
Collapse
|
180
|
Adams-Cioaba MA, Li Z, Tempel W, Guo Y, Bian C, Li Y, Lam R, Min J. Crystal structures of the Tudor domains of human PHF20 reveal novel structural variations on the Royal Family of proteins. FEBS Lett 2012; 586:859-65. [PMID: 22449972 DOI: 10.1016/j.febslet.2012.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
The human PHD finger protein 20 (PHF20) is a putative transcription factor. While little is known about its cognate cellular role, antibodies against PHF20 are present in sera from patients with hepatocellular carcinoma, glioblastoma and childhood medulloblastula. PHF20 comprises two N-terminal Tudor domains, a central C2H2-link zinc finger domain and a C-terminal zinc-binding PHD domain, and is a component of some MLL methyltransferase complexes. Here, we report the crystal structures of the N-terminal Tudor domains of PHF20 and highlight the novel structural features of each domain. We also confirm previous studies suggesting that the second Tudor domain of PHF20 exhibits preference for dimethylated histone substrates.
Collapse
|
181
|
Liu K, Guo Y, Liu H, Bian C, Lam R, Liu Y, Mackenzie F, Rojas LA, Reinberg D, Bedford MT, Xu RM, Min J. Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30. PLoS One 2012; 7:e30375. [PMID: 22363433 PMCID: PMC3281842 DOI: 10.1371/journal.pone.0030375] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/15/2011] [Indexed: 01/02/2023] Open
Abstract
SMN (Survival motor neuron protein) was characterized as a dimethyl-arginine binding protein over ten years ago. TDRD3 (Tudor domain-containing protein 3) and SPF30 (Splicing factor 30 kDa) were found to bind to various methyl-arginine proteins including Sm proteins as well later on. Recently, TDRD3 was shown to be a transcriptional coactivator, and its transcriptional activity is dependent on its ability to bind arginine-methylated histone marks. In this study, we systematically characterized the binding specificity and affinity of the Tudor domains of these three proteins quantitatively. Our results show that TDRD3 preferentially recognizes asymmetrical dimethylated arginine mark, and SMN is a very promiscuous effector molecule, which recognizes different arginine containing sequence motifs and preferentially binds symmetrical dimethylated arginine. SPF30 is the weakest methyl-arginine binder, which only binds the GAR motif sequences in our library. In addition, we also reported high-resolution crystal structures of the Tudor domain of TDRD3 in complex with two small molecules, which occupy the aromatic cage of TDRD3.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan, People's Republic of China
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Yahong Guo
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Haiping Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chuanbing Bian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Robert Lam
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Yongsong Liu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Farrell Mackenzie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Luis Alejandro Rojas
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, New York, United States of America
| | - Danny Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, New York, United States of America
| | - Mark T. Bedford
- The University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, United States of America
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (R-MX); (JM)
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan, People's Republic of China
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (R-MX); (JM)
| |
Collapse
|
182
|
Shukla A, Lahudkar S, Durairaj G, Bhaumik SR. Sgf29p facilitates the recruitment of TATA box binding protein but does not alter SAGA's global structural integrity in vivo. Biochemistry 2012; 51:706-14. [PMID: 22224423 DOI: 10.1021/bi201708z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although Sgf29p has been biochemically implicated as a component of SAGA (Spt-Ada-Gcn5 acetyltransferase), its precise mechanism of action in transcription is not clearly understood in vivo. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation (ChIP) assay in conjunction with transcriptional and mutational analyses, we show that Sgf29p along with other SAGA components is recruited to the upstream activating sequence (UAS) of a SAGA-regulated gene, GAL1, in an activation domain-dependent manner. However, Sgf29p does not alter the recruitment of Spt20p that maintains the overall structural and functional integrity of SAGA. The recruitment of other SAGA components such as TAF10p, TAF12p, and Ubp8p to the GAL1 UAS is also not altered in the absence of Sgf29p. Interestingly, we find that the recruitment of TBP (TATA box binding protein that nucleates the assembly of general transcription factors to form the preinitiation complex for transcriptional initiation) to the core promoter of GAL1 is weakened in Δsgf29. Likewise, Sgf29p also enhances the recruitment of TBP to other SAGA-regulated promoters. Such weakening of recruitment of TBP to these promoters subsequently decreases the level of transcription. Taken together, these results support the idea that SAGA-associated Sgf29p facilitates the recruitment of TBP (and hence transcription) without altering the global structural integrity of SAGA in vivo.
Collapse
Affiliation(s)
- Abhijit Shukla
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, United States
| | | | | | | |
Collapse
|
183
|
Weake VM, Workman JL. SAGA function in tissue-specific gene expression. Trends Cell Biol 2011; 22:177-84. [PMID: 22196215 DOI: 10.1016/j.tcb.2011.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 01/28/2023]
Abstract
The Spt-Ada-Gcn5-acetyltransferase (SAGA) transcription coactivator plays multiple roles in regulating transcription because of the presence of functionally independent modules of subunits within the complex. We have recently identified a role for the ubiquitin protease activity of SAGA in regulating tissue-specific gene expression in Drosophila. Here, we discuss the modular nature of SAGA and the different mechanisms through which SAGA is recruited to target promoters. We propose that the genes sensitive to loss of the ubiquitin protease activity of SAGA share functional characteristics that require deubiquitination of monoubiquitinated histone H2B (ubH2B) for full activation. We hypothesize that deubiquitination of ubH2B by SAGA destabilizes promoter nucleosomes, thus enhancing recruitment of RNA polymerase II (Pol II) to weak promoters. In addition, SAGA-mediated deubiquitination of ubH2B may facilitate binding of factors that are important for the transition of paused Pol II into transcription elongation.
Collapse
Affiliation(s)
- Vikki M Weake
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
184
|
García-Oliver E, García-Molinero V, Rodríguez-Navarro S. mRNA export and gene expression: the SAGA-TREX-2 connection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:555-65. [PMID: 22178374 DOI: 10.1016/j.bbagrm.2011.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
In the gene expression field, different steps have been traditionally viewed as discrete and unconnected events. Nowadays, genetic and functional studies support the model of a coupled network of physical and functional connections to carry out mRNA biogenesis. Gene expression is a coordinated process that comprises different linked steps like transcription, RNA processing, export to the cytoplasm, translation and degradation of mRNAs. Its regulation is essential for cellular survival and can occur at many different levels. Transcription is the central function that occurs in the nucleus, and RNAPII plays an essential role in mRNA biogenesis. During transcription, nascent mRNA is associated with the mRNA-binding proteins involved in processing and export of the mRNA particle. Cells have developed a network of multi-protein complexes whose functions regulate the different factors involved both temporally and spatially. This coupling mechanism acts as a quality control to solve some of the organization problems of gene expression in vivo, where all the factors implicated ensure that mRNAs are ready to be exported and translated. In this review, we focus on the functional coupling of gene transcription and mRNA export, and place particular emphasis on the relationship between the NPC-associated complex, TREX2, and the transcription co-activator, SAGA. We have pinpointed the experimental evidence for Sus1's roles in transcription initiation, transcription elongation and mRNA export. In addition, we have reviewed other NPC-related processes such as gene gating to the nuclear envelope, the chromatin structure and the cellular context in which these processes take place. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Encar García-Oliver
- Centro de Investigación Príncipe Felipe (CIPF), Gene Expression coupled with RNA Transport Laboratory, Valencia, Spain
| | | | | |
Collapse
|
185
|
Wang W, Chen Z, Mao Z, Zhang H, Ding X, Chen S, Zhang X, Xu R, Zhu B. Nucleolar protein Spindlin1 recognizes H3K4 methylation and stimulates the expression of rRNA genes. EMBO Rep 2011; 12:1160-6. [PMID: 21960006 DOI: 10.1038/embor.2011.184] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 01/08/2023] Open
Abstract
The tandem Tudor-like domain-containing protein Spindlin1 has been reported to be a meiotic spindle-associated protein. Here we report that Spindlin1 is not associated with the spindle in mouse embryonic fibroblast cells during mitotic divisions. In interphase cells, Spindlin1 specifically localizes to the nucleoli. Moreover, Spindlin1 is a histone methylation effector protein that specifically recognizes H3K4 methylation. Finally, Spindlin1 localizes to the active ribosomal DNA (rDNA) repeats, and Spindlin1 facilitates the expression of rRNA genes.
Collapse
Affiliation(s)
- Weixiang Wang
- Chromatin Lab, National Institute of Biological Sciences, 7 Science Park Road, Zhong Guan Cun Life Science Park, Beijing 102206, China
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Samara NL, Wolberger C. A new chapter in the transcription SAGA. Curr Opin Struct Biol 2011; 21:767-74. [PMID: 22014650 DOI: 10.1016/j.sbi.2011.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/15/2011] [Indexed: 01/09/2023]
Abstract
Eukaryotic transcriptional coactivators are multi-subunit complexes that both modify chromatin and recognize histone modifications. Until recently, structural information on these large complexes has been limited to isolated enzymatic domains or chromatin-binding motifs. This review summarizes recent structural studies of the SAGA coactivator complex that have greatly advanced our understanding of the interplay between its different subunits. The structure of the four-protein SAGA deubiquitinating module has provided a first glimpse of the larger organization of a coactivator complex, and illustrates how interdependent subunits interact with each other to form an active and functional enzyme complex. In addition, structures of the histone binding domains of ATXN7 and Sgf29 shed light on the interactions with chromatin that help recruit the SAGA complex.
Collapse
Affiliation(s)
- Nadine L Samara
- Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|