151
|
Lohman GJS, Chen L, Evans TC. Kinetic characterization of single strand break ligation in duplex DNA by T4 DNA ligase. J Biol Chem 2011; 286:44187-44196. [PMID: 22027837 PMCID: PMC3243518 DOI: 10.1074/jbc.m111.284992] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/14/2011] [Indexed: 01/24/2023] Open
Abstract
T4 DNA ligase catalyzes phosphodiester bond formation between juxtaposed 5'-phosphate and 3'-hydroxyl termini in duplex DNA in three steps: 1) enzyme-adenylylate formation by reaction with ATP; 2) adenylyl transfer to a 5'-phosphorylated polynucleotide to generate adenylylated DNA; and 3) phosphodiester bond formation with release of AMP. This investigation used synthetic, nicked DNA substrates possessing either a 5'-phosphate or a 5'-adenylyl phosphate. Steady state experiments with a nicked substrate containing juxtaposed dC and 5'-phosphorylated dT deoxynucleotides (substrate 1) yielded kcat and kcat/Km values of 0.4±0.1 s(-1) and 150±50 μm(-1) s(-1), respectively. Under identical reaction conditions, turnover of an adenylylated version of this substrate (substrate 1A) yielded kcat and kcat/Km values of 0.64±0.08 s(-1) and 240±40 μm(-1) s(-1). Single turnover experiments utilizing substrate 1 gave fits for the forward rates of Step 2 (k2) and Step 3 (k3) of 5.3 and 38 s(-1), respectively, with the slowest step ∼10-fold faster than the rate of turnover seen under steady state conditions. Single turnover experiments with substrate 1A produced a Step 3 forward rate constant of 4.3 s(-1), also faster than the turnover rate of 1A. Enzyme self-adenylylation was confirmed to also occur on a fast time scale (∼6 s(-1)), indicating that the rate-limiting step for T4 DNA ligase nick sealing is not a chemical step but rather is most likely product release. Pre-steady state reactions displayed a clear burst phase, consistent with this conclusion.
Collapse
Affiliation(s)
| | - Lixin Chen
- New England Biolabs Inc., Ipswich, Massachusetts 01938-2723
| | - Thomas C Evans
- New England Biolabs Inc., Ipswich, Massachusetts 01938-2723.
| |
Collapse
|
152
|
Tseng HM, Shum D, Bhinder B, Escobar S, Veomett NJ, Tomkinson AE, Gin DY, Djaballah H, Scheinberg DA. A high-throughput scintillation proximity-based assay for human DNA ligase IV. Assay Drug Dev Technol 2011; 10:235-49. [PMID: 22192310 DOI: 10.1089/adt.2011.0404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ionizing radiation (IR) and certain chemotherapeutic drugs are designed to generate cytotoxic DNA double-strand breaks (DSBs) in cancer cells. Inhibition of the major DSB repair pathway, nonhomologous end joining (NHEJ), will enhance the cytotoxicity of these agents. Screening for inhibitors of the DNA ligase IV (Lig4), which mediates the final ligation step in NHEJ, offers a novel target-based drug discovery opportunity. For this purpose, we have developed an enzymatic assay to identify chemicals that block the transfer of [α-(33)P]-AMP from the complex Lig4-[α-(33)P]-AMP onto the 5' end of a double-stranded DNA substrate and adapted it to a scintillation proximity assay (SPA). A screen was performed against a collection of 5,280 compounds. Assay statistics show an average Z' value of 0.73, indicative of a robust assay in this SPA format. Using a threshold of >20% inhibition, 10 compounds were initially scored as positive hits. A follow-up screen confirmed four compounds with IC(50) values ranging from 1 to 30 μM. Rabeprazole and U73122 were found to specifically block the adenylate transfer step and DNA rejoining; in whole live cell assays, these compounds were found to inhibit the repair of DSBs generated by IR. The ability to screen and identify Lig4 inhibitors suggests that they may have utility as chemo- and radio-sensitizers in combination therapy and provides a rationale for using this screening strategy to identify additional inhibitors.
Collapse
Affiliation(s)
- Hui-Min Tseng
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10583, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Rahmeh AA, Zhou Y, Xie B, Li H, Lee EYC, Lee MYWT. Phosphorylation of the p68 Subunit of Pol δ Acts as a Molecular Switch To Regulate Its Interaction with PCNA. Biochemistry 2011; 51:416-24. [DOI: 10.1021/bi201638e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amal A. Rahmeh
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Yajing Zhou
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Bin Xie
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Hao Li
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Ernest Y. C. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Marietta Y. W. T. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| |
Collapse
|
154
|
Brown JA, Pack LR, Fowler JD, Suo Z. Presteady state kinetic investigation of the incorporation of anti-hepatitis B nucleotide analogues catalyzed by noncanonical human DNA polymerases. Chem Res Toxicol 2011; 25:225-33. [PMID: 22132702 DOI: 10.1021/tx200458s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antiviral nucleoside analogues have been developed to inhibit the enzymatic activities of the hepatitis B virus (HBV) polymerase, thereby preventing the replication and production of HBV. However, the usage of these analogues can be limited by drug toxicity because the 5'-triphosphates of these nucleoside analogues (nucleotide analogues) are potential substrates for human DNA polymerases to incorporate into host DNA. Although they are poor substrates for human replicative DNA polymerases, it remains to be established whether these nucleotide analogues are substrates for the recently discovered human X- and Y-family DNA polymerases. Using presteady state kinetic techniques, we have measured the substrate specificity values for human DNA polymerases β, λ, η, ι, κ, and Rev1 incorporating the active forms of the following anti-HBV nucleoside analogues approved for clinical use: adefovir, tenofovir, lamivudine, telbivudine, and entecavir. Compared to the incorporation of a natural nucleotide, most of the nucleotide analogues were incorporated less efficiently (2 to >122,000) by the six human DNA polymerases. In addition, the potential for entecavir and telbivudine, two drugs which possess a 3'-hydroxyl, to become embedded into human DNA was examined by primer extension and DNA ligation assays. These results suggested that telbivudine functions as a chain terminator, while entecavir was efficiently extended by the six enzymes and was a substrate for human DNA ligase I. Our findings suggested that incorporation of anti-HBV nucleotide analogues catalyzed by human X- and Y-family polymerases may contribute to clinical toxicity.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
155
|
Arakawa H, Bednar T, Wang M, Paul K, Mladenov E, Bencsik-Theilen AA, Iliakis G. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells. Nucleic Acids Res 2011; 40:2599-610. [PMID: 22127868 PMCID: PMC3315315 DOI: 10.1093/nar/gkr1024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Institute for Radiocytogenetics, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
157
|
Structure of an aprataxin-DNA complex with insights into AOA1 neurodegenerative disease. Nat Struct Mol Biol 2011; 18:1189-95. [PMID: 21984210 PMCID: PMC3210380 DOI: 10.1038/nsmb.2146] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/27/2011] [Indexed: 01/04/2023]
Abstract
DNA ligases finalize DNA replication and repair through DNA nick-sealing reactions that can abort to generate cytotoxic 5'-adenylation DNA damage. Aprataxin (Aptx) catalyzes direct reversal of 5'-adenylate adducts to protect genome integrity. Here the structure of a Schizosaccharomyces pombe Aptx-DNA-AMP-Zn(2+) complex reveals active site and DNA interaction clefts formed by fusing a histidine triad (HIT) nucleotide hydrolase with a DNA minor groove-binding C(2)HE zinc finger (Znf). An Aptx helical 'wedge' interrogates the base stack for sensing DNA ends or DNA nicks. The HIT-Znf, the wedge and an '[F/Y]PK' pivot motif cooperate to distort terminal DNA base-pairing and direct 5'-adenylate into the active site pocket. Structural and mutational data support a wedge-pivot-cut HIT-Znf catalytic mechanism for 5'-adenylate adduct recognition and removal and suggest that mutations affecting protein folding, the active site pocket and the pivot motif underlie Aptx dysfunction in the neurodegenerative disorder ataxia with oculomotor apraxia 1 (AOA1).
Collapse
|
158
|
Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair. Mol Cell Biol 2011; 31:4623-32. [PMID: 21930793 DOI: 10.1128/mcb.05715-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each day, approximately 20,000 oxidative lesions form in the DNA of every nucleated human cell. The base excision repair (BER) enzymes that repair these lesions must function in a chromatin milieu. We have determined that the DNA glycosylase hNTH1, apurinic endonuclease (APE), and DNA polymerase β (Pol β), which catalyze the first three steps in BER, are able to process their substrates in both 601- and 5S ribosomal DNA (rDNA)-based nucleosomes. hNTH1 formed a discrete ternary complex that was displaced by the addition of APE, suggesting an orderly handoff of substrates from one enzyme to the next. In contrast, DNA ligase IIIα-XRCC1, which completes BER, was appreciably active only at concentrations that led to nucleosome disruption. Ligase IIIα-XRCC1 was also able to bind and disrupt nucleosomes containing a single base gap and, because of this property, enhanced both its own activity and that of Pol β on nucleosome substrates. Collectively, these findings provide insights into rate-limiting steps that govern BER in chromatin and reveal a unique role for ligase IIIα-XRCC1 in enhancing the efficiency of the final two steps in the BER of lesions in nucleosomes.
Collapse
|
159
|
Hammel M, Rey M, Yu Y, Mani RS, Classen S, Liu M, Pique ME, Fang S, Mahaney BL, Weinfeld M, Schriemer DC, Lees-Miller SP, Tainer JA. XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem 2011; 286:32638-50. [PMID: 21775435 PMCID: PMC3173232 DOI: 10.1074/jbc.m111.272641] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/07/2011] [Indexed: 11/06/2022] Open
Abstract
The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational analyses to define the XLF-XRCC4 interactions. Crystal and solution structures plus mutations characterize alternating XRCC4 and XLF head domain interfaces forming parallel super-helical filaments. XLF Leu-115 ("Leu-lock") inserts into a hydrophobic pocket formed by XRCC4 Met-59, Met-61, Lys-65, Lys-99, Phe-106, and Leu-108 in synergy with pseudo-symmetric β-zipper hydrogen bonds to drive specificity. XLF C terminus and DNA enhance parallel filament formation. Super-helical XLF-XRCC4 filaments form a positively charged channel to bind DNA and align ends for efficient ligation. Collective results reveal how human XLF and XRCC4 interact to bind DNA, suggest consequences of patient mutations, and support a unified molecular mechanism for XLF-XRCC4 stimulation of DNA ligation.
Collapse
Affiliation(s)
- Michal Hammel
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Martial Rey
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yaping Yu
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Rajam S. Mani
- the Department of Oncology, University of Alberta and the Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Scott Classen
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mona Liu
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Michael E. Pique
- the Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Shujuan Fang
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Brandi L. Mahaney
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Michael Weinfeld
- the Department of Oncology, University of Alberta and the Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - David C. Schriemer
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Susan P. Lees-Miller
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John A. Tainer
- the Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, and
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
160
|
Molecular machines in archaeal DNA replication. Curr Opin Chem Biol 2011; 15:614-9. [PMID: 21852183 DOI: 10.1016/j.cbpa.2011.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 11/21/2022]
Abstract
The archaeal DNA replication apparatus is a simplified version of that of eukaryotes and has attracted attention as a tractable model system for the orthologous, but significantly more complex eukaryal machinery. A variety of archaeal model organisms have been investigated with strong emphasis on structural and biochemical analyses of replication-associated proteins. In this review we will describe recent advances in understanding the properties of the replicative helicase, the MCM complex, and the role of the sliding clamp, PCNA, in mediating a range of protein-DNA transactions. Although both complexes form ring shaped assemblies, they play very distinct roles at the leading and trailing edges of the replication fork machinery respectively.
Collapse
|
161
|
Liang X, Fujioka K, Asanuma H. Nick sealing by T4 DNA ligase on a modified DNA template: tethering a functional molecule on D-threoninol. Chemistry 2011; 17:10388-96. [PMID: 21815224 DOI: 10.1002/chem.201100215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Indexed: 01/15/2023]
Abstract
Efficient DNA nick sealing catalyzed by T4 DNA ligase was carried out on a modified DNA template in which an intercalator such as azobenzene had been introduced. The intercalator was attached to a D-threoninol linker inserted into the DNA backbone. Although the structure of the template at the point of ligation was completely different from that of native DNA, two ODNs could be connected with yields higher than 90% in most cases. A systematic study of sequence dependence demonstrated that the ligation efficiency varied greatly with the base pairs adjacent to the azobenzene moiety. Interestingly, when the introduced azobenzene was photoisomerized to the cis form on subjection to UV light (320-380 nm), the rates of ligation were greatly accelerated for all sequences investigated. These unexpected ligations might provide a new approach for the introduction of functional molecules into long DNA strands in cases in which direct PCR cannot be used because of blockage of DNA synthesis by the introduced functional molecule. The biological significance of this unexpected enzymatic action is also discussed on the basis of kinetic analysis.
Collapse
Affiliation(s)
- Xingguo Liang
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | | | | |
Collapse
|
162
|
López de Saro FJ. Regulation of interactions with sliding clamps during DNA replication and repair. Curr Genomics 2011; 10:206-15. [PMID: 19881914 PMCID: PMC2705854 DOI: 10.2174/138920209788185234] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/09/2009] [Accepted: 03/16/2009] [Indexed: 01/12/2023] Open
Abstract
The molecular machines that replicate the genome consist of many interacting components. Essential to the organization of the replication machinery are ring-shaped proteins, like PCNA (Proliferating Cell Nuclear Antigen) or the β- clamp, collectively named sliding clamps. They encircle the DNA molecule and slide on it freely and bidirectionally. Sliding clamps are typically associated to DNA polymerases and provide these enzymes with the processivity required to synthesize large chromosomes. Additionally, they interact with a large array of proteins that perform enzymatic reactions on DNA, targeting and orchestrating their functions. In recent years there have been a large number of studies that have analyzed the structural details of how sliding clamps interact with their ligands. However, much remains to be learned in relation to how these interactions are regulated to occur coordinately and sequentially. Since sliding clamps participate in reactions in which many different enzymes bind and then release from the clamp in an orchestrated way, it is critical to analyze how these changes in affinity take place. In this review I focus the attention on the mechanisms by which various types of enzymes interact with sliding clamps and what is known about the regulation of this binding. Especially I describe emerging paradigms on how enzymes switch places on sliding clamps during DNA replication and repair of prokaryotic and eukaryotic genomes.
Collapse
Affiliation(s)
- Francisco J López de Saro
- Laboratorio de Ecología Molecular, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
163
|
Singh AA, Sivakumar D, Somvanshi P. Cataloguing functionally relevant polymorphisms in gene DNA ligase I: a computational approach. 3 Biotech 2011; 1:47-56. [PMID: 22558535 PMCID: PMC3339591 DOI: 10.1007/s13205-011-0006-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023] Open
Abstract
A computational approach for identifying functionally relevant SNPs in gene LIG1 has been proposed. LIG1 is a crucial gene which is involved in excision repair pathways and mutations in this gene may lead to increase sensitivity towards DNA damaging agents. A total of 792 SNPs were reported to be associated with gene LIG1 in dbSNP. Different web server namely SIFT, PolyPhen, CUPSAT, FASTSNP, MAPPER and dbSMR were used to identify potentially functional SNPs in gene LIG1. SIFT, PolyPhen and CUPSAT servers predicted eleven nsSNPs to be intolerant, thirteen nsSNP to be damaging and two nsSNPs have the potential to destabilize protein structure. The nsSNP rs11666150 was predicted to be damaging by all three servers and its mutant structure showed significant increase in overall energy. FASTSNP predicted twenty SNPs to be present in splicing modifier binding sites while rSNP module from MAPPER server predicted nine SNPs to influence the binding of transcription factors. The results from the study may provide vital clues in establishing affect of polymorphism on phenotype and in elucidating drug response.
Collapse
Affiliation(s)
- Abhishek A. Singh
- Department of Bioinformatics-BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Dakshinamurthy Sivakumar
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu India
| | - Pallavi Somvanshi
- Bioinformatics Centre, Biotech Park, Sector-G, Jankipuram, Lucknow, Uttar Pradesh India
| |
Collapse
|
164
|
Abstract
Completion of lagging strand DNA synthesis requires processing of up to 50 million Okazaki fragments per cell cycle in mammalian cells. Even in yeast, the Okazaki fragment maturation happens approximately a million times during a single round of DNA replication. Therefore, efficient processing of Okazaki fragments is vital for DNA replication and cell proliferation. During this process, primase-synthesized RNA/DNA primers are removed, and Okazaki fragments are joined into an intact lagging strand DNA. The processing of RNA/DNA primers requires a group of structure-specific nucleases typified by flap endonuclease 1 (FEN1). Here, we summarize the distinct roles of these nucleases in different pathways for removal of RNA/DNA primers. Recent findings reveal that Okazaki fragment maturation is highly coordinated. The dynamic interactions of polymerase δ, FEN1 and DNA ligase I with proliferating cell nuclear antigen allow these enzymes to act sequentially during Okazaki fragment maturation. Such protein-protein interactions may be regulated by post-translational modifications. We also discuss studies using mutant mouse models that suggest two distinct cancer etiological mechanisms arising from defects in different steps of Okazaki fragment maturation. Mutations that affect the efficiency of RNA primer removal may result in accumulation of unligated nicks and DNA double-strand breaks. These DNA strand breaks can cause varying forms of chromosome aberrations, contributing to development of cancer that associates with aneuploidy and gross chromosomal rearrangement. On the other hand, mutations that impair editing out of polymerase α incorporation errors result in cancer displaying a strong mutator phenotype.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | | |
Collapse
|
165
|
Tsutakawa SE, Classen S, Chapados BR, Arvai AS, Finger LD, Guenther G, Tomlinson CG, Thompson P, Sarker AH, Shen B, Cooper PK, Grasby JA, Tainer JA. Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell 2011; 145:198-211. [PMID: 21496641 DOI: 10.1016/j.cell.2011.03.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/11/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022]
Abstract
Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1:DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100° with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Cardona-Felix CS, Lara-Gonzalez S, Brieba LG. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:497-505. [PMID: 21636889 DOI: 10.1107/s0907444911010547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.
Collapse
Affiliation(s)
- Cesar S Cardona-Felix
- Grupo de Bioquímica Estructural, Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, México
| | | | | |
Collapse
|
167
|
Taylor MR, Conrad JA, Wahl D, O'Brien PJ. Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency. J Biol Chem 2011; 286:23054-62. [PMID: 21561855 DOI: 10.1074/jbc.m111.248831] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.
Collapse
Affiliation(s)
- Mark R Taylor
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0600, USA
| | | | | | | |
Collapse
|
168
|
Samai P, Shuman S. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase. J Biol Chem 2011; 286:22642-52. [PMID: 21527793 DOI: 10.1074/jbc.m111.245399] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.
Collapse
Affiliation(s)
- Poulami Samai
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
169
|
Samai P, Shuman S. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase. J Biol Chem 2011; 286:13314-26. [PMID: 21335605 DOI: 10.1074/jbc.m111.226191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3'-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3'-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3'-OH nucleoside in the catalysis of DNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig.
Collapse
Affiliation(s)
- Poulami Samai
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
170
|
Abstract
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
171
|
The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes. Biochem Soc Trans 2011; 39:70-6. [DOI: 10.1042/bst0390070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Efficient processing of Okazaki fragments generated during discontinuous lagging-strand DNA replication is critical for the maintenance of genome integrity. In eukaryotes, a number of enzymes co-ordinate to ensure the removal of initiating primers from the 5′-end of each fragment and the generation of a covalently linked daughter strand. Studies in eukaryotic systems have revealed that the co-ordination of DNA polymerase δ and FEN-1 (Flap Endonuclease 1) is sufficient to remove the majority of primers. Other pathways such as that involving Dna2 also operate under certain conditions, although, notably, Dna2 is not universally conserved between eukaryotes and archaea, unlike the other core factors. In addition to the catalytic components, the DNA sliding clamp, PCNA (proliferating-cell nuclear antigen), plays a pivotal role in binding and co-ordinating these enzymes at sites of lagging-strand replication. Structural studies in eukaryotic and archaeal systems have revealed that PCNA-binding proteins can adopt different conformations when binding PCNA. This conformational malleability may be key to the co-ordination of these enzymes' activities.
Collapse
|
172
|
Tripathi RP, Pandey J, Kukshal V, Ajay A, Mishra M, Dube D, Chopra D, Dwivedi R, Chaturvedi V, Ramachandran R. Synthesis, in silico screening and bioevaluation of dispiro-cycloalkanones as antitubercular and mycobacterial NAD+-dependent DNA ligase inhibitors. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00246a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
173
|
Pang D, Winters TA, Jung M, Purkayastha S, Cavalli LR, Chasovkikh S, Haddad BR, Dritschilo A. Radiation-generated short DNA fragments may perturb non-homologous end-joining and induce genomic instability. JOURNAL OF RADIATION RESEARCH 2011; 52:309-19. [PMID: 21628845 PMCID: PMC5469405 DOI: 10.1269/jrr.10147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cells exposed to densely ionizing radiation (high-LET) experience more severe biological damage than do cells exposed to sparsely ionizing radiation (low-LET). The prevailing hypothesis is that high-LET radiations induce DNA double strand-breaks (DSB) that are more complex and clustered, and are thereby more challenging to repair. Here, we present experimental data obtained by atomic force microscopy imaging, DNA-dependent protein kinase (DNA-PK) activity determination, DNA ligation assays, and genomic studies to suggest that short DNA fragments are important products of radiation-induced DNA lesions, and that the lengths of DNA fragments may be significant in the cellular responses to ionizing radiation. We propose the presence of a subset of short DNA fragments that may affect cell survival and genetic stability following exposure to ionizing radiation, and that the enhanced biological effects of high-LET radiation may be explained, in part, by the production of increased quantities of short DNA fragments.
Collapse
Affiliation(s)
- Dalong Pang
- Department of Radiation Medicine, Georgetown University Medical Center
| | - Thomas A. Winters
- Radiology and Imaging Sciences Department, Warren Grant Magnuson Clinical Center, National Institutes of Health
| | - Mira Jung
- Department of Radiation Medicine, Georgetown University Medical Center
| | - Shubhadeep Purkayastha
- Radiology and Imaging Sciences Department, Warren Grant Magnuson Clinical Center, National Institutes of Health
| | - Luciane R. Cavalli
- Department of Oncology/Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Sergey Chasovkikh
- Department of Radiation Medicine, Georgetown University Medical Center
| | - Bassem R. Haddad
- Department of Oncology/Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Georgetown University Medical Center
- Corresponding author: Anatoly Dritschilo, MD, Department of Radiation Medicine, Georgetown University Medical Center, 3800 Reservoir Road, NW, LL Bles Washington, DC 20007
| |
Collapse
|
174
|
Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 2010; 7:359. [PMID: 21129204 PMCID: PMC3012046 DOI: 10.1186/1743-422x-7-359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/03/2010] [Indexed: 12/13/2022] Open
Abstract
The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and crystallization of complexes is a significant challenge. We discuss alternate approaches, such as small angle X-ray and neutron scattering to generate molecular envelopes for modeling macromolecular assemblies.
Collapse
Affiliation(s)
| | - Jennifer M Hinerman
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juliette M Devos
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | | | - Kandace J Williams
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo OH, USA
| |
Collapse
|
175
|
Chakravarty AK, Shuman S. RNA 3'-phosphate cyclase (RtcA) catalyzes ligase-like adenylylation of DNA and RNA 5'-monophosphate ends. J Biol Chem 2010; 286:4117-22. [PMID: 21098490 DOI: 10.1074/jbc.m110.196766] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA 3'-phosphate cyclase (Rtc) enzymes are a widely distributed family that catalyze the synthesis of RNA 2',3'-cyclic phosphate ends via an ATP-dependent pathway comprising three nucleotidyl transfer steps: reaction of Rtc with ATP to form a covalent Rtc-(histidinyl-N)-AMP intermediate and release PP(i); transfer of AMP from Rtc to an RNA 3'-phosphate to form an RNA(3')pp(5')A intermediate; and attack by the terminal nucleoside O2' on the 3'-phosphate to form an RNA 2',3'-cyclic phosphate product and release AMP. The chemical transformations of the cyclase pathway resemble those of RNA and DNA ligases, with the key distinction being that ligases covalently adenylylate 5'-phosphate ends en route to phosphodiester synthesis. Here we show that the catalytic repertoire of RNA cyclase overlaps that of ligases. We report that Escherichia coli RtcA catalyzes adenylylation of 5'-phosphate ends of DNA or RNA strands to form AppDNA and AppRNA products. The polynucleotide 5' modification reaction requires the His(309) nucleophile, signifying that it proceeds through a covalent RtcA-AMP intermediate. We established this point directly by demonstrating transfer of [(32)P]AMP from RtcA to a pDNA strand. RtcA readily adenylylated the 5'-phosphate at a 5'-PO(4)/3'-OH nick in duplex DNA but was unable to covert the nicked DNA-adenylate to a sealed phosphodiester. Our findings raise the prospect that cyclization of RNA 3'-ends might not be the only biochemical pathway in which Rtc enzymes participate; we discuss scenarios in which the 5'-adenylyltransferase of RtcA might play a role.
Collapse
Affiliation(s)
- Anupam K Chakravarty
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
176
|
Zheng L, Jia J, Finger LD, Guo Z, Zer C, Shen B. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res 2010; 39:781-94. [PMID: 20929870 PMCID: PMC3035468 DOI: 10.1093/nar/gkq884] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. FEN1 possesses FEN, 5′-exonuclease and gap-endonuclease activities. The multiple nuclease activities of FEN1 allow it to participate in numerous DNA metabolic pathways, including Okazaki fragment maturation, stalled replication fork rescue, telomere maintenance, long-patch base excision repair and apoptotic DNA fragmentation. Here, we summarize the distinct roles of the different nuclease activities of FEN1 in these pathways. Recent biochemical and genetic studies indicate that FEN1 interacts with more than 30 proteins and undergoes post-translational modifications. We discuss how FEN1 is regulated via these mechanisms. Moreover, FEN1 interacts with five distinct groups of DNA metabolic proteins, allowing the nuclease to be recruited to a specific DNA metabolic complex, such as the DNA replication machinery for RNA primer removal or the DNA degradosome for apoptotic DNA fragmentation. Some FEN1 interaction partners also stimulate FEN1 nuclease activities to further ensure efficient action in processing of different DNA structures. Post-translational modifications, on the other hand, may be critical to regulate protein–protein interactions and cellular localizations of FEN1. Lastly, we also review the biological significance of FEN1 as a tumor suppressor, with an emphasis on studies of human mutations and mouse models.
Collapse
Affiliation(s)
- Li Zheng
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
177
|
Ochi T, Sibanda BL, Wu Q, Chirgadze DY, Bolanos-Garcia VM, Blundell TL. Structural biology of DNA repair: spatial organisation of the multicomponent complexes of nonhomologous end joining. J Nucleic Acids 2010; 2010:621695. [PMID: 20862368 PMCID: PMC2938450 DOI: 10.4061/2010/621695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 07/02/2010] [Indexed: 11/20/2022] Open
Abstract
Nonhomologous end joining (NHEJ) plays a major role in double-strand break DNA repair, which involves a series of steps mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV (LigIV) is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV. We describe how a combination of methods-X-ray crystallography, electron microscopy and small angle X-ray scattering-can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-PKcs/Ku70/Ku80/DNA complex (DNA-PK) and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of structural studies in developing new therapies in oncology and elsewhere.
Collapse
Affiliation(s)
- Takashi Ochi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Bancinyane Lynn Sibanda
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Qian Wu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
178
|
Cotner-Gohara E, Kim IK, Hammel M, Tainer JA, Tomkinson AE, Ellenberger T. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states. Biochemistry 2010; 49:6165-76. [PMID: 20518483 DOI: 10.1021/bi100503w] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.
Collapse
Affiliation(s)
- Elizabeth Cotner-Gohara
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
179
|
Flynn RL, Zou L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol Biol 2010; 45:266-75. [PMID: 20515430 DOI: 10.3109/10409238.2010.488216] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The maintenance of genomic stability relies on the coordinated action of a number of cellular processes, including activation of the DNA-damage checkpoint, DNA replication, DNA repair, and telomere homeostasis. Many proteins involved in these cellular processes use different types of functional modules to regulate and execute their functions. Recent studies have revealed that many DNA-damage checkpoint and DNA repair proteins in human cells possess the oligonucleotide/oligosaccharide-binding (OB) fold domains, which are known to bind single-stranded DNA in both prokaryotes and eukaryotes. Furthermore, during the DNA damage response, the OB folds of the human checkpoint and DNA repair proteins play critical roles in DNA binding, protein complex assembly, and regulating protein-protein interactions. These findings suggest that the OB fold is an evolutionarily conserved functional module that is widely used by genome guardians. In this review, we will highlight the functions of several well-characterized or newly discovered eukaryotic OB-fold proteins in the DNA damage response.
Collapse
Affiliation(s)
- Rachel Litman Flynn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | | |
Collapse
|
180
|
Prakasha Gowda AS, Polizzi JM, Eckert KA, Spratt TE. Incorporation of gemcitabine and cytarabine into DNA by DNA polymerase beta and ligase III/XRCC1. Biochemistry 2010; 49:4833-40. [PMID: 20459144 DOI: 10.1021/bi100200c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1-Beta-D-arabinofuranosylcytosine (cytarabine, araC) and 2',2'-difluoro-2'-deoxycytidine (gemcitabine, dFdC), are effective cancer chemotherapeutic agents due to their ability to become incorporated into DNA and then subsequently inhibit DNA synthesis by replicative DNA polymerases. However, the impact of these 3'-modified nucleotides on the activity of specialized DNA polymerases has not been investigated. The role of polymerase beta and base excision repair may be of particular importance due to the increased oxidative stress in tumors, increased oxidative stress caused by chemotherapy treatment, and the variable amounts of polymerase beta in tumors. Here we directly investigate the incorporation of the 5'-triphosphorylated form of araC, dFdC, 2'-fluoro-2'-deoxycytidine (FdC), and cytidine into two nicked DNA substrates and the subsequent ligation. Opposite template dG, the relative k(pol)/K(d) for incorporation was dCTP > araCTP, dFdCTP >> rCTP. The relative k(pol)/K(d) for FdCTP depended on sequence. The effect on k(pol)/K(d) was due largely to changes in k(pol) with no differences in the affinity of the nucleoside triphosphates to the polymerase. Ligation efficiency by T4 ligase and ligase III/XRCC1 was largely unaffected by the nucleotide analogues. Our results show that BER is capable of incorporating araC and dFdC into the genome.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University,Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
181
|
Cardona-Felix CS, Pastor-Palacios G, Cardenas H, Azuara-Liceaga E, Brieba LG. Biochemical characterization of the DNA ligase I from Entamoeba histolytica. Mol Biochem Parasitol 2010; 174:26-35. [PMID: 20603158 DOI: 10.1016/j.molbiopara.2010.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 06/19/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
Abstract
DNA ligases play an essential role in DNA replication and repair. Herein, we report the cloning and biochemical characterization of DNA ligase I from the protozoan parasite Entamoeba histolytica (EhDNAligI). EhDNAligI is an ATP-dependent DNA ligase of 685 amino acids with 35% identity to human DNA ligase I. This report shows that heterologous expressed EhDNAligI is able to perform the three conserved steps of a DNA ligation reaction: adenylation, binding to a 5'-phosphorylated nicked DNA substrate and sealing of the nick. EhDNAligI is strongly inhibited by NaCl and displays optimal activity at pH 7.5. EhDNAligI uses Mn2+ or Mg2+ as metal cofactors and ATP as nucleotide cofactor. EhDNAligI has a nicked DNA binding constant of 6.6microM and follows Michaelis-Menten steady-state kinetics with a K(m) ATP of 64nM and a k(cat) of 2.4min(-1). Accordingly to its properties as a family I DNA ligase, EhDNAligI is able to ligate a RNA strand upstream of a nucleic acid nick, but not in the downstream or the template position. We propose that EhDNAligI is involved in sealing DNA nicks during lagging strand synthesis and may have a role in base excision repair in E. histolytica.
Collapse
Affiliation(s)
- Cesar S Cardona-Felix
- Laboratory for Genomics and Biodiversity, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|
182
|
Lyons DM, O'Brien PJ. Human base excision repair creates a bias toward -1 frameshift mutations. J Biol Chem 2010; 285:25203-12. [PMID: 20547483 DOI: 10.1074/jbc.m110.118596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Frameshift mutations are particularly deleterious to protein function and play a prominent role in carcinogenesis. Most commonly these mutations involve the insertion or omission of a single nucleotide by a DNA polymerase that slips on a damaged or undamaged template. The mismatch DNA repair pathway can repair these nascent polymerase errors. However, overexpression of enzymes of the base excision repair (BER) pathway is known to increase the frequency of frameshift mutations suggesting competition between these pathways. We have examined the fate of DNA containing single nucleotide bulges in human cell extracts and discovered that several deaminated or alkylated nucleotides are efficiently removed by BER. Because single nucleotide bulges are more highly exposed we anticipate that they would be highly susceptible to spontaneous DNA damage. As a model for this, we have shown that chloroacetaldehyde reacts more than 18-fold faster with an A-bulge than with a stable A.T base pair to create alkylated DNA adducts that can be removed by alkyladenine DNA glycosylase. Reconstitution of the BER pathway using purified components establishes that bulged DNA is efficiently processed. Single nucleotide deletion is predicted to repair +1 frameshift events, but to make -1 frameshift events permanent. Therefore, these findings suggest an additional factor contributing to the bias toward deletion mutations.
Collapse
Affiliation(s)
- Derek M Lyons
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-5606, USA
| | | |
Collapse
|
183
|
Perry JJP, Cotner-Gohara E, Ellenberger T, Tainer JA. Structural dynamics in DNA damage signaling and repair. Curr Opin Struct Biol 2010; 20:283-94. [PMID: 20439160 DOI: 10.1016/j.sbi.2010.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Changing macromolecular conformations and complexes are critical features of cellular networks, typified by DNA damage response pathways that are essential to life. These fluctuations enhance the specificity of macromolecular recognition and catalysis, and enable an integrated functioning of pathway components, ensuring efficiency while reducing off pathway reactions. Such dynamic complexes challenge classical detailed structural analyses, so their characterizations demand combining methods that provide detail with those that inform dynamics in solution. Small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and computation are complementing detailed structures from crystallography and NMR to provide comprehensive models for DNA damage searching, specificity, signaling, and repair. Here, we review new approaches and results on DNA damage responses that advance structural biology in the fourth dimension, connecting proteins to pathways.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
184
|
Balakrishnan L, Gloor JW, Bambara RA. Reconstitution of eukaryotic lagging strand DNA replication. Methods 2010; 51:347-57. [PMID: 20178844 DOI: 10.1016/j.ymeth.2010.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic DNA replication is a complex process requiring the proper functioning of a multitude of proteins to create error-free daughter DNA strands and maintain genome integrity. Even though synthesis and joining of Okazaki fragments on the lagging strand involves only half the DNA in the nucleus, the complexity associated with processing these fragments is about twice that needed for leading strand synthesis. Flap endonuclease 1 (FEN1) is the central component of the Okazaki fragment maturation pathway. FEN1 cleaves flaps that are displaced by DNA polymerase delta (pol delta), to create a nick that is effectively joined by DNA ligase I. The Pif1 helicase and Dna2 helicase/nuclease contribute to the maturation process by elongating the flap displaced by pol delta. Though the reason for generating long flaps is still a matter of debate, genetic studies have shown that Dna2 and Pif1 are both important components of DNA replication. Our current knowledge of the exact enzymatic steps that govern Okazaki fragment maturation has heavily derived from reconstitution reactions in vitro, which have augmented genetic information, to yield current mechanistic models. In this review, we describe both the design of specific DNA substrates that simulate intermediates of fragment maturation and protocols for reconstituting partial and complete lagging strand replication.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
185
|
Recuero-Checa MA, Doré AS, Arias-Palomo E, Rivera-Calzada A, Scheres SHW, Maman JD, Pearl LH, Llorca O. Electron microscopy of Xrcc4 and the DNA ligase IV-Xrcc4 DNA repair complex. DNA Repair (Amst) 2010; 8:1380-9. [PMID: 19837014 DOI: 10.1016/j.dnarep.2009.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The DNA ligase IV-Xrcc4 complex is responsible for the ligation of broken DNA ends in the non-homologous end-joining (NHEJ) pathway of DNA double strand break repair in mammals. Mutations in DNA ligase IV (Lig4) lead to immunodeficiency and radiosensitivity in humans. Only partial structural information for Lig4 and Xrcc4 is available, while the structure of the full-length proteins and their arrangement within the Lig4-Xrcc4 complex is unknown. The C-terminal domain of Xrcc4, whose structure has not been solved, contains phosphorylation sites for DNA-PKcs and is phylogenetically conserved, indicative of a regulatory role in NHEJ. Here, we have purified full length Xrcc4 and the Lig4-Xrcc4 complex, and analysed their structure by single-particle electron microscopy. The three-dimensional structure of Xrcc4 at a resolution of approximately 37A reveals that the C-terminus of Xrcc4 forms a dimeric globular domain connected to the N-terminus by a coiled-coil. The N- and C-terminal domains of Xrcc4 locate at opposite ends of an elongated molecule. The electron microscopy images of the Lig4-Xrcc4 complex were examined by two-dimensional image processing and a double-labelling strategy, identifying the site of the C-terminus of Xrcc4 and the catalytic core of Lig4 within the complex. The catalytic domains of Lig4 were found to be in the vicinity of the N-terminus of Xrcc4. We provide a first sight of the structural organization of the Lig4-Xrcc4 complex, which suggests that the BRCT domains could provide the link of the ligase to Xrcc4 while permitting some movements of the catalytic domains of Lig4. This arrangement may facilitate the ligation of diverse configurations of damaged DNA.
Collapse
Affiliation(s)
- María A Recuero-Checa
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Doi A, Pack SP, Makino K. Comparison of the molecular influences of NO-induced lesions in DNA strands on the reactivity of polynucleotide kinases, DNA ligases and DNA polymerases. J Biochem 2010; 147:697-703. [DOI: 10.1093/jb/mvq003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
187
|
A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology. PLoS Comput Biol 2010; 6:e1000648. [PMID: 20098496 PMCID: PMC2799658 DOI: 10.1371/journal.pcbi.1000648] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 12/16/2009] [Indexed: 01/18/2023] Open
Abstract
Conventional drug design embraces the “one gene, one drug, one disease” philosophy. Polypharmacology, which focuses on multi-target drugs, has emerged as a new paradigm in drug discovery. The rational design of drugs that act via polypharmacological mechanisms can produce compounds that exhibit increased therapeutic potency and against which resistance is less likely to develop. Additionally, identifying multiple protein targets is also critical for side-effect prediction. One third of potential therapeutic compounds fail in clinical trials or are later removed from the market due to unacceptable side effects often caused by off-target binding. In the current work, we introduce a multidimensional strategy for the identification of secondary targets of known small-molecule inhibitors in the absence of global structural and sequence homology with the primary target protein. To demonstrate the utility of the strategy, we identify several targets of 4,5-dihydroxy-3-(1-naphthyldiazenyl)-2,7-naphthalenedisulfonic acid, a known micromolar inhibitor of Trypanosoma brucei RNA editing ligase 1. As it is capable of identifying potential secondary targets, the strategy described here may play a useful role in future efforts to reduce drug side effects and/or to increase polypharmacology. Proteins play a critical role in human disease; bacteria, viruses, and parasites have unique proteins that can interfere with human health, and dysfunctional human proteins can likewise lead to illness. In order to find cures, scientists often try to identify small molecules (drugs) that can inhibit disease-causing proteins. The goal is to identify a molecule that can fit snugly into the pockets and grooves, or “active sites,” on the protein's surface. Unfortunately, drugs that inhibit a single disease-causing protein are problematic. A single protein can evolve to evade drug action. Additionally, when only one protein is targeted, drug potency is often diminished. Single drugs that simultaneously target multiple disease-causing proteins are much more effective. On the other hand, if scientists are not careful, the drugs they design might inhibit essential human proteins in addition to inhibiting their intended targets, leading to unexpected side effects. In our current work, we have developed a computer-based procedure that can be used to identify proteins with similar active sites. Once unexpected protein targets have been identified, scientists can modify drugs under development in order to increase the simultaneous inhibition of multiple disease-causing proteins while avoiding potential side effects by decreasing the inhibition of useful human proteins.
Collapse
|
188
|
|
189
|
Pack SP, Doi A, Choi YS, Kodaki T, Makino K. Biomolecular response of oxanine in DNA strands to T4 polynucleotide kinase, T4 DNA ligase, and restriction enzymes. Biochem Biophys Res Commun 2010; 391:118-22. [DOI: 10.1016/j.bbrc.2009.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
|
190
|
Eccles LJ, Lomax ME, O'Neill P. Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage. Nucleic Acids Res 2009; 38:1123-34. [PMID: 19965771 PMCID: PMC2831305 DOI: 10.1093/nar/gkp1070] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ionising radiation induces clustered DNA damage sites which pose a severe challenge to the cell’s repair machinery, particularly base excision repair. To date, most studies have focussed on two-lesion clusters. We have designed synthetic oligonucleotides to give a variety of three-lesion clusters containing abasic sites and 8-oxo-7, 8-dihydroguanine to investigate if the hierarchy of lesion processing dictates whether the cluster is cytotoxic or mutagenic. Clusters containing two tandem 8-oxoG lesions opposing an AP site showed retardation of repair of the AP site with nuclear extract and an elevated mutation frequency after transformation into wild-type or mutY Escherichia coli. Clusters containing bistranded AP sites with a vicinal 8-oxoG form DSBs with nuclear extract, as confirmed in vivo by transformation into wild-type E. coli. Using ung1 E. coli, we propose that DSBs arise via lesion processing rather than stalled replication in cycling cells. This study provides evidence that it is not only the prompt formation of DSBs that has implications on cell survival but also the conversion of non-DSB clusters into DSBs during processing and attempted repair. The inaccurate repair of such clusters has biological significance due to the ultimate risk of tumourigenesis or as potential cytotoxic lesions in tumour cells.
Collapse
Affiliation(s)
- Laura J Eccles
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | | | | |
Collapse
|
191
|
Swift RV, Amaro RE. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms. Expert Opin Drug Discov 2009; 4:1281-1294. [PMID: 20354588 DOI: 10.1517/17460440903373617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND: Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. OBJECTIVE: In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD(+)-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. CONCLUSION: High quality crystal structures of both NAD(+)-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity.
Collapse
Affiliation(s)
- Robert V Swift
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
192
|
Piserchio A, Nair PA, Shuman S, Ghose R. Solution NMR studies of Chlorella virus DNA ligase-adenylate. J Mol Biol 2009; 395:291-308. [PMID: 19913033 DOI: 10.1016/j.jmb.2009.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 01/31/2023]
Abstract
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3'-OH/5'-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone (15)N spin relaxation and (15)N,(1)H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5'-phosphate.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry, The City College of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
193
|
Tanaka N, Shuman S. Structure-activity relationships in human RNA 3'-phosphate cyclase. RNA (NEW YORK, N.Y.) 2009; 15:1865-1874. [PMID: 19690099 PMCID: PMC2743044 DOI: 10.1261/rna.1771509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/13/2009] [Indexed: 05/28/2023]
Abstract
RNA 3'-phosphate cyclase (Rtc) enzymes are a widely distributed family that catalyze the synthesis of RNA 2',3' cyclic phosphate ends via an ATP-dependent pathway comprising three nucleotidyl transfer steps: reaction of Rtc with ATP to form a covalent Rtc-(histidinyl-N)-AMP intermediate and release PP(i); transfer of AMP from Rtc1 to an RNA 3'-phosphate to form an RNA(3')pp(5')A intermediate; and attack by the terminal nucleoside O2' on the 3'-phosphate to form an RNA 2',3' cyclic phosphate product and release AMP. Here we used the crystal structure of Escherichia coli RtcA to guide a mutational analysis of the human RNA cyclase Rtc1. An alanine scan defined seven conserved residues as essential for the Rtc1 RNA cyclization and autoadenylylation reactions. Structure-activity relationships were clarified by conservative substitutions. Our results are consistent with a mechanism of adenylate transfer in which attack of the Rtc1 His320 nucleophile on the ATP alpha phosphorus is facilitated by proper orientation of the PP(i) leaving group via contacts to Arg21, Arg40, and Arg43. We invoke roles for Tyr294 in binding the adenine base and Glu14 in binding the divalent cation cofactor. We find that Rtc1 forms a stable binary complex with a 3'-phosphate terminated RNA, but not with an otherwise identical 3'-OH terminated RNA. Mutation of His320 had little impact on RNA 3'-phosphate binding, signifying that covalent adenylylation of Rtc1 is not a prerequisite for end recognition.
Collapse
Affiliation(s)
- Naoko Tanaka
- Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
194
|
C-terminal flap endonuclease (rad27) mutations: lethal interactions with a DNA ligase I mutation (cdc9-p) and suppression by proliferating cell nuclear antigen (POL30) in Saccharomyces cerevisiae. Genetics 2009; 183:63-78. [PMID: 19596905 DOI: 10.1534/genetics.109.103937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During lagging-strand DNA replication in eukaryotic cells primers are removed from Okazaki fragments by the flap endonuclease and DNA ligase I joins nascent fragments. Both enzymes are brought to the replication fork by the sliding clamp proliferating cell nuclear antigen (PCNA). To understand the relationship among these three components, we have carried out a synthetic lethal screen with cdc9-p, a DNA ligase mutation with two substitutions (F43A/F44A) in its PCNA interaction domain. We recovered the flap endonuclease mutation rad27-K325* with a stop codon at residue 325. We created two additional rad27 alleles, rad27-A358* with a stop codon at residue 358 and rad27-pX8 with substitutions of all eight residues of the PCNA interaction domain. rad27-pX8 is temperature lethal and rad27-A358* grows slowly in combination with cdc9-p. Tests of mutation avoidance, DNA repair, and compatibility with DNA repair mutations showed that rad27-K325* confers severe phenotypes similar to rad27Delta, rad27-A358* confers mild phenotypes, and rad27-pX8 confers phenotypes intermediate between the other two alleles. High-copy expression of POL30 (PCNA) suppresses the canavanine mutation rate of all the rad27 alleles, including rad27Delta. These studies show the importance of the C terminus of the flap endonuclease in DNA replication and repair and, by virtue of the initial screen, show that this portion of the enzyme helps coordinate the entry of DNA ligase during Okazaki fragment maturation.
Collapse
|
195
|
Chen X, Ballin JD, Della-Maria J, Tsai MS, White EJ, Tomkinson AE, Wilson GM. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair. DNA Repair (Amst) 2009; 8:961-8. [PMID: 19589734 DOI: 10.1016/j.dnarep.2009.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIIIbeta and the hLigIIIalpha/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiation Oncology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
DNA ligases seal 5'-PO4 and 3'-OH polynucleotide ends via three nucleotidyl transfer steps involving ligase-adenylate and DNA-adenylate intermediates. DNA ligases are essential guardians of genomic integrity, and ligase dysfunction underlies human genetic disease syndromes. Crystal structures of DNA ligases bound to nucleotide and nucleic acid substrates have illuminated how ligase reaction chemistry is catalyzed, how ligases recognize damaged DNA ends, and how protein domain movements and active-site remodeling are used to choreograph the end-joining pathway. Although a shared feature of DNA ligases is their envelopment of the nicked duplex as a C-shaped protein clamp, they accomplish this feat by using remarkably different accessory structural modules and domain topologies. As structural, biochemical, and phylogenetic insights coalesce, we can expect advances on several fronts, including (i) pharmacological targeting of ligases for antibacterial and anticancer therapies and (ii) the discovery and design of new strand-sealing enzymes with unique substrate specificities.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA.
| |
Collapse
|
197
|
The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1. DNA Repair (Amst) 2009; 8:912-9. [PMID: 19523882 DOI: 10.1016/j.dnarep.2009.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 11/20/2022]
Abstract
The participation of the DNA ligase (hLigI) encoded by the human LIG1 gene in DNA replication and repair is mediated by an interaction with proliferating cell nuclear antigen (PCNA), a homotrimeric DNA sliding clamp. Interestingly, the catalytic fragment of hLigI encircles a DNA nick forming a ring that is similar in size and shape to the PCNA ring. Here we show that the DNA binding domain (DBD) within the hLigI catalytic fragment interacts with both PCNA and the heterotrimeric cell-cycle checkpoint clamp, hRad9-hRad1-hHus1 (9-1-1). The DBD preferentially binds to trimeric PCNA and the hRad1 subunit of 9-1-1. Unlike the majority of PCNA interacting proteins, the DBD does not interact with the interdomain connector loop region of PCNA but instead appears to interact with regions adjacent to the intersubunit interfaces within the PCNA trimer. Notably, the DBD not only binds specifically to DNA nicks but also mediates the formation of DNA protein complexes with PCNA. Based on these results, we suggest that the interface between the DBD and PCNA acts as a pivot facilitating the transition of the hLigI catalytic region fragment from an extended conformation to a ring structure when it engages a DNA nick.
Collapse
|
198
|
Chistiakov DA, Voronova NV, Chistiakov AP. Ligase IV syndrome. Eur J Med Genet 2009; 52:373-8. [PMID: 19467349 DOI: 10.1016/j.ejmg.2009.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/10/2009] [Indexed: 11/18/2022]
Abstract
Ligase IV (LIG4) syndrome belongs to the group of hereditary disorders associated with impaired DNA damage response mechanisms. Subjects affected with this rare autosomal recessive disease exhibit microcephaly, unusual facial features, growth retardation, developmental delay, skin anomalies, and are typically pancytopenic. The disease is characterized by pronounced radiosensitivity, genome instability, malignancy, immunodeficiency, and bone marrow abnormalities. LIG4 syndrome results from mutations in the DNA ligase IV gene encoding an enzyme that plays a pivotal role in repairing double strand DNA breaks and V(D)J recombination. Since LIG4 null-mutant mice are embryonic lethal and biallelic null mutations have not been described to date in LIG4-deficient patients, viability of the DNA ligase IV deficiency syndrome appears to require at least one allele with a hypomorphic mutation. Mutations R278H, Q280R, H282L, M249E located in the vicinity of the active site are typical hypomorphic because they do not affect ligase expression and retain residual albeit reduced activity of the enzyme at levels of 5-10% of that for the wild-type ligase. Carriers heterozygous for those mutations usually develop moderate defects in V(D)J recombination, mild immune abnormalities and malignancy. In contrast, mutations resided in OBD, i.e. in the C-terminal subdomain of the catalytic domain, and in XRCC4-binding domain more dramatically inhibit the ligase function and also greatly decrease its expression. A truncating mutation R580X and a frameshift mutation K424FS resulting in loss of the C-terminal XRCC4-binding domain have deleterious effect on both expression and function of LIG4 and represent a null allele.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow, Russia.
| | | | | |
Collapse
|
199
|
Bezsudnova EY, Kovalchuk MV, Mardanov AV, Poliakov KM, Popov VO, Ravin NV, Skryabin KG, Smagin VA, Stekhanova TN, Tikhonova TV. Overexpression, purification and crystallization of a thermostable DNA ligase from the archaeon Thermococcus sp. 1519. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:368-71. [PMID: 19342782 PMCID: PMC2664762 DOI: 10.1107/s1744309109007799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/03/2009] [Indexed: 11/11/2022]
Abstract
DNA ligases catalyze the sealing of 5'-phosphate and 3'-hydroxyl termini at single-strand breaks in double-stranded DNA and their function is essential to maintain the integrity of the genome in DNA metabolism. An ATP-dependent DNA ligase from the archaeon Thermococcus sp. 1519 was overexpressed, purified and crystallized. Crystals were obtained using the hanging-drop vapour-diffusion method employing 35%(v/v) Tacsimate pH 7.0 as a precipitant and diffracted X-rays to 3.09 A resolution. They belonged to space group P4(1)2(1)2, with unit-cell parameters a = b = 79.7, c = 182.6 A.
Collapse
Affiliation(s)
- E Y Bezsudnova
- Bach Institute of Biochemistry RAS, Leninsky Prospect 33, 119071 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Mechanism of replication machinery assembly as revealed by the DNA ligase-PCNA-DNA complex architecture. Proc Natl Acad Sci U S A 2009; 106:4647-52. [PMID: 19255439 DOI: 10.1073/pnas.0811196106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3D structure of the ternary complex, consisting of DNA ligase, the proliferating cell nuclear antigen (PCNA) clamp, and DNA, was investigated by single-particle analysis. This report presents the structural view, where the crescent-shaped DNA ligase with 3 distinct domains surrounds the central DNA duplex, encircled by the closed PCNA ring, thus forming a double-layer structure with dual contacts between the 2 proteins. The relative orientations of the DNA ligase domains, which remarkably differ from those of the known crystal structures, suggest that a large domain rearrangement occurs upon ternary complex formation. A second contact was found between the PCNA ring and the middle adenylation domain of the DNA ligase. Notably, the map revealed a substantial DNA tilt from the PCNA ring axis. This structure allows us to propose a switching mechanism for the replication factors operating on the PCNA ring.
Collapse
|