151
|
Chan SM, Majeti R. Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. Int J Hematol 2013; 98:648-57. [PMID: 23949914 DOI: 10.1007/s12185-013-1407-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
Aberrant changes in the epigenome are now recognized to be important in driving the development of multiple human cancers including acute myeloid leukemia. Recent advances in sequencing technologies have led to the identification of recurrent mutations in genes that regulate DNA methylation including DNA methyltransferase 3A (DNMT3A), ten-eleven translocation 2 (TET2), and isocitrate dehydrogenase 1 (IDH1) and IDH2. These mutations have been shown to promote self-renewal and block differentiation of hematopoietic stem/progenitor cells. Acquisition of these mutations in hematopoietic stem cells can lead to their clonal expansion resulting in a pre-leukemic stem cell (pre-LSC) population. Pre-LSCs retain the ability to differentiate into the full spectrum of mature daughter cells but can become fully transformed with the acquisition of additional driver mutations. Here, we review the effects of mutations in DNMT3A, TET2, and IDH1/2 on mouse and human hematopoiesis, the current understanding of their role in pre-LSCs, and therapeutic strategies to eliminate this population which may serve as a cellular reservoir for relapse.
Collapse
Affiliation(s)
- Steven M Chan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | | |
Collapse
|
152
|
Shivarov V, Gueorguieva R, Stoimenov A, Tiu R. DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients. Leuk Res 2013; 37:1445-50. [PMID: 23962568 DOI: 10.1016/j.leukres.2013.07.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/27/2013] [Indexed: 11/26/2022]
Abstract
Somatic DNA methyl transferase 3A (DNMT3A) mutations have been recognized recently as recurrent molecular aberrations in acute myeloid leukemia (AML). The precise role of these mutations in leukemogenesis remains elusive but a number of studies have already been conducted to study their potential prognostic value in AML patients with variable results. We performed a meta-analysis on published data from over 4500 AML patients to provide robust evidence supporting DNMT3A mutation testing in clinical setting for AML patients. Our meta-analysis showed that DNMT3A mutations were associated with M4 and M5 AML subtypes. Those mutations conferred significantly worse prognosis with both shorter OS (p=0.0004) and shorter RFS (p=0.002). Notably, DNMT3A mutations appeared to be an independent adverse prognostic factor also in younger patients with normal cytogenetics AML (OS (p=0.01) and RFS (p=0.0005)) and also in the subgroup of patients with high risk genotypes defined according to the criteria of the European Leukemia Net (ELN) (OS (p=0.002)). Therefore, DNMT3A mutational status can improve the risk stratification of AML patients in the setting of integrated mutational profiling.
Collapse
Affiliation(s)
- Velizar Shivarov
- Laboratory of Hematopathology and Immunology, National Hematology Hospital, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
153
|
Abstract
The myelodysplastic syndrome (MDS) is a clonal disorder characterized by increased stem cell proliferation coupled with aberrant differentiation resulting in a high rate of apoptosis and eventual symptoms related to bone marrow failure. Cellular differentiation is an epigenetic process that requires specific and highly ordered DNA methylation and histone modification programs. Aberrant differentiation in MDS can often be traced to abnormal DNA methylation (both gains and losses of DNA methylation genome wide and at specific loci) as well as mutations in genes that regulate epigenetic programs (TET2 and DNMT3a, both involved in DNA methylation control; EZH2 and ASXL1, both involved in histone methylation control). The epigenetic nature of MDS may explain in part the serendipitous observation that it is the disease most responsive to DNA methylation inhibitors; other epigenetic-acting drugs are being explored in MDS as well. Progression in MDS is characterized by further acquisition of epigenetic defects as well as mutations in growth-controlling genes that seem to tip the proliferation/apoptosis balance and result in the development of acute myelogenous leukemia. Although MDS is clinically and physiologically heterogeneous, a case can be made that subsets of the disease can be largely explained by disordered stem cell epigenetics.
Collapse
|
154
|
Therapeutic Options for Patients who are not Eligible for Intensive Chemotherapy. Mediterr J Hematol Infect Dis 2013; 5:e2013050. [PMID: 23936621 PMCID: PMC3736881 DOI: 10.4084/mjhid.2013.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 12/01/2022] Open
Abstract
Although “less intense” therapies are finding more use in AML, the principal problem in AML remains lack of efficacy rather than toxicity. Hence less intense therapies are of little use if they are not more effective as well as less toxic than standard therapies. Assignment of patients to less intense therapies should be based on other factors in addition to age. Azacitidine and decitabine, the most commonly used less intense therapies in AML very probably produce better OS than best “supportive care” or “low-dose” ara-C. However improvement is relatively small when compared to expected life expectancy in the absence of disease. Accordingly, while azacitidine or decitabine should be considered the standards against which newer therapies are compared, continued investigation of potentially more effective therapies needs to continue. Better means for evaluating the large number of these therapies (and their combinations) are also needed.
Collapse
|
155
|
Abstract
PURPOSE OF REVIEW We summarize recent advances for acute myeloid leukemia (AML) in older patients, with a focus on immunotherapeutics. Although the recently updated US SEER data still show that the majority of older AML patients do not receive any therapy, this reality is slowly changing. Advances in our understanding of the biology of AML and in the field of immunology are facilitating the development of alternative therapeutic options for patients, affording more and novel opportunities for potentially curative treatment. RECENT FINDINGS Data from multiple cooperative groups show that older patients benefit from the incorporation of gemtuzumab ozogamicin, an anti-CD33 mAb toxin, into induction regimens. The first prospective study for reduced-intensity conditioning allogeneic hematopoietic stem cell transplantation in older AML patients was reported at the American Society of Hematology Annual Meeting, 2012; the approach was feasible and improved disease-free survival over conventional chemotherapy. Proof-of-concept trials targeting specific antigens such as WT1 or novel unique leukemia-associated antigens are currently underway, as well as other trials using chimeric antigen receptor T cells or (natural killer/effector cells in nontransplantation settings. SUMMARY Wider application of immunotherapies such as allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning have altered the landscape and offer potential for cure of an increasing number of older AML patients.
Collapse
|
156
|
Moore AS, Kearns PR, Knapper S, Pearson ADJ, Zwaan CM. Novel therapies for children with acute myeloid leukaemia. Leukemia 2013; 27:1451-60. [PMID: 23563239 DOI: 10.1038/leu.2013.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/24/2013] [Accepted: 04/04/2013] [Indexed: 12/22/2022]
Abstract
Significant improvements in survival for children with acute myeloid leukaemia (AML) have been made over the past three decades, with overall survival rates now approximately 60-70%. However, these gains can be largely attributed to more intensive use of conventional cytotoxics made possible by advances in supportive care, and although over 90% of children achieve remission with frontline therapy, approximately one third in current protocols relapse. Furthermore, late effects of therapy cause significant morbidity for many survivors. Novel therapies are therefore desperately needed. Early-phase paediatric trials of several new agents such as clofarabine, sorafenib and gemtuzumab ozogamicin have shown encouraging results in recent years. Due to the relatively low incidence of AML in childhood, the success of paediatric early-phase clinical trials is largely dependent upon collaborative clinical trial design by international cooperative study groups. Successfully incorporating novel therapies into frontline therapy remains a challenge, but the potential for significant improvement in the duration and quality of survival for children with AML is high.
Collapse
Affiliation(s)
- A S Moore
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
157
|
Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia 2013; 27:1803-12. [DOI: 10.1038/leu.2013.173] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/24/2013] [Accepted: 06/03/2013] [Indexed: 01/02/2023]
|
158
|
Abáigar M, Ramos F, Benito R, Díez-Campelo M, Sánchez-del-Real J, Hermosín L, Rodríguez JN, Aguilar C, Recio I, Alonso JM, de las Heras N, Megido M, Fuertes M, del Cañizo MC, Hernández-Rivas JM. Prognostic impact of the number of methylated genes in myelodysplastic syndromes and acute myeloid leukemias treated with azacytidine. Ann Hematol 2013; 92:1543-52. [PMID: 23740492 DOI: 10.1007/s00277-013-1799-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
The prognostic impact of the aberrant hypermethylation in response to azacytidine (AZA) remains to be determined. Therefore, we have analyzed the influence of the methylation status prior to AZA treatment on the overall survival and clinical response of myeloid malignancies. DNA methylation status of 24 tumor suppressor genes was analyzed by methylation-specific multiplex ligation-dependent probe amplification in 63 patients with myelodysplastic syndromes and acute myeloid leukemia treated with azacytidine. Most patients (73 %) showed methylation of at least one gene, but only 12 % of patients displayed ≥3 methylated genes. The multivariate analysis demonstrated that the presence of a high number (≥2) of methylated genes (P = 0.022), a high WBC count (P = 0.033), or anemia (P = 0.029) were independent prognostic factors associated with shorter overall survival. The aberrant methylation status did not correlate with the response to AZA, although four of the five patients with ≥3 methylated genes did not respond. By contrast, favorable cytogenetics independently influenced the clinical response to AZA as 64.7 % of patients with good-risk cytogenetic abnormalities responded (P = 0.03). Aberrant methylation status influences the survival of patients treated with AZA, being shorter in those patients with a high number of methylated genes.
Collapse
Affiliation(s)
- María Abáigar
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Walker A, Marcucci G. Molecular prognostic factors in cytogenetically normal acute myeloid leukemia. Expert Rev Hematol 2013; 5:547-58. [PMID: 23146058 DOI: 10.1586/ehm.12.45] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromosomal abnormalities are detected in 50-60% of patients with acute myeloid leukemia (AML) and are important predictors of prognosis and risk of relapse. The remaining patients, those with cytogenetically normal AML, are a seemingly homogeneous group that in fact consists of subsets of patients with distinct clinical outcomes. This heterogeneity is likely related to acquired gene mutations, as well as altered miRNA and gene-expression profiles, which occur within the group. The identification of recurrent molecular abnormalities has improved prognostication and provided insight into mechanisms of leukemogenesis for patients with cytogenetically normal AML, as well as led to the discovery of novel therapeutic targets. As the number of mutations continues to expand, bioinformatic algorithms that allow for integration of multiple markers will be necessary to provide optimal care for patients with this disease.
Collapse
Affiliation(s)
- Alison Walker
- Comprehensive Cancer Center, Ohio State University, B324 Starling Loving Hall, 320 W. 10th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
160
|
Karahoca M, Momparler RL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics 2013; 5:3. [PMID: 23369223 PMCID: PMC3570332 DOI: 10.1186/1868-7083-5-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/04/2013] [Indexed: 12/31/2022] Open
Abstract
5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine), an epigenetic drug that inhibits DNA methylation, is currently used to treat myelodysplastic syndrome (MDS), and is under investigation for treating acute myeloid leukemia (AML) and other malignancies. 5-AZA-CdR can reactivate tumor suppressor genes silenced by aberrant DNA methylation, a frequent event in all types of cancer. Because this epigenetic change is reversible, it is a good target for 5-AZA-CdR therapy. We have reviewed the preclinical data of 5-AZA-CdR to analyze the concentrations and exposure times required to eradicate cancer stem cells. We analyzed the dose-schedules used in animal models that show potent antineoplastic activity of 5-AZA-CdR. We attempted to correlate the preclinical data with the responses obtained in clinical trials of 5-AZA-CdR in patients with cancer. The pharmacokinetics and drug distribution of 5-AZA-CdR are key parameters because adequate therapeutic drug levels are required to eliminate cancer stem cells in all anatomic compartments. The plasma half-life of 5-AZA-CdR in humans is approximately 20 minutes due to the high levels in the liver of cytidine deaminase, the enzyme that inactivates this analogue. This provides a rationale to use an inhibitor of cytidine deaminase in combination with 5-AZA-CdR. Low-dose 5-AZA-CdR is effective for MDS and AML and can induce complete remissions (CR). However, maintenance of CR with low-dose 5-AZA-CdR is difficult. Based on analyses of preclinical and clinical data, low dose 5-AZA-CdR has the potential to be an effective form of therapy in some patients with cancer. For patients who do not respond to low dose therapy we recommend dose-intensive treatment with 5-AZA-CdR. Patients who are candidates for intensive dose 5-AZA-CdR should have a good bone marrow status so as to permit adequate recovery from myelosuppression, the major toxicity of 5-AZA-CdR. Solid tumors are also interesting targets for therapy with 5-AZA-CdR. Both low dose and intensive therapy with 5-AZA-CdR can reduce the proliferative potential of tumor stem cells in animal models. We propose novel dose schedules of 5-AZA-CdR for investigation in patients with cancer. The full chemotherapeutic potential of 5-AZA-CdR to treat cancer merits further clinical investigation and can only be realized when its optimal dose-schedule is determined.
Collapse
Affiliation(s)
- Metin Karahoca
- Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
161
|
Abstract
Acute myeloid leukemia (AML) is proving to be a heterogeneous disease process that is driven by various genetic mutations and aberrant protein expression. As our population ages, the incidence of AML is likely to increase, with approximately a third of adult cases categorized with normal cytogenetics. Advances in technology are now allowing us to explore the genetic expression and protein transcription patterns of AML, providing more information that must find its place in the prognosis and the therapeutic algorithm of this disease. As we learn more, we hope to further categorize patients with normal karyotype AML into discrete risk categories that will help in treatment decision making and further elucidate the necessity for hematopoietic cell transplantation. However, at this time, many of the identified mutations and expression patterns are still experimental, requiring further analysis to determine their exact role in AML.
Collapse
Affiliation(s)
- Raya Mawad
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
162
|
Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I. Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol 2013; 117:1-38. [PMID: 23611284 DOI: 10.1016/b978-0-12-410524-9.00001-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past decade, it has become clear that both genetics and epigenetics play pivotal roles in cancer onset and progression. The importance of epigenetic regulation in proper maintenance of cellular state is highlighted by the frequent mutation of chromatin modulating factors across cancer subtypes. Identification of these mutations has created an interest in designing drugs that target enzymes involved in DNA methylation and posttranslational modification of histones. In this review, we discuss recurrent genetic alterations to epigenetic modulators in both myeloid and lymphoid leukemias. Furthermore, we review how these perturbations contribute to leukemogenesis and impact disease outcome and treatment efficacy. Finally, we discuss how the recent advances in our understanding of chromatin biology may impact treatment of leukemia.
Collapse
|
163
|
Pollyea DA, Zehnder J, Coutre S, Gotlib JR, Gallegos L, Abdel-Wahab O, Greenberg P, Zhang B, Liedtke M, Berube C, Levine R, Mitchell BS, Medeiros BC. Sequential azacitidine plus lenalidomide combination for elderly patients with untreated acute myeloid leukemia. Haematologica 2012; 98:591-6. [PMID: 23242596 DOI: 10.3324/haematol.2012.076414] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There are limited treatment options for older patients with acute myeloid leukemia and prognosis of these patients remains poor, thereby warranting development of novel therapies. We evaluated the efficacy and safety of azacitidine in combination with lenalidomide as front-line therapy for older patients with acute myeloid leukemia. Patients ≥ 60 years of age with untreated acute myeloid leukemia received azacitidine 75 mg/m2 for 7 days followed by escalating doses of lenalidomide daily for 21 days starting on day 8 of each cycle every 6 weeks. Patients received continued therapy until disease progression, unacceptable toxicity, or completion of 12 cycles. Forty-two patients (median age, 74 years) were enrolled with equal distribution according to European LeukemiaNet risk. The overall response rate was 40% (rate of complete remission with or without complete recovery of blood counts = 28%). The median time to complete remission with or without complete recovery of blood counts was 12 weeks, and duration of this status was 28 weeks (range, 4 - >104 weeks). Therapy-related acute myeloid leukemia and a high score on the Hematopoietic Cell Transplantation Comorbidity Index were negative predictors of response. Early death was noted in 17% of patients. Grades ≥ 3 toxicities were uncommon and most adverse events were gastrointestinal, fatigue and myelosuppression. In conclusion, a sequential combination of azacitidine plus lenalidomide has clinical activity in older patients with acute myeloid leukemia, and further studies of this combination are underway.
Collapse
Affiliation(s)
- Daniel A Pollyea
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Connolly R, Stearns V. Epigenetics as a therapeutic target in breast cancer. J Mammary Gland Biol Neoplasia 2012; 17:191-204. [PMID: 22836913 PMCID: PMC3515719 DOI: 10.1007/s10911-012-9263-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/04/2012] [Indexed: 02/06/2023] Open
Abstract
Epigenetics refers to alterations in gene expression due to modifications in histone acetylation and DNA methylation at the promoter regions of genes. Unlike genetic mutations, epigenetic alterations are not due to modifications in the gene primary nucleotide sequence. The importance of epigenetics in the initiation and progression of breast cancer has led many investigators to incorporate this novel and exciting field in breast cancer drug development. Several drugs that target epigenetic alterations, including inhibitors of histone deacetylase (HDAC) and DNA methyltransferase (DNMT), are currently approved for treatment of hematological malignancies and are available for clinical investigation in solid tumors. In this manuscript, we review the critical role of epigenetics in breast cancer including the potential for epigenetic alterations to serve as biomarkers determining breast cancer prognosis and response to therapy. We highlight initial promising results to date with use of epigenetic modifiers in patients with breast cancer and the ongoing challenges involved in the successful establishment of these agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Roisin Connolly
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, CRB I, Room 153, Baltimore, MD 21231-1000, USA,
| | - Vered Stearns
- Breast Cancer Research Chair in Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, CRB I, Room 145, Baltimore, MD 21231-1000, USA,
| |
Collapse
|
165
|
Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia 2012. [PMID: 23178755 DOI: 10.1038/leu.2012.342] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone deacetylase (HDAC) inhibitors either alone or in combination with hypomethylating agents have limited clinical effect in acute myeloid leukemia (AML). Previously, we demonstrated that AML patients with higher miR (microRNA)-29b expression had better response to the hypomethylating agent decitabine. Therefore, an increase in miR-29b expression preceding decitabine treatment may provide a therapeutic advantage. We previously showed that miR-29b expression is suppressed by a repressor complex that includes HDACs. Thus, HDAC inhibition may increase miR-29b expression. We hypothesized that priming AML cells with the novel HDAC inhibitor (HDACI) AR-42 would result in increased response to decitabine treatment via upregulation of miR-29b. Here, we show that AR-42 is a potent HDACI in AML, increasing miR-29b levels and leading to downregulation of known miR-29b targets (that is, SP1, DNMT1, DNMT3A and DNMT3B). We then demonstrated that the sequential administration of AR-42 followed by decitabine resulted in a stronger anti-leukemic activity in vitro and in vivo than decitabine followed by AR-42 or either drug alone. These preclinical results with AR-42 priming before decitabine administration represent a promising, novel treatment approach and a paradigm shift with regard to the combination of epigenetic-targeting compounds in AML, where decitabine has been traditionally given before HDACIs.
Collapse
|
166
|
Brewin JN, Horne GA, Bisling KE, Stewart HJ, Chevassut TJ. Rapid detection of DNMT3A R882 codon mutations allows early identification of poor risk patients with acute myeloid leukemia. Leuk Lymphoma 2012; 54:1336-9. [PMID: 23035745 DOI: 10.3109/10428194.2012.736986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
167
|
Abstract
SUMMARY Acute myeloid leukemia in older patients is of poor outcome, characterized by a specific biology of acute myeloid leukemia and factors related to the patient’s physical condition. Aggressive therapy results in improved survival and quality of life when compared with palliative care. However, not all patients are candidates for such therapy. Disease often demonstrates resistance related to poor-risk cytogenetics, and patients are often unable to tolerate intensive chemotherapy. For those patients, novel agents are being investigated. Understanding of the disease biology, as well as the prognostic factors associated with the host, allows the better estimation of which patients are likely to benefit from standard therapy and which require alternative approaches.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Lyon-Sud Hospital, Hematology Department, Pavillon Marcel Bérard, Bat.1G, 69495 Pierre-Bénite, France
| |
Collapse
|
168
|
Fiskus W, Ganguly S, Kambhampati S, Bhalla KN. Role of additional novel therapies in myeloproliferative neoplasms. Hematol Oncol Clin North Am 2012; 26:959-80. [PMID: 23009932 DOI: 10.1016/j.hoc.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The recent approval of ruxolitinib (INCB018424) for myelofibrosis and the preclinical/clinical development of several additional janus kinase (JAK)-targeted agents have ushered in an era of novel therapies for advanced myeloproliferative neoplasms (MPN), which are associated with constitutive activation of the JAK-signal transducer and activation of transcription (STAT) signaling pathway. Collectively, these novel therapeutic approaches could rapidly broaden the spectrum of available therapies, with potential for improved clinical outcome for patients with advanced MPN. This review covers the recent developments in the testing of novel therapeutic agents other than JAK inhibitors that target signaling pathways in addition to JAK/STAT, or target the deregulated epigenetic mechanisms in MPN.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Kansas Medical Center, 3901 Rainbow Boulevard, Robinson Hall 4030, Mail Stop 1027, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
169
|
Khan I, Altman JK, Licht JD. New strategies in acute myeloid leukemia: redefining prognostic markers to guide therapy. Clin Cancer Res 2012; 18:5163-71. [PMID: 22893630 DOI: 10.1158/1078-0432.ccr-12-0313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although standard therapy for AML has been relatively constant over the past 2 decades, this may be changing with enhanced technologies allowing for the classification of acute myeloid leukemia (AML) into molecularly distinct subsets. Some specific subsets of AML have an excellent prognosis in response to standard therapy, whereas the poor prognosis of AML associated with specific sets of mutations or chromosomal anomalies requires the development of new therapies. Elucidation of the molecular pathogenesis of AML has led to the development of therapies that affect signaling, apoptosis, protein and intermediate metabolism, the surface of the leukemia cell, leukemia cell/stromal interaction, and epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Irum Khan
- Division of Hematology/Oncology, Northwestern University-Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
170
|
Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood 2012; 120:2466-74. [PMID: 22786882 DOI: 10.1182/blood-2012-05-429175] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The outcome of older (≥ 60 years) acute myeloid leukemia (AML) patients is poor, and novel treatments are needed. In a phase 2 trial for older AML patients, low-dose (20 mg/m(2) per day for 10 days) decitabine, a DNA hypomethylating azanucleoside, produced 47% complete response rate with an excellent toxicity profile. To assess the genome-wide activity of decitabine, we profiled pretreatment and post treatment (day 25/course 1) methylomes of marrow samples from patients (n = 16) participating in the trial using deep-sequencing analysis of methylated DNA captured by methyl-binding protein (MBD2). Decitabine significantly reduced global methylation compared with pretreatment baseline (P = .001). Percent marrow blasts did not correlate with global methylation levels, suggesting that hypomethylation was related to the activity of decitabine rather than to a mere decrease in leukemia burden. Hypomethylation occurred predominantly in CpG islands and CpG island-associated regions (P ranged from .03 to .04) A significant concentration (P < .001) of the hypomehtylated CpG islands was found in chromosome subtelomeric regions, suggesting a differential activity of decitabine in distinct chromosome regions. Hypermethylation occurred much less frequently than hypomethylation and was associated with low CpG content regions. Decitabine-related methylation changes were concordant with those previously reported in distinct genes. In summary, our study supports the feasibility of methylome analyses as a pharmacodynamic endpoint for hypomethylating therapies.
Collapse
|
171
|
Mutations in the DNMT3A exon 23 independently predict poor outcome in older patients with acute myeloid leukemia: a SWOG report. Leukemia 2012; 27:238-41. [PMID: 22722750 DOI: 10.1038/leu.2012.168] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
172
|
Holz-Schietinger C, Matje DM, Reich NO. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J Biol Chem 2012; 287:30941-51. [PMID: 22722925 DOI: 10.1074/jbc.m112.366625] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methylation is a key regulator of gene expression and changes in DNA methylation occur early in tumorigenesis. Mutations in the de novo DNA methyltransferase gene, DNMT3A, frequently occur in adult acute myeloid leukemia patients with poor prognoses. Most of the mutations occur within the dimer or tetramer interface, including Arg-882. We have identified that the most prevalent mutation, R882H, and three additional mutants along the tetramer interface disrupt tetramerization. The processive methylation of multiple CpG sites is disrupted when tetramerization is eliminated. Our results provide a possible mechanism that accounts for how DNMT3A mutations may contribute to oncogenesis and its progression.
Collapse
Affiliation(s)
- Celeste Holz-Schietinger
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
| | | | | |
Collapse
|
173
|
Marcucci G, Metzeler KH, Schwind S, Becker H, Maharry K, Mrózek K, Radmacher MD, Kohlschmidt J, Nicolet D, Whitman SP, Wu YZ, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Moore JO, Caligiuri MA, Larson RA, Bloomfield CD. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol 2012; 30:742-50. [PMID: 22291079 DOI: 10.1200/jco.2011.39.2092] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To determine the frequency of DNMT3A mutations, their associations with clinical and molecular characteristics and outcome, and the associated gene- and microRNA-expression signatures in primary cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS Four hundred fifteen previously untreated adults were analyzed for DNMT3A mutations and established prognostic gene mutations and expression markers. Gene- and microRNA-expression profiles were derived using microarrays. RESULTS Younger (< 60 years; n = 181) and older (≥ 60 years; n = 234) patients had similar frequencies of DNMT3A mutations (35.3% v 33.3%). Missense mutations affecting arginine codon 882 (R882-DNMT3A) were more common (n = 92; 62%) than those affecting other codons (non-R882-DNMT3A). DNMT3A-mutated patients did not differ regarding complete remission rate, but had shorter disease-free survival (DFS; P = .03) and, by trend, overall survival (OS; P = .07) than DNMT3A-wild-type patients. In multivariable analyses, DNMT3A mutations remained associated with shorter DFS (P = .01), but not with shorter OS. When analyzed separately, the two DNMT3A mutation types had different significance by age group. Younger patients with non-R882-DNMT3A mutations had shorter DFS (P = .002) and OS (P = .02), whereas older patients with R882-DNMT3A mutations had shorter DFS (P = .005) and OS (P = .002) after adjustment for other clinical and molecular prognosticators. Gene- and microRNA-expression signatures did not accurately predict DNMT3A mutational status. CONCLUSION DNMT3A mutations are frequent in CN-AML, and their clinical significance seems to be age dependent. DNMT3A-R882 mutations are associated with adverse prognosis in older patients, and non-R882-DNMT3A mutations are associated with adverse prognosis in younger patients. Low accuracy of gene- and microRNA-expression signatures in predicting DNMT3A mutation status suggested that the role of these mutations in AML remains to be elucidated.
Collapse
Affiliation(s)
- Guido Marcucci
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|