151
|
Lee JC, Gutell RR, Russell R. The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. J Mol Biol 2006; 360:978-88. [PMID: 16828489 DOI: 10.1016/j.jmb.2006.05.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/24/2006] [Accepted: 05/29/2006] [Indexed: 11/19/2022]
Abstract
Analysis of aligned RNA sequences and high-resolution crystal structures has revealed a new RNA structural element, termed the UAA/GAN motif. Found in internal loops of the 23 S rRNA, as well as in RNase P RNA and group I and II introns, this six-nucleotide motif adopts a distinctive local structure that includes two base-pairs with non-canonical conformations and three conserved adenine bases, which form a cross-strand AAA stack in the minor groove. Most importantly, the motif invariably forms long-range tertiary contacts, as the AAA stack typically forms A-minor interactions and the flipped-out N nucleotide forms additional contacts that are specific to the structural context of each loop. The widespread presence of this motif and its propensity to form long-range contacts suggest that it plays a critical role in defining the architectures of structured RNAs.
Collapse
Affiliation(s)
- Jung C Lee
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712-0159, USA
| | | | | |
Collapse
|
152
|
Leontis NB, Lescoute A, Westhof E. The building blocks and motifs of RNA architecture. Curr Opin Struct Biol 2006; 16:279-87. [PMID: 16713707 PMCID: PMC4857889 DOI: 10.1016/j.sbi.2006.05.009] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/12/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
RNA motifs can be defined broadly as recurrent structural elements containing multiple intramolecular RNA-RNA interactions, as observed in atomic-resolution RNA structures. They constitute the modular building blocks of RNA architecture, which is organized hierarchically. Recent work has focused on analyzing RNA backbone conformations to identify, define and search for new instances of recurrent motifs in X-ray structures. One current view asserts that recurrent RNA strand segments with characteristic backbone configurations qualify as independent motifs. Other considerations indicate that, to characterize modular motifs, one must take into account the larger structural context of such strand segments. This follows the biologically relevant motivation, which is to identify RNA structural characteristics that are subject to sequence constraints and that thus relate RNA architectures to sequences.
Collapse
Affiliation(s)
- Neocles B Leontis
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, OH 43402, USA
| | | | | |
Collapse
|
153
|
Adilakshmi T, Lease RA, Woodson SA. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res 2006; 34:e64. [PMID: 16682443 PMCID: PMC1458516 DOI: 10.1093/nar/gkl291] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used a high flux synchrotron X-ray beam to map the structure of 16S rRNA and RNase P in viable bacteria in situ. A 300 ms exposure to the X-ray beam was sufficient for optimal cleavage of the phosphodiester backbone. The in vivo footprints of the 16S rRNA in frozen cells were similar to those obtained in vitro and were consistent with the predicted accessibility of the RNA backbone to hydroxyl radical. Protection or enhanced cleavage of certain nucleotides in vivo can be explained by interactions with tRNA and perturbation of the subunit interface. Thus, short exposures to a synchrotron X-ray beam can footprint the tertiary structure and protein contacts of RNA–protein complexes with nucleotide resolution in living cells.
Collapse
Affiliation(s)
| | | | - Sarah A. Woodson
- To whom correspondence should be addressed. Tel: +1 410 516 2015; Fax: +1 410 516 4118;
| |
Collapse
|
154
|
Evans D, Marquez SM, Pace NR. RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 2006; 31:333-41. [PMID: 16679018 DOI: 10.1016/j.tibs.2006.04.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/07/2006] [Accepted: 04/24/2006] [Indexed: 01/27/2023]
Abstract
Ribonuclease P (RNase P) is an endonuclease involved in processing tRNA. It contains both RNA and protein subunits and occurs in all three domains of life: namely, Archaea, Bacteria and Eukarya. The RNase P RNA subunits from bacteria and some archaea are catalytically active in vitro, whereas those from eukaryotes and most archaea require protein subunits for activity. RNase P has been characterized biochemically and genetically in several systems, and detailed structural information is emerging for both RNA and protein subunits from phylogenetically diverse organisms. In vitro reconstitution of activity is providing insight into the role of proteins in the RNase P holoenzyme. Together, these findings are beginning to impart an understanding of the coevolution of the RNA and protein worlds.
Collapse
Affiliation(s)
- Donald Evans
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309-0347, USA
| | | | | |
Collapse
|
155
|
Torres-Larios A, Swinger KK, Pan T, Mondragón A. Structure of ribonuclease P--a universal ribozyme. Curr Opin Struct Biol 2006; 16:327-35. [PMID: 16650980 DOI: 10.1016/j.sbi.2006.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/04/2006] [Accepted: 04/19/2006] [Indexed: 11/22/2022]
Abstract
Ribonuclease P (RNase P) is one of only two known universal ribozymes and was one of the first ribozymes to be discovered. It is involved in RNA processing, in particular the 5' maturation of tRNA. Unlike most other natural ribozymes, it recognizes and cleaves its substrate in trans. RNase P is a ribonucleoprotein complex containing one RNA subunit and as few as one protein subunit. It has been shown that, in bacteria and in some archaea, the RNA subunit alone can support catalysis. The structure and function of bacterial RNase P RNA have been studied extensively, but the detailed catalytic mechanism is not yet fully understood. Recently, structures of one of the structural domains and of the entire RNA component of RNase P from two different bacteria have been described. These structures provide the first atomic-level information on the structural assembly of the RNA component, and the regions involved in substrate recognition and catalysis. Comparison of these structures reveals a highly conserved core that comprises two universally conserved structural modules. Interestingly, the same structural core can be found in the context of different scaffolds.
Collapse
Affiliation(s)
- Alfredo Torres-Larios
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
156
|
Kikovska E, Brännvall M, Kirsebom LA. The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. J Mol Biol 2006; 359:572-84. [PMID: 16638615 DOI: 10.1016/j.jmb.2006.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/14/2006] [Accepted: 03/18/2006] [Indexed: 10/24/2022]
Abstract
Most tRNAs carry a G at their 5' termini, i.e. at position +1. This position corresponds to the position immediately downstream of the site of cleavage in tRNA precursors. Here we studied RNase P RNA-mediated cleavage of substrates carrying substitutions/modifications at position +1 in the absence of the RNase P protein, C5, to investigate the role of G at the RNase P cleavage site. We present data suggesting that the exocyclic amine (2NH2) of G+1 contributes to cleavage site recognition, ground state binding and catalysis by affecting the rate of cleavage. This is in contrast to O6, N7 and 2'OH that are suggested to affect ground state binding and rate of cleavage to significantly lesser extent. We also provide evidence that the effects caused by the absence of 2NH2 at position +1 influenced the charge distribution and conceivably Mg2+ binding at the RNase P cleavage site. These findings are consistent with models where the 2NH2 at the cleavage site (when present) interacts with RNase P RNA and/or influences the positioning of Mg2+ in the vicinity of the cleavage site. Moreover, our data suggest that the presence of the base at +1 is not essential for cleavage but its presence suppresses miscleavage and dramatically increases the rate of cleavage. Together our findings provide reasons why most tRNAs carry a guanosine at their 5' end.
Collapse
Affiliation(s)
- Ema Kikovska
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
157
|
Fukuhara H, Kifusa M, Watanabe M, Terada A, Honda T, Numata T, Kakuta Y, Kimura M. A fifth protein subunit Ph1496p elevates the optimum temperature for the ribonuclease P activity from Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 2006; 343:956-64. [PMID: 16574071 DOI: 10.1016/j.bbrc.2006.02.192] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 11/30/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5' leader sequence of precursor tRNA. We previously found that the reconstituted particle (RP) composed of RNase P RNA and four proteins (Ph1481p, Ph1601p, Ph1771p, and Ph1877p) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 exhibited the RNase P activity, but had a lower optimal temperature (around at 55 degrees C), as compared with 70 degrees C of the authentic RNase P from P. horikoshii [Kouzuma et al., Biochem. Biophys. Res. Commun. 306 (2003) 666-673]. In the present study, we found that addition of a fifth protein Ph1496p, a putative ribosomal protein L7Ae, to RP specifically elevated the optimum temperature to about 70 degrees C comparable to that of the authentic RNase P. Characterization using gel shift assay and chemical probing localized Ph1496p binding sites on two stem-loop structures encompassing nucleotides A116-G201 and G229-C276 in P. horikoshii RNase P RNA. Moreover, the crystal structure of Ph1496p was determined at 2.0 A resolution by the molecular replacement method using ribosomal protein L7Ae from Haloarcula marismortui as a search model. Ph1496p comprises five alpha-helices and a four stranded beta-sheet. The beta-sheet is sandwiched by three helices (alpha1, alpha4, and alpha5) at one side and two helices (alpha2 and alpha3) at other side. The archaeal ribosomal protein L7Ae is known to be a triple functional protein, serving as a protein component in ribosome and ribonucleoprotein complexes, box C/D, and box H/ACA. Although we have at present no direct evidence that Ph1496p is a real protein component in the P. horikoshii RNase P, the present result may assign an RNase P protein to L7Ae as a fourth function.
Collapse
Affiliation(s)
- Hideo Fukuhara
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Striggles JC, Martin MB, Schmidt FJ. Frequency of RNA-RNA interaction in a model of the RNA World. RNA (NEW YORK, N.Y.) 2006; 12:353-9. [PMID: 16495233 PMCID: PMC1383575 DOI: 10.1261/rna.2204506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The RNA World model for prebiotic evolution posits the selection of catalytic/template RNAs from random populations. The mechanisms by which these random populations could be generated de novo are unclear. Non-enzymatic and RNA-catalyzed nucleic acid polymerizations are poorly processive, which means that the resulting short-chain RNA population could contain only limited diversity. Nonreciprocal recombination of smaller RNAs provides an alternative mechanism for the assembly of larger species with concomitantly greater structural diversity; however, the frequency of any specific recombination event in a random RNA population is limited by the low probability of an encounter between any two given molecules. This low probability could be overcome if the molecules capable of productive recombination were redundant, with many nonhomologous but functionally equivalent RNAs being present in a random population. Here we report fluctuation experiments to estimate the redundancy of the set of RNAs in a population of random sequences that are capable of non-Watson-Crick interaction with another RNA. Parallel SELEX experiments showed that at least one in 10(6) random 20-mers binds to the P5.1 stem-loop of Bacillus subtilis RNase P RNA with affinities equal to that of its naturally occurring partner. This high frequency predicts that a single RNA in an RNA World would encounter multiple interacting RNAs within its lifetime, supporting recombination as a plausible mechanism for prebiotic RNA evolution. The large number of equivalent species implies that the selection of any single interacting species in the RNA World would be a contingent event, i.e., one resulting from historical accident.
Collapse
Affiliation(s)
- John C Striggles
- Department of Biochemistry, M743 Medical Sciences, University of Missouri-Columbia, Columbia MO 65212, USA
| | | | | |
Collapse
|
159
|
Abstract
Chemical insight into biological function is the holy grail of structural biology. Small molecules are central players as building blocks, effectors and probes of macromolecular structure and function.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94705, USA.
| |
Collapse
|
160
|
Wilson RC, Bohlen CJ, Foster MP, Bell CE. Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A 2006; 103:873-8. [PMID: 16418270 PMCID: PMC1347986 DOI: 10.1073/pnas.0508004103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Indexed: 11/18/2022] Open
Abstract
We have used NMR spectroscopy and x-ray crystallography to determine the three-dimensional structure of PF1378 (Pfu Pop5), one of four protein subunits of archaeal RNase P that shares a homolog in the eukaryotic enzyme. RNase P is an essential and ubiquitous ribonucleoprotein enzyme required for maturation of tRNA. In bacteria, the enzyme's RNA subunit is responsible for cleaving the single-stranded 5' leader sequence of precursor tRNA molecules (pre-tRNA), whereas the protein subunit assists in substrate binding. Although in bacteria the RNase P holoenzyme consists of one large catalytic RNA and one small protein subunit, in archaea and eukarya the enzyme contains several (> or =4) protein subunits, each of which lacks sequence similarity to the bacterial protein. The functional role of the proteins is poorly understood, as is the increased complexity in comparison to the bacterial enzyme. Pfu Pop5 has been directly implicated in catalysis by the observation that it pairs with PF1914 (Pfu Rpp30) to functionally reconstitute the catalytic domain of the RNA subunit. The protein adopts an alpha-beta sandwich fold highly homologous to the single-stranded RNA binding RRM domain. Furthermore, the three-dimensional arrangement of Pfu Pop5's structural elements is remarkably similar to that of the bacterial protein subunit. NMR spectra have been used to map the interaction of Pop5 with Pfu Rpp30. The data presented permit tantalizing hypotheses regarding the role of this protein subunit shared by archaeal and eukaryotic RNase P.
Collapse
Affiliation(s)
- Ross C Wilson
- Ohio State Biochemistry Program, Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
161
|
Kikovska E, Mikkelsen NE, Kirsebom LA. The naturally trans-acting ribozyme RNase P RNA has leadzyme properties. Nucleic Acids Res 2005; 33:6920-30. [PMID: 16332695 PMCID: PMC1310964 DOI: 10.1093/nar/gki993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Divalent metal ions promote hydrolysis of RNA backbones generating 5′OH and 2′;3′P as cleavage products. In these reactions, the neighboring 2′OH act as the nucleophile. RNA catalyzed reactions also require divalent metal ions and a number of different metal ions function in RNA mediated cleavage of RNA. In one case, the LZV leadzyme, it was shown that this catalytic RNA requires lead for catalysis. So far, none of the naturally isolated ribozymes have been demonstrated to use lead to activate the nucleophile. Here we provide evidence that RNase P RNA, a naturally trans-acting ribozyme, has leadzyme properties. But, in contrast to LZV RNA, RNase P RNA mediated cleavage promoted by Pb2+ results in 5′ phosphate and 3′OH as cleavage products. Based on our findings, we infer that Pb2+ activates H2O to act as the nucleophile and we identified residues both in the substrate and RNase P RNA that most likely influenced the positioning of Pb2+ at the cleavage site. Our data suggest that Pb2+ can promote cleavage of RNA by activating either an inner sphere H2O or a neighboring 2′OH to act as nucleophile.
Collapse
Affiliation(s)
| | - Nils-Egil Mikkelsen
- Department of Molecular Biology, Swedish Agricultural UniversityBox 590, Biomedical Centre, SE-751 23 Uppsala, Sweden
| | - Leif A. Kirsebom
- To whom correspondence should be addressed. Tel: +46 18 471 4068; Fax: +46 18 53 03 96;
| |
Collapse
|
162
|
Peculis BA. Two Ps in the bacterial pod. Nat Struct Mol Biol 2005; 12:941-3. [PMID: 16419276 DOI: 10.1038/nsmb1105-941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|