151
|
Dendritic cells in hematological malignancies. Crit Rev Oncol Hematol 2016; 108:86-96. [DOI: 10.1016/j.critrevonc.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
|
152
|
Anderson KC. Progress and Paradigms in Multiple Myeloma. Clin Cancer Res 2016; 22:5419-5427. [PMID: 28151709 PMCID: PMC5300651 DOI: 10.1158/1078-0432.ccr-16-0625] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Remarkable progress has been achieved in multiple myeloma, and patient median survival has been extended 3- to 4-fold. Specifically, there have been 18 newly approved treatments for multiple myeloma in the past 12 years, including seven in 2015, and the treatment paradigm and patient outcome have been transformed. The definition of patients benefitting from these therapies has been broadened. Response criteria now include minimal residual disease (MRD), assessed in bone marrow by multicolor flow cytometry or sequencing, and by imaging for extramedullary disease. Initial therapy for transplant candidates is a triplet incorporating novel therapies-that is, lenalidomide, bortezomib, and dexamethasone or cyclophosphamide, bortezomib, and dexamethasone. Lenalidomide maintenance until progression can prolong progression-free and overall survival in standard-risk multiple myeloma, with incorporation of proteasome inhibitor for high-risk disease. Studies are evaluating the value of early versus late transplant and MRD as a therapeutic goal to inform therapy. In nontransplant patients, triplet therapies are also preferred, with doublet therapy reserved for frail patients, and maintenance as described above. The availability of second-generation proteasome inhibitors (carfilzomib and ixazomib), immunomodulatory drugs (pomalidomide), histone deacetylase inhibitors (panobinostat), and monoclonal antibodies (elotuzumab and daratumumab) allows for effective combination therapies of relapsed disease as well. Finally, novel therapies targeting protein degradation, restoring autologous memory anti-multiple myeloma immunity, and exploiting genetic vulnerabilities show promise to improve patient outcome even further. Clin Cancer Res; 22(22); 5419-27. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "MULTIPLE MYELOMA MULTIPLYING THERAPIES".
Collapse
Affiliation(s)
- Kenneth C Anderson
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
153
|
Jelinek T, Hajek R. PD-1/PD-L1 inhibitors in multiple myeloma: The present and the future. Oncoimmunology 2016; 5:e1254856. [PMID: 28123899 DOI: 10.1080/2162402x.2016.1254856] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 01/05/2023] Open
Abstract
The introduction of PD-1/PD-L1 pathway inhibitors has marked a significant milestone in the treatment of various types of solid tumors. The current situation in multiple myeloma (MM) is rather unclear, as distinct research groups have reported discordant results. This discrepancy dominantly concerns the expression of PD-1/PD-L1 molecules as well as the identification of the responsible immune effector cell population. The results of monotherapy with PD-1/PD-L1 inhibitors have been unsatisfactory in MM, suggesting that a combination approach is needed. The most logical partners are immunomodulatory agents as they possess many synergistic effects. We are also proposing other rational and promising combinations (e.g., daratumumab, ibrutinib, anti-CD137) that warrant further investigation.
Collapse
Affiliation(s)
- T Jelinek
- Faculty of Science, University of Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Czech Republic; Centro de Investigacion Medica Aplicada (CIMA), Clinica Universidad de Navarra, IDISNA, Pamplona, Spain
| | - R Hajek
- Department of Haematooncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava , Czech Republic
| |
Collapse
|
154
|
Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, Greil R, Jöhrer K. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol 2016; 9:116. [PMID: 27809856 PMCID: PMC5093947 DOI: 10.1186/s13045-016-0345-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple myeloma is an incurable plasma cell malignancy that is mostly restricted to the bone marrow. Cancer-induced dysfunction of cytotoxic T cells at the tumor site may be responsible for immune evasion and therapeutical failure of immunotherapies. Therefore, enhanced knowledge about the actual status of T cells in myeloma bone marrow is urgently needed. Here, we assessed the expression of inhibitory molecules PD-1, CTLA-4, 2B4, CD160, senescence marker CD57, and CD28 on T cells of naive and treated myeloma patients in the bone marrow and peripheral blood and collected data on T cell subset distribution in both compartments. In addition, T cell function concerning proliferation and expression of T-bet, IL-2, IFNγ, and CD107a was investigated after in vitro stimulation by CD3/CD28. Finally, data was compared to healthy, age-matched donor T cells from both compartments. METHODS Multicolor flow cytometry was utilized for the analyses of surface molecules, intracellular staining of cytokines was also performed by flow cytometry, and proliferation was assessed by 3H-thymidine incorporation. Statistical analyses were performed utilizing unpaired T test and Mann-Whitney U test. RESULTS We observed enhanced T cell exhaustion and senescence especially at the tumor site. CD8+ T cells expressed several molecules associated with T cell exhaustion (PD-1, CTLA-4, 2B4, CD160) and T cell senescence (CD57, lack of CD28). This phenotype was associated with lower proliferative capacity and impaired function. Despite a high expression of the transcription factor T-bet, CD8+ T cells from the tumor site failed to produce IFNγ after CD3/CD28 in vitro restimulation and displayed a reduced ability to degranulate in response to T cell stimuli. Notably, the percentage of senescent CD57+CD28- CD8+ T cells was significantly lower in treated myeloma patients when compared to untreated patients. CONCLUSIONS T cells from the bone marrow of myeloma patients were more severely impaired than peripheral T cells. While our data suggest that terminally differentiated cells are preferentially deleted by therapy, immune-checkpoint molecules were still present on T cells supporting the potential of checkpoint inhibitors to reactivate T cells in myeloma patients in combination therapies. However, additional avenues to restore anti-myeloma T cell responses are urgently needed.
Collapse
Affiliation(s)
| | | | - Rainer Biedermann
- Department of Orthopedic Surgery, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Ella Willenbacher
- Department of Internal Medicine V, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Richard Greil
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria.,Salzburg Cancer Research Institute (SCRI), Müllner Hauptstraße 48, 5020, Salzburg, Austria.,Third Medical Department at The Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, Salzburg, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
155
|
Neri P, Bahlis NJ, Lonial S. New Strategies in Multiple Myeloma: Immunotherapy as a Novel Approach to Treat Patients with Multiple Myeloma. Clin Cancer Res 2016; 22:5959-5965. [PMID: 27797968 DOI: 10.1158/1078-0432.ccr-16-0184] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is a B-cell malignancy characterized by proliferation of monoclonal plasma cells in the bone marrow. Although new therapeutic options introduced in recent years have resulted in improved survival outcomes, multiple myeloma remains incurable for a large number of patients, and new treatment options are urgently needed. Over the last 5 years, there has been a renewed interest in the clinical potential of immunotherapy for the treatment of multiple myeloma. Clinical progression of myeloma is known to be associated with progressive immune dysregulation and loss of immune surveillance that contribute to disease progression in association with progressive genetic complexity, rendering signaling-based treatments less effective. A variety of strategies to reverse the multiple myeloma-induced immunosuppression has been developed either in the form of immunomodulatory drugs, checkpoint inhibitors, mAbs, engineered T cells, and vaccines. They have shown encouraging results in patients with relapsed refractory multiple myeloma and hold great promise in further improving patient outcomes in multiple myeloma. This review will summarize the major approaches in multiple myeloma immunotherapies and discuss the mechanisms of action and clinical activity of these strategies. Clin Cancer Res; 22(24); 5959-65. ©2016 AACR.
Collapse
Affiliation(s)
- Paola Neri
- Division of Hematology and Bone Marrow Transplant, University of Calgary, Alberta, Canada.,Southern Alberta, Cancer Research Institute (SACRI), Calgary, Alberta, Canada
| | - Nizar J Bahlis
- Division of Hematology and Bone Marrow Transplant, University of Calgary, Alberta, Canada.,Southern Alberta, Cancer Research Institute (SACRI), Calgary, Alberta, Canada
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
156
|
PD-1/PD-L1 expression in extra-medullary lesions of multiple myeloma. Leuk Res 2016; 49:98-101. [DOI: 10.1016/j.leukres.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/13/2016] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
|
157
|
Alatrash G, Daver N, Mittendorf EA. Targeting Immune Checkpoints in Hematologic Malignancies. Pharmacol Rev 2016; 68:1014-1025. [PMID: 27664133 PMCID: PMC11060433 DOI: 10.1124/pr.116.012682] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of antibodies that target immune checkpoint molecules on the surface of T-lymphocytes and/or tumor cells has revolutionized our approach to cancer therapy. Cytotoxic-T-lymphocyte antigen (CTLA-4) and programmed cell death protein 1 (PD-1) are the two most commonly targeted immune checkpoint molecules. Although the role of antibodies that target CTLA-4 and PD-1 has been established in solid tumor malignancies and Food and Drug Administration approved for melanoma and non-small cell lung cancer, there remains a desperate need to incorporate immune checkpoint inhibition in hematologic malignancies. Unlike solid tumors, a number of considerations must be addressed to appropriately employ immune checkpoint inhibition in hematologic malignancies. For example, hematologic malignancies frequently obliterate the bone marrow and lymph nodes, which are critical immune organs that must be restored for appropriate response to immune checkpoint inhibition. On the other hand, hematologic malignancies are the quintessential immune responsive tumor type, as proven by the success of allogeneic stem cell transplantation (allo-SCT) in hematologic malignancies. Also, sharing an immune cell lineage, malignant hematologic cells often express immune checkpoint molecules that are absent in solid tumor cells, thereby offering direct targets for immune checkpoint inhibition. A number of clinical trials have demonstrated the potential for immune checkpoint inhibition in hematologic malignancies before and after allo-SCT. The ongoing clinical studies and complimentary immune correlatives are providing a growing body of knowledge regarding the role of immune checkpoint inhibition in hematologic malignancies, which will likely become part of the standard of care for hematologic malignancies.
Collapse
Affiliation(s)
- Gheath Alatrash
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
158
|
Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood 2016; 128:1590-603. [DOI: 10.1182/blood-2016-03-707547] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Key Points
OCs play a crucial role in myeloma-induced immunosuppressive microenvironment. Therapeutic anti-CD38 mAb partially overcomes the immunosuppressive effect of OCs.
Collapse
|
159
|
Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, Syed K, Liu K, van de Donk NWCJ, Weiss BM, Ahmadi T, Lokhorst HM, Mutis T, Sasser AK. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016; 128:384-94. [PMID: 27222480 PMCID: PMC4957162 DOI: 10.1182/blood-2015-12-687749] [Citation(s) in RCA: 688] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/03/2016] [Indexed: 12/11/2022] Open
Abstract
Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8(+):CD4(+) and CD8(+):Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD8(+) PB T-cell counts. Depletion of CD38(+) immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration.
Collapse
Affiliation(s)
- Jakub Krejcik
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands; Institute of Regional Health Science and Department of Hematology, Sections of Internal Medicine, Vejle Hospital and University of Southern Denmark, Vejle, Denmark
| | | | - Inger S Nijhof
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bie Verbist
- Janssen Research & Development, Beerse, Belgium
| | - Jaime Bald
- Janssen Research & Development, LLC, Spring House, PA
| | - Torben Plesner
- Institute of Regional Health Science and Department of Hematology, Sections of Internal Medicine, Vejle Hospital and University of Southern Denmark, Vejle, Denmark
| | - Khaja Syed
- Janssen Research & Development, LLC, Spring House, PA
| | - Kevin Liu
- Janssen Research & Development, LLC, Raritan, NJ; and
| | | | - Brendan M Weiss
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Henk M Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - A Kate Sasser
- Janssen Research & Development, LLC, Spring House, PA
| |
Collapse
|
160
|
APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 2016; 127:3225-36. [PMID: 27127303 DOI: 10.1182/blood-2016-01-691162] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/13/2016] [Indexed: 01/01/2023] Open
Abstract
Here we show that overexpression or activation of B-cell maturation antigen (BCMA) by its ligand, a proliferation-inducing ligand (APRIL), promotes human multiple myeloma (MM) progression in vivo. BCMA downregulation strongly decreases viability and MM colony formation; conversely, BCMA overexpression augments MM cell growth and survival via induction of protein kinase B (AKT), MAPK, and nuclear factor (NF)-κB signaling cascades. Importantly, BCMA promotes in vivo growth of xenografted MM cells harboring p53 mutation in mice. BCMA-overexpressing tumors exhibit significantly increased CD31/microvessel density and vascular endothelial growth factor compared with paired control tumors. These tumors also express increased transcripts crucial for osteoclast activation, adhesion, and angiogenesis/metastasis, as well as genes mediating immune inhibition including programmed death ligand 1, transforming growth factor β, and interleukin 10. These target genes are consistently induced by paracrine APRIL binding to BCMA on MM cells, which is blocked by an antagonistic anti-APRIL monoclonal antibody hAPRIL01A (01A). 01A is cytotoxic against MM cells even in the presence of protective bone marrow (BM) myeloid cells including osteoclasts, macrophages, and plasmacytoid dendritic cells. 01A further decreases APRIL-induced adhesion and migration of MM cells via blockade of canonical and noncanonical NF-κB pathways. Moreover, 01A prevents in vivo MM cell growth within implanted human bone chips in SCID mice. Finally, the effect of 01A on MM cell viability is enhanced by lenalidomide and bortezomib. Taken together, these data delineate new molecular mechanisms of in vivo MM growth and immunosuppression critically dependent on BCMA and APRIL in the BM microenvironment, further supporting targeting this prominent pathway in MM.
Collapse
|
161
|
Song Y, Ray A, Li S, Das DS, Tai YT, Carrasco RD, Chauhan D, Anderson KC. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma. Leukemia 2016; 30:1877-86. [PMID: 27118409 DOI: 10.1038/leu.2016.97] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Proteasome inhibitor bortezomib is an effective therapy for relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance can limit its long-term utility. Recent research has focused on targeting ubiquitin receptors upstream of 20S proteasome, with the aim of generating less toxic therapies. Here we show that 19S proteasome-associated ubiquitin receptor Rpn13 is more highly expressed in MM cells than in normal plasma cells. Rpn13-siRNA (small interfering RNA) decreases MM cell viability. A novel agent RA190 targets Rpn13 and inhibits proteasome function, without blocking the proteasome activity or the 19S deubiquitylating activity. CRISPR/Cas9 Rpn13-knockout demonstrates that RA190-induced activity is dependent on Rpn13. RA190 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma and overcomes bortezomib resistance. Anti-MM activity of RA190 is associated with induction of caspase-dependent apoptosis and unfolded protein response-related apoptosis. MM xenograft model studies show that RA190 is well tolerated, inhibits tumor growth and prolongs survival. Combining RA190 with bortezomib, lenalidomide or pomalidomide induces synergistic anti-MM activity. Our preclinical data validates targeting Rpn13 to overcome bortezomib resistance, and provides the framework for clinical evaluation of Rpn13 inhibitors, alone or in combination, to improve patient outcome in MM.
Collapse
Affiliation(s)
- Y Song
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Ray
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - D S Das
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Y T Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R D Carrasco
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
162
|
A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia 2016; 30:2187-2197. [PMID: 27118403 PMCID: PMC5093055 DOI: 10.1038/leu.2016.96] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
The hypoxic bone-marrow (BM) microenvironment confers growth/survival and drug-resistance in multiple myeloma (MM) cells. Novel therapies targeting the MM cell in its hypoxic-BM milieu may overcome drug resistance. Recent studies led to the development of a novel molecule RRx-001 with hypoxia-selective epigenetic and Nitric Oxide-donating properties. Here we demonstrate that RRx-001 decreases the viability of MM cell lines and primary patient cells, as well as overcomes drug-resistance. RRx-001 inhibits MM cell growth in the presence of BM stromal cells. RRx-001 induced apoptosis is associated with: 1) activation of caspases; 2) release of ROS and nitrogen-species; 3) induction of DNA damage via ATM/γ-H2AX; and 4) decrease in DNA methytransferase (DNMT) and global methylation. RNA interference study shows a predominant role of DNMT1 in MM cell survival versus DNMT3a or DNMT3b. Deubiquitylating enzyme USP7 stimulates DNMT1 activity; and conversely, USP7-siRNA reduced DNMT1 activity and decreased MM cell viability. RRx-001 plus USP7 inhibitor P5091 triggered synergistic anti-MM activity. MM xenograft studies show that RRx-001 is well tolerated, inhibits tumor growth, and enhances survival. Combining RRx-001 with pomalidomide, bortezomib or SAHA induces synergistic anti-MM activity. Our results provide the rationale for translation of RRx-001, either alone or in combination, to clinical evaluation in MM.
Collapse
|
163
|
Perales MA, Sauter CS, Armand P. Reprint of: Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biol Blood Marrow Transplant 2016; 22:S9-S14. [PMID: 26899275 DOI: 10.1016/j.bbmt.2016.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
Autologous stem cell transplantation (ASCT) is indicated in a number of hematologic malignancies, including multiple myeloma, non-Hodgkin lymphoma, and Hodgkin lymphoma. Relapse, however, remains 1 of the main causes of post-ASCT failure, and several strategies are being investigated to decrease the risk of relapse of progression. Recent advances in the treatment of hematological malignancies have included adoptive transfer of genetically modified T cells that express chimeric antigen receptors or T cell receptors, as well the use of checkpoint inhibitors. Early clinical results in non-transplantation patients have been very promising. This review will focus on the use of gene-modified T cells and checkpoint inhibitors in stem cell transplantation.
Collapse
Affiliation(s)
- Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Craig S Sauter
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
164
|
Shi X, Li M, Cui M, Niu C, Xu J, Zhou L, Li W, Gao Y, Kong W, Cui J, Hu J, Jin H. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid. Am J Cancer Res 2016; 6:600-614. [PMID: 27152238 PMCID: PMC4851840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023] Open
Abstract
Natural killer (NK) cells play an essential role in the fight against tumor development. The therapeutic use of autologous NK cells has been exploited to treat human malignancies, yet only limited antitumor activity is observed in cancer patients. In this study, we sought to augment the antitumor activity of NK cells using epigenetic approaches. Four small molecules that have been known to promote epigenetic reprogramming were tested for their ability to enhance the activity of NK cells. Using a tumor cell lysis assay, we found that the DNA demethylating agent 5-azacytidine and vitamin C did not significantly affect the tumor killing ability of NK cells. The thyroid hormone triiodothyronine (T3) slightly increased the activity of NK cells. The histone deacetylase inhibitor valproic acid (VPA), however, inhibited NK cell lytic activity against leukemic cells in a dose-dependent manner. Pretreatment using VPA reduced IFNγ secretion, impaired CD107a degranulation, and induced apoptosis by activating the PD-1/PD-L1 pathway. VPA downregulated the expression of the activating receptor NKG2D (natural-killer group 2, member D) by inducing histone K9 hypermethylation and DNA methylation in the gene promoter. Histone deacetylase inhibitors have been developed as anticancer agents for use as monotherapies or in combination with other anticancer therapies. Our data suggest that the activity of histone deacetylase inhibitors on NK cell activity should be considered in drug development.
Collapse
Affiliation(s)
- Xiumin Shi
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| | - Min Li
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| | - Meizi Cui
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| | - Chao Niu
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| | - Jianting Xu
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| | - Lei Zhou
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| | - Wei Li
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| | - Yushun Gao
- Department of Thoracic Surgical Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing 100021, China
| | - Weisheng Kong
- BASO Cell Science & Technology Co., LtdZhuhai, Guangdong 519015, China
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| | - Jifan Hu
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
- Stanford University Medical School, Palo Alto Veterans Institute for ResearchPalo Alto, CA 94304, USA
| | - Haofan Jin
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun, Jilin 130021, China
| |
Collapse
|
165
|
Abstract
As calculated by the meta-analysis of Korn et al., the prognosis of metastatic melanoma in the pretarget and immunological therapy era was poor, with a median survival of 6.2 and a 1-year life expectancy of 25.5%. Nowadays, significant advances in melanoma treatment have been gained, and immunotherapy is one of the promising approaches to get to durable responses and survival improvement. The aim of the present review is to highlight the recent innovations in melanoma immunotherapy and to propose a critical perspective of the future directions of this enthralling oncology subspecialty.
Collapse
Affiliation(s)
- Sara Valpione
- Christie Hospital NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, UK
| | - Luca G Campana
- Department of Surgery, Oncology & Gastroenterology, University of Padova, via Gattamelata 64, 35128 Padova, Italy
| |
Collapse
|
166
|
Abstract
Unprecedented advances in multiple myeloma (MM) therapy during the last 15 years are predominantly based on our increasing understanding of the pathophysiologic role of the bone marrow (BM) microenvironment. Indeed, new treatment paradigms, which incorporate thalidomide, immunomodulatory drugs (IMiDs), and proteasome inhibitors, target the tumor cell as well as its BM microenvironment. Ongoing translational research aims to understand in more detail how disordered BM-niche functions contribute to MM pathogenesis and to identify additional derived targeting agents. One of the most exciting advances in the field of MM treatment is the emergence of immune therapies including elotuzumab, daratumumab, the immune checkpoint inhibitors, Bispecific T-cell engagers (BiTes), and Chimeric antigen receptor (CAR)-T cells. This chapter will review our knowledge on the pathophysiology of the BM microenvironment and discuss derived novel agents that hold promise to further improve outcome in MM.
Collapse
Affiliation(s)
- Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
167
|
CD123 immunostaining patterns in systemic mastocytosis: differential expression in disease subgroups and potential prognostic value. Leukemia 2015; 30:914-8. [DOI: 10.1038/leu.2015.348] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/09/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022]
|
168
|
Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biol Blood Marrow Transplant 2015; 22:17-22. [PMID: 26485445 DOI: 10.1016/j.bbmt.2015.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/14/2015] [Indexed: 01/21/2023]
Abstract
Autologous stem cell transplantation (ASCT) is indicated in a number of hematologic malignancies, including multiple myeloma, non-Hodgkin lymphoma, and Hodgkin lymphoma. Relapse, however, remains 1 of the main causes of post-ASCT failure, and several strategies are being investigated to decrease the risk of relapse of progression. Recent advances in the treatment of hematological malignancies have included adoptive transfer of genetically modified T cells that express chimeric antigen receptors or T cell receptors, as well the use of checkpoint inhibitors. Early clinical results in nontransplantation patients have been very promising. This review will focus on the use of gene-modified T cells and checkpoint inhibitors in stem cell transplantation.
Collapse
|
169
|
Das DS, Ray A, Song Y, Richardson P, Trikha M, Chauhan D, Anderson KC. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide. Br J Haematol 2015; 171:798-812. [PMID: 26456076 DOI: 10.1111/bjh.13780] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
Abstract
The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: (i) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage, (ii) downregulation of cereblon (CRBN), IRF4, MYC and MCL1, and (iii) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM.
Collapse
Affiliation(s)
- Deepika S Das
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Arghya Ray
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Song
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Dharminder Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
170
|
PDL1 Expression on Plasma and Dendritic Cells in Myeloma Bone Marrow Suggests Benefit of Targeted anti PD1-PDL1 Therapy. PLoS One 2015; 10:e0139867. [PMID: 26444869 PMCID: PMC4596870 DOI: 10.1371/journal.pone.0139867] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/16/2015] [Indexed: 12/28/2022] Open
Abstract
In this study we set out to investigate whether anti PDL1 or PD–1 treatment targeting the immune system could be used against multiple myeloma. DCs are important in regulating T cell responses against tumors. We therefore determined PDL1 and PDL2 expression on DC populations in bone marrow of patients with plasma cell disorders using multicolour Flow Cytometry. We specifically looked at CD141+ and CD141- myeloid and CD303+ plasmacytoid DC. The majority of plasma cells (PC) and DC subpopulations expressed PDL1, but the proportion of positive PDL1+ cells varied among patients. A correlation between the proportion of PDL1+ PC and CD141+ mDC was found, suggesting both cell types could down-regulate the anti-tumor T cell response.
Collapse
|
171
|
Immunotherapy for Multiple Myeloma, Past, Present, and Future: Monoclonal Antibodies, Vaccines, and Cellular Therapies. Curr Hematol Malig Rep 2015; 10:395-404. [DOI: 10.1007/s11899-015-0283-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
172
|
|
173
|
Suen H, Brown R, Yang S, Ho PJ, Gibson J, Joshua D. The failure of immune checkpoint blockade in multiple myeloma with PD-1 inhibitors in a phase 1 study. Leukemia 2015; 29:1621-2. [DOI: 10.1038/leu.2015.104] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|