151
|
Al-Bataineh MM, Kinlough CL, Poland PA, Pastor-Soler NM, Sutton TA, Mang HE, Bastacky SI, Gendler SJ, Madsen CS, Singh S, Monga SP, Hughey RP. Muc1 enhances the β-catenin protective pathway during ischemia-reperfusion injury. Am J Physiol Renal Physiol 2016; 310:F569-79. [PMID: 26739894 PMCID: PMC4796271 DOI: 10.1152/ajprenal.00520.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/03/2016] [Indexed: 11/22/2022] Open
Abstract
The hypoxia-inducible factor (HIF)-1 and β-catenin protective pathways represent the two most significant cellular responses that are activated in response to acute kidney injury. We previously reported that murine mucin (Muc)1 protects kidney function and morphology in a mouse model of ischemia-reperfusion injury (IRI) by stabilizing HIF-1α, enhancing HIF-1 downstream signaling, and thereby preventing metabolic stress (Pastor-Soler et al. Muc1 is protective during kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 308: F1452-F1462, 2015). We asked if Muc1 regulates the β-catenin protective pathway during IRI as 1) β-catenin nuclear targeting is MUC1 dependent in cultured human cells, 2) β-catenin is found in coimmunoprecipitates with human MUC1 in extracts of both cultured cells and tissues, and 3) MUC1 prevents β-catenin phosphorylation by glycogen synthase kinase (GSK)3β and thereby β-catenin degradation. Using the same mouse model of IRI, we found that levels of active GSK3β were significantly lower in kidneys of control mice compared with Muc1 knockout (KO) mice. Consequently, β-catenin was significantly upregulated at 24 and 72 h of recovery and appeared in the nuclear fraction at 72 h in control mouse kidneys. Both β-catenin induction and nuclear targeting were absent in Muc1 KO mice. We also found downstream induction of β-catenin prosurvival factors (activated Akt, survivin, transcription factor T cell factor 4 (TCF4), and its downstream target cyclin D1) and repression of proapoptotic factors (p53, active Bax, and cleaved caspase-3) in control mouse kidneys that were absent or aberrant in kidneys of Muc1 KO mice. Altogether, the data clearly indicate that Muc1 protection during acute kidney injury proceeds by enhancing both the HIF-1 and β-catenin protective pathways.
Collapse
Affiliation(s)
- Mohammad M Al-Bataineh
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Carol L Kinlough
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Paul A Poland
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Núria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, University of Southern California/UKRO Kidney Research Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Timothy A Sutton
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry E Mang
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheldon I Bastacky
- Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sandra J Gendler
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Comprehensive Cancer Center, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Cathy S Madsen
- Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
152
|
Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. J Transl Med 2016; 96:156-67. [PMID: 26692289 PMCID: PMC4731262 DOI: 10.1038/labinvest.2015.153] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. Although the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients.
Collapse
|
153
|
Yang L, Sun X, Zhan Y, Liu H, Wen Y, Mao H, Dong XI, Li P. Yi Qi Qing Re Gao-containing serum inhibits lipopolysaccharide-induced rat mesangial cell proliferation by suppressing the Wnt pathway and TGF-β1 expression. Exp Ther Med 2016; 11:1410-1416. [PMID: 27073458 DOI: 10.3892/etm.2016.3027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/13/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the effect of Yi Qi Qing Re Gao-containing serum (YQ-S) on rat mesangial cell (MC) proliferation and to investigate the underlying mechanism. MCs were divided into the control, lipopolysaccharide (LPS)-stimulated, YQ-S and fosinopril-containing serum (For-S) groups, and cultured for 48 h. An MTT assay was used to evaluate the proliferation of MCs. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were conducted to detect the expression levels of Wnt4, β-catenin and transforming growth factor (TGF)-β1 in MCs. The results indicated that YQ-S inhibited LPS-induced MC proliferation. The Wnt4 and TGF-β1 mRNA expression levels were reduced in the YQ-S group (P<0.01 or P<0.05). Furthermore, the Wnt4, β-catenin and TGF-β1 protein expression levels were suppressed in the YQ-S group (P<0.01 or P<0.05). Therefore, YQ-S appears to inhibit MC proliferation, and its mechanism may involve the inhibition of the Wnt signaling pathway and downregulation of TGF-β1 expression.
Collapse
Affiliation(s)
- Liping Yang
- Department of Nephrology, Guang'Anmen Hospital of China Academy of Traditional Chinese Medicine Sciences, Beijing 100053, P.R. China
| | - Xueyan Sun
- Beijing University of Chinese Medicine, Chaoyang, Liaoning 100029, P.R. China
| | - Yongli Zhan
- Department of Nephrology, Guang'Anmen Hospital of China Academy of Traditional Chinese Medicine Sciences, Beijing 100053, P.R. China
| | - Huijie Liu
- Beijing University of Chinese Medicine, Chaoyang, Liaoning 100029, P.R. China
| | - Yumin Wen
- Beijing University of Chinese Medicine, Chaoyang, Liaoning 100029, P.R. China
| | - Huimin Mao
- Beijing University of Chinese Medicine, Chaoyang, Liaoning 100029, P.R. China
| | - X I Dong
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Ping Li
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
154
|
Alsady M, Baumgarten R, Deen PMT, de Groot T. Lithium in the Kidney: Friend and Foe? J Am Soc Nephrol 2015; 27:1587-95. [PMID: 26577775 DOI: 10.1681/asn.2015080907] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trace amounts of lithium are essential for our physical and mental health, and administration of lithium has improved the quality of life of millions of patients with bipolar disorder for >60 years. However, in a substantial number of patients with bipolar disorder, long-term lithium therapy comes at the cost of severe renal side effects, including nephrogenic diabetes insipidus and rarely, ESRD. Although the mechanisms underlying the lithium-induced renal pathologies are becoming clearer, several recent animal studies revealed that short-term administration of lower amounts of lithium prevents different forms of experimental AKI. In this review, we discuss the knowledge of the pathologic and therapeutic effects of lithium in the kidney. Furthermore, we discuss the underlying mechanisms of these seemingly paradoxical effects of lithium, in which fine-tuned regulation of glycogen synthase kinase type 3, a prime target for lithium, seems to be key. The new discoveries regarding the protective effect of lithium against AKI in rodents call for follow-up studies in humans and suggest that long-term therapy with low lithium concentrations could be beneficial in CKD.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | | | - Peter M T Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| |
Collapse
|
155
|
Hirsch S, El-Achkar T, Robbins L, Basta J, Heitmeier M, Nishinakamura R, Rauchman M. A mouse model of Townes-Brocks syndrome expressing a truncated mutant Sall1 protein is protected from acute kidney injury. Am J Physiol Renal Physiol 2015; 309:F852-63. [DOI: 10.1152/ajprenal.00222.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/21/2015] [Indexed: 11/22/2022] Open
Abstract
It has been postulated that developmental pathways are reutilized during repair and regeneration after injury, but functional analysis of many genes required for kidney formation has not been performed in the adult organ. Mutations in SALL1 cause Townes-Brocks syndrome (TBS) and nonsyndromic congenital anomalies of the kidney and urinary tract, both of which lead to childhood kidney failure. Sall1 is a transcriptional regulator that is expressed in renal progenitor cells and developing nephrons in the embryo. However, its role in the adult kidney has not been investigated. Using a mouse model of TBS ( Sall1 TBS), we investigated the role of Sall1 in response to acute kidney injury. Our studies revealed that Sall1 is expressed in terminally differentiated renal epithelia, including the S3 segment of the proximal tubule, in the mature kidney. Sall1 TBS mice exhibited significant protection from ischemia-reperfusion injury and aristolochic acid-induced nephrotoxicity. This protection from acute injury is seen despite the presence of slowly progressive chronic kidney disease in Sall1 TBS mice. Mice containing null alleles of Sall1 are not protected from acute kidney injury, indicating that expression of a truncated mutant protein from the Sall1 TBS allele, while causative of congenital anomalies, protects the adult kidney from injury. Our studies further revealed that basal levels of the preconditioning factor heme oxygenase-1 are elevated in Sall1 TBS kidneys, suggesting a mechanism for the relative resistance to injury in this model. Together, these studies establish a functional role for Sall1 in the response of the adult kidney to acute injury.
Collapse
Affiliation(s)
- Sara Hirsch
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
- John Cochran Division, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri
| | - Tarek El-Achkar
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lynn Robbins
- Department of Internal Medicine (Nephrology), Saint Louis University, St. Louis, Missouri
- John Cochran Division, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri
| | - Jeannine Basta
- Department of Internal Medicine (Nephrology), Saint Louis University, St. Louis, Missouri
- John Cochran Division, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri
| | - Monique Heitmeier
- Department of Internal Medicine (Nephrology), Saint Louis University, St. Louis, Missouri
| | - Ryuichi Nishinakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Michael Rauchman
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
- Department of Internal Medicine (Nephrology), Saint Louis University, St. Louis, Missouri
- John Cochran Division, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri
| |
Collapse
|
156
|
Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, Liu Y. Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. J Am Soc Nephrol 2015; 27:1727-40. [PMID: 26453613 DOI: 10.1681/asn.2015040449] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022] Open
Abstract
AKI is increasingly recognized as a major risk factor for progression to CKD. However, the factors governing AKI to CKD progression are poorly understood. In this study, we investigated this issue using moderate (20 minutes) and severe (30 minutes) ischemia/reperfusion injury (IRI) in mice. Moderate IRI led to acute kidney failure and transient Wnt/β-catenin activation, which was followed by the restoration of kidney morphology and function. However, severe IRI resulted in sustained and exaggerated Wnt/β-catenin activation, which was accompanied by development of renal fibrotic lesions characterized by interstitial myofibroblast activation and excessive extracellular matrix deposition. To assess the role of sustained Wnt/β-catenin signaling in mediating AKI to CKD progression, we manipulated this signaling by overexpression of Wnt ligand or pharmacologic inhibition of β-catenin. In vivo, overexpression of Wnt1 at 5 days after IRI induced β-catenin activation and accelerated AKI to CKD progression. Conversely, blockade of Wnt/β-catenin by small molecule inhibitor ICG-001 at this point hindered AKI to CKD progression. In vitro, Wnt ligands induced renal interstitial fibroblast activation and promoted fibronectin expression. However, activated fibroblasts readily reverted to a quiescent phenotype after Wnt ligands were removed, suggesting that fibroblast activation requires persistent Wnt signaling. These results indicate that sustained, but not transient, activation of Wnt/β-catenin signaling has a decisive role in driving AKI to CKD progression.
Collapse
Affiliation(s)
- Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and Departments of Pathology and
| | | | - Roderick J Tan
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and Departments of Pathology and
| |
Collapse
|
157
|
Rauhauser AA, Ren C, Lu D, Li B, Zhu J, McEnery K, Vadnagara K, Zepeda-Orozco D, Zhou XJ, Lin F, Jetten AM, Attanasio M. Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury. Am J Physiol Renal Physiol 2015; 309:F770-8. [PMID: 26290370 DOI: 10.1152/ajprenal.00232.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/05/2023] Open
Abstract
Hedgehog (Hh) is an evolutionary conserved signaling pathway that has important functions in kidney morphogenesis and adult organ maintenance. Recent work has shown that Hh signaling is reactivated in the kidney after injury and is an important mediator of progressive fibrosis. Pericytes and fibroblasts have been proposed to be the principal cells that respond to Hh ligands, and pharmacological attenuation of Hh signaling has been considered as a possible treatment for fibrosis, but the effect of Hh inhibition on tubular epithelial cells after kidney injury has not been reported. Using genetically modified mice in which tubule-derived hedgehog signaling is increased and mice in which this pathway is conditionally suppressed in pericytes that express the proteoglycan neuron glial protein 2 (NG2), we found that suppression of Hh signaling is associated with decreased macrophage infiltration and tubular proliferation but also increased tubular apoptosis, an effect that correlated with the reduction of tubular β-catenin activity. Collectively, our data suggest a complex function of hedgehog signaling after kidney injury in initiating both reparative and proproliferative, prosurvival processes.
Collapse
Affiliation(s)
- Alysha A Rauhauser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Chongyu Ren
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Binghua Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Jili Zhu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas; Department of Nephrology, Wuhan University, Hubei, Wuhan, China
| | - Kayla McEnery
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Komal Vadnagara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | | | - Xin J Zhou
- Renal Path Diagnostics, Pathologist BioMedical Laboratories and Department of Pathology, Baylor University Medical Center, Dallas, Texas
| | - Fangming Lin
- Department of Pediatrics, Pathology, and Cell Biology, Columbia University, New York, New York
| | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Massimo Attanasio
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas; Eugene McDermott Center for Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
158
|
Qiu S, Xiao Z, Piao C, Zhang J, Dong Y, Cui W, Liu X, Zhang Y, Du J. AMPKα2 reduces renal epithelial transdifferentiation and inflammation after injury through interaction with CK2β. J Pathol 2015; 237:330-42. [PMID: 26108355 DOI: 10.1002/path.4579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/22/2022]
Abstract
TGFβ1/Smad, Wnt/β-catenin and snail1 are preferentially activated in renal tubular epithelia after injury, leading to epithelial-mesenchymal transition (EMT). The stress response is coupled to EMT and kidney injury; however, the underlying mechanism of the stress response in EMT remains elusive. AMP-activated protein kinase (AMPK) signalling is responsive to stress and regulates cell energy balance and differentiation. We found that knockdown of AMPKα, especially AMPKα2, enhanced EMT by up-regulating β-catenin and Smad3 in vitro. AMPKα2 deficiency enhanced EMT and fibrosis in a murine unilateral ureteral obstruction (UUO) model. AMPKα2 deficiency also increased the expression of chemokines KC and MCP-1, along with enhanced infiltration of inflammatory cells into the kidney after UUO. CK2β interacted physically with AMPKα and enhanced AMPKα Thr172 phosphorylation and its catalytic activity. Thus, activated AMPKα signalling suppresses EMT and secretion of chemokines in renal tubular epithelia through interaction with CK2β to attenuate renal injury.
Collapse
Affiliation(s)
- Shulan Qiu
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhicheng Xiao
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Chunmei Piao
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jing Zhang
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanjun Dong
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Wei Cui
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Xin Liu
- Centre for Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Youyi Zhang
- Laboratory of Cardiovascular Bioactive Molecules, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, People's Republic of China
| | - Jie Du
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
159
|
Pastor-Soler NM, Sutton TA, Mang HE, Kinlough CL, Gendler SJ, Madsen CS, Bastacky SI, Ho J, Al-Bataineh MM, Hallows KR, Singh S, Monga SP, Kobayashi H, Haase VH, Hughey RP. Muc1 is protective during kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 2015; 308:F1452-62. [PMID: 25925251 PMCID: PMC4469889 DOI: 10.1152/ajprenal.00066.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/20/2015] [Indexed: 01/01/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI. Whereas Muc1 was localized on the apical surface of the thick ascending limb, distal convoluted tubule, and collecting duct in the kidneys of sham-treated mice, Muc1 appeared in the cytoplasm and nucleus of all tubular epithelia during IRI. Muc1 was induced during IRI, and Muc1 transcripts and protein were also present in recovering proximal tubule cells. Kidney damage was worse and recovery was blocked during IRI in Muc1 knockout mice compared with congenic control mice. Muc1 knockout mice had reduced levels of HIF-1α, reduced or aberrant induction of HIF-1 target genes involved in the shift of glucose metabolism to glycolysis, and prolonged activation of AMP-activated protein kinase, indicating metabolic stress. Muc1 clearly plays a significant role in enhancing the HIF protective pathway during ischemic insult and recovery in kidney epithelia, providing a new target for developing therapies to treat AKI. Moreover, our data support a role specifically for HIF-1 in epithelial protection of the kidney during IRI as Muc1 is present only in tubule epithelial cells.
Collapse
Affiliation(s)
- Núria M Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy A Sutton
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry E Mang
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol L Kinlough
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sandra J Gendler
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Comprehensive Cancer Center, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Cathy S Madsen
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Comprehensive Cancer Center, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Sheldon I Bastacky
- Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Division of Pediatric Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mohammad M Al-Bataineh
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hanako Kobayashi
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee; Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee; and
| | - Volker H Haase
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee; Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee; and
| | - Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
160
|
Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 2015; 11:535-45. [PMID: 26055352 DOI: 10.1038/nrneph.2015.88] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that are integral components of the kidney glomerular filtration barrier. Podocytes are vulnerable to a variety of injuries and in response they undergo a series of changes ranging from hypertrophy, autophagy, dedifferentiation, mesenchymal transition and detachment to apoptosis, depending on the nature and extent of the insult. Emerging evidence indicates that Wnt/β-catenin signalling has a central role in mediating podocyte dysfunction and proteinuria. Wnts are induced and β-catenin is activated in podocytes in various proteinuric kidney diseases. Genetic or pharmacologic activation of β-catenin is sufficient to impair podocyte integrity and causes proteinuria in healthy mice, whereas podocyte-specific ablation of β-catenin protects against proteinuria after kidney injury. Mechanistically, Wnt/β-catenin controls the expression of several key mediators implicated in podocytopathies, including Snail1, the renin-angiotensin system and matrix metalloproteinase 7. Wnt/β-catenin also negatively regulates Wilms tumour protein, a crucial transcription factor that safeguards podocyte integrity. Targeted inhibition of Wnt/β-catenin signalling preserves podocyte integrity and ameliorates proteinuria in animal models. This Review highlights advances in our understanding of the pathomechanisms of Wnt/β-catenin signalling in mediating podocyte injury, and describes the therapeutic potential of targeting this pathway for the treatment of proteinuric kidney disease.
Collapse
|
161
|
Berzal S, González-Guerrero C, Rayego-Mateos S, Ucero Á, Ocaña-Salceda C, Egido J, Ortiz A, Ruiz-Ortega M, Ramos AM. TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-κB pathway and ERK activation. J Cell Physiol 2015; 230:1580-93. [PMID: 25536182 DOI: 10.1002/jcp.24905] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
The tubular epithelium may be intrinsically involved in promoting kidney injury by junctional instability, epithelial-mesenchymal transition (EMT) and extracellular matrix remodelling. In this work, we investigated whether the pleiotropic and proinflammatory cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK), could be able to disturb junctional protein expression and to induce EMT of tubular cells. In cultured murine proximal tubular cells TWEAK induced phenotypic changes that were accompanied by F-actin redistribution, loss of epithelial adherent (E-cadherin, Cadherin-16, β-catenin) and tight junction (ZO-1) proteins, and re-expression of the mesenchymal protein Vimentin. The transcriptional repressors Snail and HNF1β were also modulated by TWEAK. In a murine model of obstructive renal pathology, TWEAK expression correlated with the appearance of the mesenchymal marker αSMA in kidney tubular cells. Mechanistically, the epithelial changes induced by TWEAK, including loss of epithelial integrity and EMT, via Fn14 were TGF-β1 independent, but mediated by several intracellular signaling systems, including the canonical NF-κB, ERK activation and the vitamin D receptor modulation. These results highlight potential contributions of TWEAK-induced inflammatory mechanisms that could unveil new pathogenic effects of TWEAK starting tubulointerstitial damage and fibrosis.
Collapse
Affiliation(s)
- Sergio Berzal
- Laboratory of Nephrology and Vascular Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Saito S, Tampe B, Müller GA, Zeisberg M. Primary cilia modulate balance of canonical and non-canonical Wnt signaling responses in the injured kidney. FIBROGENESIS & TISSUE REPAIR 2015; 8:6. [PMID: 25901180 PMCID: PMC4404279 DOI: 10.1186/s13069-015-0024-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/20/2015] [Indexed: 01/02/2023]
Abstract
Background While kidney injury is associated with re-expression of numerous Wnt ligands and receptors, molecular mechanisms which underlie regulation of distinct Wnt signaling pathways and ensuing biological consequences remain incompletely understood. Primary cilia are increasingly being recognized as cellular ‘antennae’ which sense and transduce signals from the microenvironment, particularly through Wnt signaling. Here, we explored the role of cilia as modulators of canonical and non-canonical Wnt signaling activities involving tubular epithelial cells in the injured kidney. Results We demonstrate that in the mouse model of unilateral ureter obstruction, progression of kidney injury correlates with increased expression of numerous Wnt ligands, and that increased expression of Wnt ligands corresponded with over-activation of canonical Wnt signaling. In contrast, non-canonical Wnt signaling dropped significantly during the course of kidney injury despite gradually increased expression of typical non-canonical and intermediate Wnt signaling ligands. We further demonstrate that in cultured tubular epithelial cells, cilia modulate balance between canonical and non-canonical signaling responses upon exposure to Wnt ligands. Conclusions We provide evidence that in the context of renal injury, primary cilia act as molecular switches between canonical and non-canonical Wnt signaling activity, possibly determining between regenerative and pro-fibrotic effects of Wnt re-expression in the injured kidney. Electronic supplementary material The online version of this article (doi:10.1186/s13069-015-0024-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Gerhard A Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
163
|
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved, highly complex, key developmental pathway that regulates cell fate, organ development, tissue homeostasis, as well as injury and repair. Although relatively silent in normal adult kidney, Wnt/β-catenin signaling is re-activated after renal injury in a wide variety of animal models and in human kidney disorders. Whereas some data point to a protective role of this signaling in healing and repair after acute kidney injury, increasing evidence suggests that sustained activation of Wnt/β-catenin is associated with the development and progression of renal fibrotic lesions. In kidney cells, Wnt/β-catenin promotes the expression of numerous fibrosis-related genes such as Snail1, plasminogen activator inhibitor-1, and matrix metalloproteinase-7. Recent studies also indicate that multiple components of the renin-angiotensin system are the direct downstream targets of Wnt/β-catenin. Consistently, inhibition of Wnt/β-catenin signaling by an assortment of strategies ameliorates kidney injury and mitigates renal fibrotic lesions in various models of chronic kidney disease, suggesting that targeting this signaling could be a plausible strategy for therapeutic intervention. In this mini review, we will briefly discuss the regulation, downstream targets, and mechanisms of Wnt/β-catenin signaling in the pathogenesis of kidney fibrosis.
Collapse
|
164
|
Zhou L, Li Y, He W, Zhou D, Tan RJ, Nie J, Hou FF, Liu Y. Mutual antagonism of Wilms' tumor 1 and β-catenin dictates podocyte health and disease. J Am Soc Nephrol 2014; 26:677-91. [PMID: 25071087 DOI: 10.1681/asn.2013101067] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Activation of β-catenin, the intracellular mediator of canonical Wnt signaling, has a critical role in mediating podocyte injury and proteinuria. However, the underlying mechanisms remain poorly understood. Here, we show that β-catenin triggers ubiquitin-mediated protein degradation of Wilms' tumor 1 (WT1) and functionally antagonizes its action. In mice injected with adriamycin, WT1 protein was progressively lost in glomerular podocytes at 1, 3, and 5 weeks after injection. Notably, loss of WT1 apparently did not result from podocyte depletion but was closely associated with upregulation of β-catenin. This change in WT1/β-catenin ratio was accompanied by loss of podocyte-specific nephrin, podocalyxin, and synaptopodin and acquisition of mesenchymal markers Snail1, α-smooth muscle actin, and fibroblast-specific protein 1. In vitro, overexpression of β-catenin induced WT1 protein degradation through the ubiquitin proteasomal pathway, which was blocked by MG-132. WT1 and β-catenin also competed for binding to common transcriptional coactivator CREB-binding protein and mutually repressed the expression of their respective target genes. In glomerular miniorgan culture, activation of β-catenin by Wnt3a repressed WT1 and its target gene expression. In vivo, blockade of Wnt/β-catenin signaling by endogenous antagonist Klotho induced WT1 and restored podocyte integrity in adriamycin nephropathy. These results show that β-catenin specifically targets WT1 for ubiquitin-mediated degradation, leading to podocyte dedifferentiation and mesenchymal transition. Our data also suggest that WT1 and β-catenin have opposing roles in podocyte biology, and that the ratio of their expression levels dictates the state of podocyte health and disease in vivo.
Collapse
Affiliation(s)
- Lili Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Pathology and
| | | | | | | | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Pathology and
| |
Collapse
|
165
|
Floege J. Antagonism of canonical Wnt/β-catenin signaling: taking RAS blockade to the next level? J Am Soc Nephrol 2014; 26:3-5. [PMID: 25012172 DOI: 10.1681/asn.2014060567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jürgen Floege
- Division of Nephrology and Immunology, RWTH University of Aachen, Aachen, Germany
| |
Collapse
|
166
|
Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int 2014; 86:86-102. [DOI: 10.1038/ki.2013.559] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 11/21/2013] [Accepted: 12/05/2013] [Indexed: 01/21/2023]
|
167
|
Peng J, Li X, Zhang D, Chen JK, Su Y, Smith SB, Dong Z. Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int 2014; 87:137-50. [PMID: 24963915 PMCID: PMC4276728 DOI: 10.1038/ki.2014.226] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022]
Abstract
Patients with chronic kidney diseases, including diabetic nephropathy, are more susceptible to acute kidney injury (AKI) and have a worse prognosis following AKI. However, the underlying mechanism is unclear. Here we tested whether diabetic mice were more sensitive to AKI and show that renal ischemia-reperfusion induced significantly more severe AKI and higher mortality in the streptozotocin and the Akita diabetic mouse models. The severity of AKI in the mice correlated with their blood glucose levels. In vitro, high glucose-conditioned renal proximal tubular cells showed higher apoptosis and caspase activation following ATP-depletion and hypoxic injury, accompanied by a heightened mitochondrial accumulation of Bax and release of cytochrome c. In response to injury, both glucose-conditioned renal proximal tubular cells and diabetic kidney tissues showed markedly higher p53 induction. Suppression of p53 diminished the sensitivity of high glucose-conditioned cells to acute injury in vitro. Moreover, blockade of p53 by pifithrin-α, siRNA, or proximal tubule-targeted gene ablation reduced ischemic AKI in diabetic mice. Insulin reduced blood glucose in diabetic mice and largely attenuated their AKI sensitivity. Thus, our results suggest the involvement of hyperglycemia, p53 and mitochondrial pathway of apoptosis in the susceptibility of diabetic models to AKI.
Collapse
Affiliation(s)
- Jianping Peng
- 1] Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA [2] Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China [3] Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoning Li
- 1] Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA [2] Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China [3] Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Dongshan Zhang
- 1] Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA [2] Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China [3] Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Zheng Dong
- 1] Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA [2] Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
168
|
Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep 2014; 3:1878. [PMID: 23698793 PMCID: PMC3662012 DOI: 10.1038/srep01878] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022] Open
Abstract
Activation of β-catenin, the principal mediator of canonical Wnt signaling, is a common pathologic finding in a wide variety of chronic kidney diseases (CKD). While β-catenin is induced predominantly in renal tubular epithelium in CKD, surprisingly, depletion of tubular β-catenin had little effect on the severity of renal fibrosis. Interestingly, less apoptosis was detected in interstitial fibroblasts in knockout mice, which was accompanied by a decreased expression of Bax and Fas ligand (FasL). Tubule-specific knockout of β-catenin diminished renal induction of matrix metalloproteinase (MMP-7), which induced FasL expression in interstitial fibroblasts and potentiated fibroblast apoptosis in vitro. These results demonstrate that loss of tubular β-catenin resulted in enhanced interstitial fibroblast survival due to decreased MMP-7 expression. Our studies uncover a novel role of the tubular β-catenin/MMP-7 axis in controlling the fate of interstitial fibroblasts via epithelial-mesenchymal communication.
Collapse
|
169
|
Zhou D, Li Y, Zhou L, Tan RJ, Xiao L, Liang M, Hou FF, Liu Y. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol 2014; 25:2187-200. [PMID: 24744439 DOI: 10.1681/asn.2013080893] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tubular epithelium constitutes the majority of the renal parenchyma and is the primary target of various kidney injuries. However, how the injured tubules drive interstitial fibroblast activation and proliferation remains poorly understood. Here, we investigated the role of sonic hedgehog (Shh), a secreted extracellular signaling protein, in fibroblast proliferation. Shh was induced in renal tubular epithelia in animal models of CKD induced by ischemia/reperfusion injury (IRI), adriamycin, or renal mass ablation, and in renal tubules of kidney biopsy specimens from CKD patients with different etiologies. Using Gli1-CreER(T2) reporter mice, we identified interstitial fibroblasts as the principal targets of renal Shh signaling in vivo. In vitro, incubation with Shh promoted normal rat kidney fibroblast proliferation, which was assessed by cell counting, MTT assay, and BrdU incorporation assay, and stimulated the induction of numerous proliferation-related genes. However, Shh had no effect on the proliferation of renal tubular epithelial cells. In vivo, overexpression of Shh promoted fibroblast expansion and aggravated kidney fibrotic lesions after IRI. Correspondingly, blockade of Shh signaling by cyclopamine, a small molecule inhibitor of Smoothened, inhibited fibroblast proliferation, reduced myofibroblast accumulation, and attenuated renal fibrosis. These studies identify Shh as a novel, specific, and potent tubule-derived growth factor that promotes interstitial fibroblast proliferation and activation. Our data also suggest that blockade of Shh signaling is a plausible strategy for therapeutic intervention of renal fibrosis.
Collapse
Affiliation(s)
| | | | - Lili Zhou
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Roderick J Tan
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Min Liang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Departments of Pathology, and State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
170
|
Zhang D, Liu Y, Wei Q, Huo Y, Liu K, Liu F, Dong Z. Tubular p53 regulates multiple genes to mediate AKI. J Am Soc Nephrol 2014; 25:2278-89. [PMID: 24700871 DOI: 10.1681/asn.2013080902] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A pathogenic role of p53 in AKI was suggested a decade ago but remains controversial. Indeed, recent work indicates that inhibition of p53 protects against ischemic AKI in rats but exacerbates AKI in mice. One intriguing possibility is that p53 has cell type-specific roles in AKI. To determine the role of tubular p53, we generated two conditional gene knockout mouse models, in which p53 is specifically ablated from proximal tubules or other tubular segments, including distal tubules, loops of Henle, and medullary collecting ducts. Proximal tubule p53 knockout (PT-p53-KO) mice were resistant to ischemic and cisplatin nephrotoxic AKI, which was indicated by the analysis of renal function, histology, apoptosis, and inflammation. However, other tubular p53 knockout (OT-p53-KO) mice were sensitive to AKI. Mechanistically, AKI associated with the upregulation of several known p53 target genes, including Bax, p53-upregulated modulator of apoptosis-α, p21, and Siva, and this association was attenuated in PT-p53-KO mice. In global expression analysis, ischemic AKI induced 371 genes in wild-type kidney cortical tissues, but the induction of 31 of these genes was abrogated in PT-p53-KO tissues. These 31 genes included regulators of cell death, metabolism, signal transduction, oxidative stress, and mitochondria. These results suggest that p53 in proximal tubular cells promotes AKI, whereas p53 in other tubular cells does not.
Collapse
Affiliation(s)
- Dongshan Zhang
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Yu Liu
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Fuyou Liu
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Zheng Dong
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Cellular Biology and Anatomy, Vascular Biology Center and Department of Biochemistry and Molecular Biology, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
171
|
Koraishy FM, Silva C, Mason S, Wu D, Cantley LG. Hepatocyte growth factor (Hgf) stimulates low density lipoprotein receptor-related protein (Lrp) 5/6 phosphorylation and promotes canonical Wnt signaling. J Biol Chem 2014; 289:14341-50. [PMID: 24692544 DOI: 10.1074/jbc.m114.563213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While Wnt and Hgf signaling pathways are known to regulate epithelial cell responses during injury and repair, whether they exhibit functional cross-talk is not well defined. Canonical Wnt signaling is initiated by the phosphorylation of the Lrp5/6 co-receptors. In the current study we demonstrate that Hgf stimulates Met and Gsk3-dependent and Wnt-independent phosphorylation of Lrp5/6 at three separate activation motifs in subconfluent, de-differentiated renal epithelial cells. Hgf treatment stimulates the selective association of active Gsk3 with Lrp5/6. In contrast, Akt-phosphorylated inactive Gsk3 is excluded from this association. Hgf stimulates β-catenin stabilization and nuclear accumulation and protects against epithelial cell apoptosis in an Lrp5/6-dependent fashion. In vivo, the increase in Lrp5/6 phosphorylation and β-catenin stabilization in the first 6-24 h after renal ischemic injury was significantly reduced in mice lacking Met receptor in the renal proximal tubule. Our results thus identify Hgf as an important transactivator of canonical Wnt signaling that is mediated by Met-stimulated, Gsk3-dependent Lrp5/6 phosphorylation.
Collapse
Affiliation(s)
| | - Cynthia Silva
- the Section of Pediatric Nephrology, Connecticut Children's Medical Center, Hartford, Connecticut 06106
| | - Sherene Mason
- the Section of Pediatric Nephrology, Connecticut Children's Medical Center, Hartford, Connecticut 06106
| | - Dianqing Wu
- the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510 and
| | - Lloyd G Cantley
- From the Section of Nephrology, Department of Internal Medicine and
| |
Collapse
|
172
|
Stem cells and kidney regeneration. J Formos Med Assoc 2014; 113:201-9. [PMID: 24434243 DOI: 10.1016/j.jfma.2013.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 12/24/2022] Open
Abstract
Kidney disease is an escalating burden all over the world. In addition to preventing kidney injury, regenerating damaged renal tissue is as important as to retard the progression of chronic kidney disease to end stage renal disease. Although the kidney is a delicate organ and has only limited regenerative capacity compared to the other organs, an increasing understanding of renal development and renal reprogramming has kindled the prospects of regenerative options for kidney disease. Here, we will review the advances in the kidney regeneration including the manipulation of renal tubular cells, fibroblasts, endothelial cells, and macrophages in renal disease. Several types of stem cells, such as bone marrow-derived cells, adipocyte-derived mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells are also applied for renal regeneration. Endogenous or lineage reprogrammed renal progenitor cells represent an attractive possibility for differentiation into multiple renal cell types. Angiogenesis can ameliorate hypoxia and renal fibrosis. Based on these studies and knowledge, we hope to innovate more reliable pharmacological or biotechnical methods for kidney regeneration medicine.
Collapse
|
173
|
Fedeles S, Gallagher AR. Cell polarity and cystic kidney disease. Pediatr Nephrol 2013; 28:1161-72. [PMID: 23161205 DOI: 10.1007/s00467-012-2337-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Epithelial cell polarity is essential for organ development; aberrations in this process have been implicated in various diseases, including polycystic kidney disease. Establishment and maintenance of cell polarity is governed by a number of molecular processes and how these processes operate remains an interesting question. Conserved protein complexes guide both apical-basolateral polarity and planar cell polarity. In this review we discuss the recent findings that provide insights into polarity mechanisms and the intriguing crosstalk between apical-basolateral polarity and planar cell polarity, and their relationship to cystic kidney disease.
Collapse
Affiliation(s)
- Sorin Fedeles
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208029, 333 Cedar Street, New Haven, CT 06520-8029, USA
| | | |
Collapse
|
174
|
Gesing A, Masternak MM, Lewinski A, Karbownik-Lewinska M, Kopchick JJ, Bartke A. Decreased levels of proapoptotic factors and increased key regulators of mitochondrial biogenesis constitute new potential beneficial features of long-lived growth hormone receptor gene-disrupted mice. J Gerontol A Biol Sci Med Sci 2013; 68:639-51. [PMID: 23197187 PMCID: PMC3708518 DOI: 10.1093/gerona/gls231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/19/2012] [Indexed: 01/06/2023] Open
Abstract
Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results suggest new features of GHRKO mice that may positively affect longevity-decreased levels of proapoptotic factors and increased levels of key regulators of mitochondrial biogenesis. The alterations in levels of the proapoptotic factors and key regulators of mitochondrial biogenesis were not further improved by two other potential life-extending interventions-calorie restriction and visceral fat removal. This may attribute the primary role to GH resistance in the regulation of apoptosis and mitochondrial biogenesis in GHRKO mice in terms of increased life span.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
175
|
Zhou D, Tan RJ, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int 2013; 84:509-20. [PMID: 23715119 PMCID: PMC3758808 DOI: 10.1038/ki.2013.102] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 12/16/2022]
Abstract
Hepatocyte growth factor is a pleiotrophic protein that promotes injury repair and regeneration in multiple organs. Here, we show that after acute kidney injury (AKI), the HGF receptor, c-met, was induced predominantly in renal tubular epithelium. To investigate the role of tubule-specific induction of c-met in AKI, we generated conditional knockout mice, in which the c-met gene was specifically disrupted in renal tubules. These Ksp-met−/−mice were phenotypically normal and had no appreciable defect in kidney morphology and function. However, in AKI induced by cisplatin or ischemia-reperfusion injury, the loss of tubular c-met substantially aggravated renal injury. Compared with controls, Ksp-met−/−mice displayed higher serum creatinine, more severe morphologic lesions, and increased apoptosis, which was accompanied by an increased expression of Bax and Fas ligand and decreased phosphorylation-activation of Akt. In addition, ablation of c-met in renal tubules promoted chemokine expression and renal inflammation after AKI. Consistently, ectopic expression of hepatocyte growth factor in vivo protected the kidneys against AKI in control mice, but not in Ksp-met−/−counterparts. Thus, our results suggest that tubule-specific c-met signaling is crucial in conferring renal protection after AKI, primarily by its anti-apoptotic and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
176
|
Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J Am Soc Nephrol 2013; 24:771-85. [PMID: 23559584 DOI: 10.1681/asn.2012080865] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aging is an independent risk factor for CKD, but the molecular mechanisms that link aging and CKD are not well understood. The antiaging protein Klotho may be an endogenous antagonist of Wnt/β-catenin signaling, which promotes fibrogenesis, suggesting that loss of Klotho may contribute to CKD through increased Wnt/β-catenin activity. Here, normal adult kidneys highly expressed Klotho in the tubular epithelium, but various models of nephropathy exhibited markedly less expression of Klotho. Loss of Klotho was closely associated with increased β-catenin in the diseased kidneys, suggesting an inverse correlation between Klotho and canonical Wnt signaling. In vitro, both full-length and secreted Klotho bound to multiple Wnts, including Wnt1, Wnt4, and Wnt7a. Klotho repressed gene transcription induced by Wnt but not by active β-catenin. Furthermore, Klotho blocked Wnt-triggered activation and nuclear translocation of β-catenin, as well as the expression of its target genes in tubular epithelial cells. Investigating potential mediators of Klotho loss in CKD, we found that TGF-β1 suppressed Klotho expression and concomitantly activated β-catenin; conversely, overexpression of Klotho abolished fibrogenic effects of TGF-β1. In two mouse models of CKD induced by unilateral ureteral obstruction or adriamycin, in vivo expression of secreted Klotho inhibited the activation of renal β-catenin and expression of its target genes. Secreted Klotho also suppressed myofibroblast activation, reduced matrix expression, and ameliorated renal fibrosis. Taken together, these results suggest that Klotho is an antagonist of endogenous Wnt/β-catenin activity; therefore, loss of Klotho may contribute to kidney injury by releasing the repression of pathogenic Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lili Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | | | | | | | | |
Collapse
|
177
|
Abstract
Using conditional knockout models, Zhou et al. firmly establish a renoprotective role of β-catenin in acute kidney injury. Although β-catenin is protective at the injury phase, whether it helps kidney repair remains in question. In a renal cell scratch model, β-catenin suppresses wound healing. Moreover, continuous activation of β-catenin may lead to renal fibrosis. Further investigation should elucidate the distinct roles played by β-catenin and related signaling in kidney injury, repair, and fibrosis.
Collapse
|
178
|
Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol 2012; 229:221-31. [DOI: 10.1002/path.4121] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/24/2012] [Accepted: 09/30/2012] [Indexed: 01/25/2023]
Affiliation(s)
- Takahisa Kawakami
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| | - Shuyu Ren
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| | - Jeremy S Duffield
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| |
Collapse
|
179
|
Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 2012; 303:F1487-94. [PMID: 22993069 DOI: 10.1152/ajprenal.00352.2012] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a well-controlled, reliable animal model of ischemic AKI.
Collapse
Affiliation(s)
- Qingqing Wei
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences Univ., Augusta, GA 30912, USA
| | | |
Collapse
|