151
|
Abstract
Recently in Nature, Davidson and coworkers (Diep et al., 2011) identified nephron progenitors/stem cells located at the point of fusion with the pronephric tubules in adult zebrafish. Clumps of progenitors give rise to functional nephrons after serial transplantation, demonstrating the ability of tissue stem cells to regenerate damaged kidney structures.
Collapse
Affiliation(s)
- Xiankun Zeng
- The Mouse Cancer Genetics Program, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
152
|
O'Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Davidson AJ. Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol 2011; 358:318-30. [PMID: 21871448 DOI: 10.1016/j.ydbio.2011.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 01/02/2023]
Abstract
Podocytes help form the glomerular blood filtration barrier in the kidney and their injury or loss leads to renal disease. The Wilms' tumor suppressor-1 (Wt1) and the FoxC1/2 transcription factors, as well as Notch signaling, have been implicated as important regulators of podocyte fate. It is not known whether these factors work in parallel or sequentially on different gene targets, or as higher-order transcriptional complexes on common genes. Here, we use the zebrafish to demonstrate that embryos treated with morpholinos against wt1a, foxc1a, or the Notch transcriptional mediator rbpj develop fewer podocytes, as determined by wt1b, hey1 and nephrin expression, while embryos deficient in any two of these factors completely lack podocytes. From GST-pull-downs and co-immunoprecipitation experiments we show that Wt1a, Foxc1a, and Rbpj can physically interact with each other, whereas only Rbpj binds to the Notch intracellular domain (NICD). In transactivation assays, combinations of Wt1, FoxC1/2, and NICD synergistically induce the Hey1 promoter, and have additive or repressive effects on the Podocalyxin promoter, depending on dosage. Taken together, these data suggest that Wt1, FoxC1/2, and Notch signaling converge on common target genes where they physically interact to regulate a podocyte-specific gene program. These findings further our understanding of the transcriptional circuitry responsible for podocyte formation and differentiation during kidney development.
Collapse
Affiliation(s)
- Lori L O'Brien
- Center for Regenerative Medicine and Department of Medicine, Massachusetts General Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
153
|
Miller RK, Canny SGDLT, Jang CW, Cho K, Ji H, Wagner DS, Jones EA, Habas R, McCrea PD. Pronephric tubulogenesis requires Daam1-mediated planar cell polarity signaling. J Am Soc Nephrol 2011; 22:1654-64. [PMID: 21804089 DOI: 10.1681/asn.2010101086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Canonical β-catenin-mediated Wnt signaling is essential for the induction of nephron development. Noncanonical Wnt/planar cell polarity (PCP) pathways contribute to processes such as cell polarization and cytoskeletal modulation in several tissues. Although PCP components likely establish the plane of polarization in kidney tubulogenesis, whether PCP effectors directly modulate the actin cytoskeleton in tubulogenesis is unknown. Here, we investigated the roles of Wnt PCP components in cytoskeletal assembly during kidney tubule morphogenesis in Xenopus laevis and zebrafish. We found that during tubulogenesis, the developing pronephric anlagen expresses Daam1 and its interacting Rho-GEF (WGEF), which compose one PCP/noncanonical Wnt pathway branch. Knockdown of Daam1 resulted in reduced expression of late pronephric epithelial markers with no apparent effect upon early markers of patterning and determination. Inhibiting various points in the Daam1 signaling pathway significantly reduced pronephric tubulogenesis. These data indicate that pronephric tubulogenesis requires the Daam1/WGEF/Rho PCP pathway.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Rothschild SC, Francescatto L, Drummond IA, Tombes RM. CaMK-II is a PKD2 target that promotes pronephric kidney development and stabilizes cilia. Development 2011; 138:3387-97. [PMID: 21752935 DOI: 10.1242/dev.066340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracellular Ca²⁺ signals influence gastrulation, neurogenesis and organogenesis through pathways that are still being defined. One potential Ca²⁺ mediator of many of these morphogenic processes is CaMK-II, a conserved calmodulin-dependent protein kinase. Prolonged Ca²⁺ stimulation converts CaMK-II into an activated state that, in the zebrafish, is detected in the forebrain, ear and kidney. Autosomal dominant polycystic kidney disease has been linked to mutations in the Ca²⁺-conducting TRP family member PKD2, the suppression of which in vertebrate model organisms results in kidney cysts. Both PKD2-deficient and CaMK-II-deficient zebrafish embryos fail to form pronephric ducts properly, and exhibit anterior cysts and destabilized cloacal cilia. PKD2 suppression inactivates CaMK-II in pronephric cells and cilia, whereas constitutively active CaMK-II restores pronephric duct formation in pkd2 morphants. PKD2 and CaMK-II deficiencies are synergistic, supporting their existence in the same genetic pathway. We conclude that CaMK-II is a crucial effector of PKD2 Ca²⁺ that both promotes morphogenesis of the pronephric kidney and stabilizes primary cloacal cilia.
Collapse
Affiliation(s)
- Sarah C Rothschild
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
155
|
Zebrafish: a model system for the study of vertebrate renal development, function, and pathophysiology. Curr Opin Nephrol Hypertens 2011; 20:416-24. [DOI: 10.1097/mnh.0b013e3283477797] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
156
|
Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, Hong SK, Dawid IB, Hukriede NA. Lhx1 is required for specification of the renal progenitor cell field. PLoS One 2011; 6:e18858. [PMID: 21526205 PMCID: PMC3078140 DOI: 10.1371/journal.pone.0018858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/22/2011] [Indexed: 11/18/2022] Open
Abstract
In the vertebrate embryo, the kidney is derived from the intermediate mesoderm. The LIM-class homeobox transcription factor lhx1 is expressed early in the intermediate mesoderm and is one of the first genes to be expressed in the nephric mesenchyme. In this study, we investigated the role of Lhx1 in specification of the kidney field by either overexpressing or depleting lhx1 in Xenopus embryos or depleting lhx1 in an explant culture system. By overexpressing a constitutively-active form of Lhx1, we established its capacity to expand the kidney field during the specification stage of kidney organogenesis. In addition, the ability of Lhx1 to expand the kidney field diminishes as kidney organogenesis transitions to the morphogenesis stage. In a complimentary set of experiments, we determined that embryos depleted of lhx1, show an almost complete loss of the kidney field. Using an explant culture system to induce kidney tissue, we confirmed that expression of genes from both proximal and distal kidney structures is affected by the absence of lhx1. Taken together our results demonstrate an essential role for Lhx1 in driving specification of the entire kidney field from the intermediate mesoderm.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zhao Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Caroline E. Haldin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chiara Cianciolo Cosentino
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carsten Stuckenholz
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xiongfong Chen
- Unit on Biologic Computation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
157
|
McCoy KE, Zhou X, Vize PD. Non-canonical wnt signals antagonize and canonical wnt signals promote cell proliferation in early kidney development. Dev Dyn 2011; 240:1558-66. [PMID: 21465621 DOI: 10.1002/dvdy.22626] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2011] [Indexed: 11/11/2022] Open
Abstract
Canonical and non-canonical wnt signals often have opposed roles. In this report, we use developing Xenopus embryos to demonstrate a novel anti-proliferative role for non-canonical wnt signals in the very earliest stages of kidney development. Non-canonical wnt signals were down-regulated using PDZ domain mutants of dishevelled 2 and up-regulated using wild-type vang-like 2, while canonical signals were manipulated using dominant-negative forms of lef1 or treatment with lithium. When non-canonical signals are down-regulated in the developing Xenopus pronephros, cell proliferation rates increased and when canonical signals were shutdown the opposite occurred. Treatment with lithium chloride has a powerful pro-proliferative effect on the forming nephric primordium. Together these data show that in addition to previously documented antagonisms between these distinct wnt signaling pathways, they also have opposing effects on cell division.
Collapse
Affiliation(s)
- Kyle E McCoy
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
158
|
van Rooijen E, Santhakumar K, Logister I, Voest E, Schulte-Merker S, Giles R, van Eeden F. A Zebrafish Model for VHL and Hypoxia Signaling. Methods Cell Biol 2011; 105:163-90. [DOI: 10.1016/b978-0-12-381320-6.00007-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
159
|
Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics? Pediatr Nephrol 2010; 25:1005-16. [PMID: 20049614 PMCID: PMC3189493 DOI: 10.1007/s00467-009-1392-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 12/15/2022]
Abstract
The discipline of paediatric nephrology encompasses the congenital nephritic syndromes, renal dysplasias, neonatal renal tumours, early onset cystic disease, tubulopathies and vesicoureteric reflux, all of which arise due to defects in normal kidney development. Indeed, congenital anomalies of the kidney and urinary tract (CAKUT) represent 20-30% of prenatal anomalies, occurring in 1 in 500 births. Developmental biologists have studied the anatomical and morphogenetic processes involved in kidney development for the last five decades. However, with the advent of transgenic mice, the sequencing of the genome, improvements in mutation detection and the advent of functional genomics, our understanding of the molecular basis of kidney development has grown significantly. Here we discuss how the advent of new genetic and genomics approaches has added to our understanding of kidney development and paediatric renal disease, as well as identifying areas in which we are still lacking knowledge.
Collapse
|
160
|
Haugan BM, Halberg KA, Jespersen A, Prehn LR, Møbjerg N. Functional characterization of the vertebrate primary ureter: structure and ion transport mechanisms of the pronephric duct in axolotl larvae (Amphibia). BMC DEVELOPMENTAL BIOLOGY 2010; 10:56. [PMID: 20507566 PMCID: PMC2891660 DOI: 10.1186/1471-213x-10-56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/27/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Three kidney systems appear during vertebrate development: the pronephroi, mesonephroi and metanephroi. The pronephric duct is the first or primary ureter of these kidney systems. Its role as a key player in the induction of nephrogenic mesenchyme is well established. Here we investigate whether the duct is involved in urine modification using larvae of the freshwater amphibian Ambystoma mexicanum (axolotl) as model. RESULTS We investigated structural as well as physiological properties of the pronephric duct. The key elements of our methodology were: using histology, light and transmission electron microscopy as well as confocal laser scanning microscopy on fixed tissue and applying the microperfusion technique on isolated pronephric ducts in combination with single cell microelectrode impalements. Our data show that the fully differentiated pronephric duct is composed of a single layered epithelium consisting of one cell type comparable to the principal cell of the renal collecting duct system. The cells are characterized by a prominent basolateral labyrinth and a relatively smooth apical surface with one central cilium. Cellular impalements demonstrate the presence of apical Na+ and K+ conductances, as well as a large K+ conductance in the basolateral cell membrane. Immunolabeling experiments indicate heavy expression of Na+/K+-ATPase in the basolateral labyrinth. CONCLUSIONS We propose that the pronephric duct is important for the subsequent modification of urine produced by the pronephros. Our results indicate that it reabsorbs sodium and secretes potassium via channels present in the apical cell membrane with the driving force for ion movement provided by the Na+/K+ pump. This is to our knowledge the first characterization of the pronephric duct, the precursor of the collecting duct system, which provides a model of cell structure and basic mechanisms for ion transport. Such information may be important in understanding the evolution of vertebrate kidney systems and human diseases associated with congenital malformations.
Collapse
Affiliation(s)
- Birgitte M Haugan
- Department of Biology, University of Copenhagen, Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
161
|
de Groh ED, Swanhart LM, Cosentino CC, Jackson RL, Dai W, Kitchens CA, Day BW, Smithgall TE, Hukriede NA. Inhibition of histone deacetylase expands the renal progenitor cell population. J Am Soc Nephrol 2010; 21:794-802. [PMID: 20378823 DOI: 10.1681/asn.2009080851] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the first hallmarks of kidney regeneration is the reactivation of genes normally required during organogenesis. Identification of chemicals with the potential to enhance this reactivation could therapeutically promote kidney regeneration. Here, we found that 4-(phenylthio)butanoic acid (PTBA) expanded the expression domains of molecular markers of kidney organogenesis in zebrafish. PTBA exhibits structural and functional similarity to the histone deacetylase (HDAC) inhibitors 4-phenylbutanoic acid and trichostatin A; treatment with these HDAC inhibitors also expanded the renal progenitor cell population. Analyses in vitro and in vivo confirmed that PTBA functions as an inhibitor of HDAC activity. Furthermore, PTBA-mediated renal progenitor cell expansion required retinoic acid signaling. In summary, these results support a mechanistic link among renal progenitor cells, HDAC, and the retinoid pathway. Whether PTBA holds promise as a therapeutic agent to promote renal regeneration requires further study.
Collapse
Affiliation(s)
- Eric D de Groh
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigné F, Lozano J, Cerdà J. The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 2010; 10:38. [PMID: 20149227 PMCID: PMC2829555 DOI: 10.1186/1471-2148-10-38] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/11/2010] [Indexed: 01/15/2023] Open
Abstract
Background Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown. Results The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4), water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter (AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of transcripts encoding two duplicated paralogs seems to occur. Conclusion The zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the integration of phylogenetic, genomic and functional data we propose a new classification for the piscine aquaporin superfamily.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
163
|
Tan SH, Chung HH, Shu-Chien AC. Distinct developmental expression of two elongase family members in zebrafish. Biochem Biophys Res Commun 2010; 393:397-403. [PMID: 20138842 DOI: 10.1016/j.bbrc.2010.01.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 01/30/2010] [Indexed: 11/30/2022]
Abstract
Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.
Collapse
Affiliation(s)
- Sze-Huey Tan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | | | | |
Collapse
|
164
|
|
165
|
Abstract
The zebrafish pronephric kidney provides a useful and relevant model of kidney development and function. It is composed of cell types common to all vertebrate kidneys and pronephric organogenesis is regulated by transcription factors that have highly conserved functions in mammalian kidney development. Pronephric nephrons are a good model of tubule segmentation and differentiation of epithelial cell types. The pronephric glomerulus provides a simple model to assay gene function in regulating cell structure and cell interactions that form the blood filtration apparatus. The relative simplicity of the pronephric kidney combined with the ease of genetic manipulation in zebrafish makes it well suited for mutation analysis and gene discovery, in vivo imaging, functional screens of candidate genes from other species, and cell isolation by FACS . In addition, the larval and adult zebrafish kidneys have emerged as systems to study kidney regeneration after injury. This chapter provides a review of pronephric structure and development as well as current methods to study the pronephros.
Collapse
|
166
|
Gebauer JM, Karlsen KR, Neiss WF, Paulsson M, Wagener R. Expression of the AMACO (VWA2 protein) ortholog in zebrafish. Gene Expr Patterns 2009; 10:53-9. [PMID: 19861176 DOI: 10.1016/j.gep.2009.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 01/31/2023]
Abstract
AMACO is a basement membrane associated protein that belongs to the VWA domain-containing protein superfamily. In addition to three VWA domains it contains two EGF-like domains, a cysteine-rich domain and a unique domain. Mouse AMACO has been partially characterized, but its function remains unknown. The zebrafish genome contains a single AMACO ortholog gene on chromosome 12. The domain structure is completely conserved between zebrafish and mouse and the first EGF-like domain, carrying a rare O-glucosylation and O-fucosylation consensus sequence, has the highest identity at the protein level. RT-PCR shows strongest AMACO expression during development, starting at the 5 somite stage. An antibody specific for zebrafish AMACO detected expression mainly in myosepta but also in skin, pronephros, pituitary gland, otic capsule and gills. In situ hybridization revealed that the muscle precursor cells of the somites express the protein that is laid down in the myosepta.
Collapse
Affiliation(s)
- Jan M Gebauer
- Center for Biochemistry, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|