151
|
Zhang H, Ge G, Zhang W, Sun H, Liang X, Xia Y, Du J, Wu Z, Bai J, Yang H, Yang X, Zhou J, Xu Y, Geng D. PP2Ac Regulates Autophagy via Mediating mTORC1 and ULK1 During Osteoclastogenesis in the Subchondral Bone of Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404080. [PMID: 39041921 PMCID: PMC11423161 DOI: 10.1002/advs.202404080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Indexed: 07/24/2024]
Abstract
The molecular mechanism underlying abnormal osteoclastogenesis triggering subchondral bone remodeling in osteoarthritis (OA) is still unclear. Here, single-cell and bulk transcriptomics sequencing analyses are performed on GEO datasets to identify key molecules and validate them using knee joint tissues from OA patients and rat OA models. It is found that the catalytic subunit of protein phosphatase 2A (PP2Ac) is highly expressed during osteoclastogenesis in the early stage of OA and is correlated with autophagy. Knockdown or inhibition of PP2Ac weakened autophagy during osteoclastogenesis. Furthermore, the ULK1 expression of the downstream genes is significantly increased when PP2Ac is knocked down. PP2Ac-mediated autophagy is dependent on ULK1 phosphorylation activity during osteoclastogenesis, which is associated with enhanced dephosphorylation of ULK1 Ser637 residue regulating at the post-translational level. Additionally, mTORC1 inhibition facilitated the expression level of PP2Ac during osteoclastogenesis. In animal OA models, decreasing the expression of PP2Ac ameliorated early OA progression. The findings suggest that PP2Ac is also a promising therapeutic target in early OA.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Department of Orthopaedic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Gaoran Ge
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Wei Zhang
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Houyi Sun
- Department of OrthopedicsQilu Hospital of Shandong UniversityJinanShandong250063China
| | - Xiaolong Liang
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Yu Xia
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Jiacheng Du
- Department of Biochemistry and Molecular BiologyJeonbuk National University Medical SchoolJeonjuJeonbuk54896South Korea
| | - Zerui Wu
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Department of OrthopedicsChangshu Hospital Affiliated to Soochow UniversityChangshuJiangsu215501China
| | - Jiaxiang Bai
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Department of Orthopedicsthe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui234000China
| | - Huilin Yang
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Xing Yang
- Orthopedics and Sports Medicine CenterSuzhou Municipal HospitalNanjing Medical University Affiliated Suzhou Hospital242, Guangji RoadSuzhouJiangsu215008China
| | - Jun Zhou
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Yaozeng Xu
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Dechun Geng
- Department of Orthopedics Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
152
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
153
|
Gao AYL, Montagna DR, Hirst WD, Temkin PA. RIT2 regulates autophagy lysosomal pathway induction and protects against α-synuclein pathology in a cellular model of Parkinson's disease. Neurobiol Dis 2024; 199:106568. [PMID: 38885848 DOI: 10.1016/j.nbd.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Substantial work has been devoted to better understand the contribution of the myriad of genes that may underly the development of Parkinson's disease (PD) and their role in disease etiology. The small GTPase Ras-like without CAAX2 (RIT2) is one such genetic risk factor, with one single nucleotide polymorphism in the RIT2 locus, rs12456492, having been associated with PD risk in multiple populations. While RIT2 has previously been shown to influence signaling pathways, dopamine transporter trafficking, and LRRK2 activity, its cellular function remains unclear. In the current study, we have situated RIT2 to be upstream of various diverse processes associated with PD. In cellular models, we have shown that RIT2 is necessary for activity-dependent changes in the expression of genes related to the autophagy-lysosomal pathway (ALP) by regulating the nuclear translocation of MiT/TFE3-family transcription factors. RIT2 is also associated with lysosomes and can regulate autophagic flux and clearance by regulating lysosomal hydrolase expression and activity. Interestingly, upregulation of RIT2 can augment ALP flux and protect against α-synuclein aggregation in cortical neurons. Taken together, the present study suggests that RIT2 can regulates gene expression upstream of ALP function and that enhancing RIT2 activity may provide therapeutic benefit in PD.
Collapse
Affiliation(s)
- Andy Y L Gao
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA; Biogen Postdoctoral Scientist Program, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Daniel R Montagna
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Warren D Hirst
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Paul A Temkin
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA.
| |
Collapse
|
154
|
McMann E, Gorski SM. Last but not least: emerging roles of the autophagy-related protein ATG4D. Autophagy 2024; 20:1916-1927. [PMID: 38920354 PMCID: PMC11346562 DOI: 10.1080/15548627.2024.2369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The evolutionarily conserved ATG4 cysteine proteases regulate macroautophagy/autophagy through the priming and deconjugation of the Atg8-family proteins. In mammals there are four ATG4 family members (ATG4A, ATG4B, ATG4C, ATG4D) but ATG4D has been relatively understudied. Heightened interest in ATG4D has been stimulated by recent links to human disease. Notably, genetic variations in human ATG4D were implicated in a heritable neurodevelopmental disorder. Genetic analyses in dogs, along with loss-of-function zebrafish and mouse models, further support a neuroprotective role for ATG4D. Here we discuss the evidence connecting ATG4D to neurological diseases and other pathologies and summarize its roles in both autophagy-dependent and autophagy-independent cellular processes.Abbrevation: ATG: autophagy related; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BH3: BCL2 homology region 3; CASP3: caspase 3; EV: extracellular vesicle; GABA: gamma aminobutyric acid; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; LIR: LC3-interacting region; MAP1LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MYC: MYC proto-oncogene, bHLH transcription factor; PE: phosphatidylethanolamine; PS: phosphatidylserine; QKO: quadruple knockout; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Emily McMann
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
155
|
Di T, Chen Y, Zhou Z, Liu J, Du Y, Feng C, Zhu B, Wang L. Effect of α7 nAChR-autophagy axis of deciduous tooth pulp stem cells in regulating IL-1β in the process of physiological root resorption of deciduous teeth. J Mol Med (Berl) 2024; 102:1135-1149. [PMID: 39002004 DOI: 10.1007/s00109-024-02466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Physiological root resorption of deciduous teeth is a normal phenomenon occurring during the developmental stages of children. Previous research has indicated the pivotal role of the inflammatory microenvironment in this process, although the specific mechanisms remain unclear. This study is aimed at elucidating the involvement of the alpha7 nicotinic acetylcholine receptors (α7 nAChR)-autophagy axis in the regulation of the inflammatory microenvironment during physiological root resorption in deciduous teeth. Samples were collected from deciduous teeth at various stages of physiological root resorption, and deciduous dental pulp stem cells (DDPSCs) were isolated and cultured during the mid-phase of root resorption. The findings revealed a substantial infiltration of the pulp of deciduous teeth at the mid-phase of root resorption, characterized by elevated expression levels of α7 nAChR and IL-1β. Significantly increased IL-1β and α7 nAChR expressions were observed in DDPSCs during the mid-phase of root resorption, with α7 nAChR demonstrating a regulatory effect on IL-1β. Moreover, evidence suggested that mechanical stress may act as a trigger, regulating autophagy and IL-1 expression via α7 nAChR. In conclusion, mechanical stress was identified as a regulator of autophagy in DDPSCs through α7 nAChR, influencing the expression of IL-1β and contributing to the formation of the inflammatory microenvironment. This mechanism plays a crucial role in the physiological root resorption of deciduous teeth. KEY MESSAGES: The pulp of deciduous teeth at mid-phase of root resorption was heavily infiltrated with high expression of α7nAChR and IL-1β. α7 nAChR acts as an initiating factor to regulate IL-1β through autophagy in DDPSCs. Mechanical stress can regulate autophagy of DDPSCs through α7 nAChR and thus affect IL-1β expression and inflammatory microenvironment formation in physiological root resorption in deciduous teeth.
Collapse
Affiliation(s)
- Tiankai Di
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
- Department of Stomatology, The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
| | - Yujiang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, 850007, People's Republic of China
| | - Jiajia Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Yang Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Chao Feng
- Department of Stomatology, The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
- Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Bin Zhu
- Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, 850007, People's Republic of China.
| | - Lulu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
156
|
Liang Y, Chen P, Wang S, Cai L, Zhu F, Jiang Y, Li L, Zhu L, Heng Y, Zhang W, Pan Y, Wei W, Jia L. SCF FBXW5-mediated degradation of AQP3 suppresses autophagic cell death through the PDPK1-AKT-MTOR axis in hepatocellular carcinoma cells. Autophagy 2024; 20:1984-1999. [PMID: 38726865 PMCID: PMC11346525 DOI: 10.1080/15548627.2024.2353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Zhu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
157
|
Chen G, Shangguan Z, Ye X, Chen Z, Li J, Liu W. STM2457 Inhibits METTL3-Mediated m6A Modification of miR-30c to Alleviate Spinal Cord Injury by Inducing the ATG5-Mediated Autophagy. Neurospine 2024; 21:925-941. [PMID: 39363472 PMCID: PMC11456927 DOI: 10.14245/ns.2448494.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE The study aimed to investigate the role of N6-methyladenosine (m6A) modification in spinal cord injury (SCI) and its underlying mechanism, focusing on the interplay between m6A methyltransferase-like 3 (METTL3), miR-30c, and autophagy-related proteins. METHODS An SCI model was established in rats, and changes in autophagy-related proteins, m6A methylation levels, and miR-30c levels were analyzed. Hydrogen peroxide (H2O2)-stimulated spinal cord neuron cells (SCNCs) were used to assess the impact of METTL3 overexpression. The effects of STM2457, an antagonist of METTL3, were evaluated on cell viability, apoptosis, and autophagy markers in H2O2-stimulated SCNCs. RESULTS In the SCI model, decreased levels of autophagy markers and increased m6A methylation, miR-30c levels, and METTL3 were observed. Overexpression of METTL3 in SCNCs led to reduced cell viability, increased apoptosis, and suppressed autophagy. Conversely, co-overexpression of autophagy-related protein 5 (ATG5) or miR-30c inhibition reversed these effects. Knocking out METTL3 yielded opposite results. STM2457 treatment improved cell viability, reduced apoptosis, and upregulated autophagy markers in SCNCs, which also enhanced functional recovery in rats as measured by the Basso-Beattie-Bresnahan score and inclined plate test. CONCLUSION STM2457 alleviated SCI by suppressing METTL3-mediated m6A modification of miR-30c, which in turn induces ATG5-mediated autophagy. This study provides insights into the role of m6A modification in SCI and suggests a potential therapeutic approach through targeting METTL3.
Collapse
Affiliation(s)
- Gang Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Zhitao Shangguan
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Xiaoqing Ye
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Zhi Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Jiandong Li
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Wenge Liu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| |
Collapse
|
158
|
Wu Y, Li L, Bai W, Li T, Qian X, Liu Y, Wang S, Liu C, Wan F, Zhang D, Liu Y, Wu K, Ling Y, Zhou H, Meng F, Zhang Y, Cao J. RNA-Seq analysis reveals the different mechanisms triggered by bovine and equine after infection with FMDV. Vet Med Sci 2024; 10:e1569. [PMID: 39287214 PMCID: PMC11406511 DOI: 10.1002/vms3.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Foot-and-mouth disease virus (FMDV) is an important pathogen of the MicroRNA virus family. Infection of livestock can cause physical weakness, weight loss, reduced milk production, and a significant reduction in productivity for an extended period. It also causes a high mortality rate in young animals, seriously affecting livestock production. The host range of FMDV is mainly limited to cloven-hoofed animals such as cattle and sheep, while odd-toed ungulates such as horses and donkeys have natural resistance to FMDV. The mechanism underlying this resistance in odd-toed ungulates remains unclear. OBJECTIVE This study aimed to analyze the differences between FMDV-infected cattle and horses to provide valuable insights into the host-FMDV interaction mechanisms, thereby contributing to the control of foot-and-mouth disease and promoting the development of the livestock industry. METHODS We observed the distribution of integrins, which help FMDV enter host cells, in the nasopharyngeal tissues of cattle and horses using immunohistochemistry. Then, we employed high-throughput RNA sequencing (RNA-Seq) to study the changes in host gene expression in the nasopharyngeal epithelial tissues of cattle and horses after FMDV infection. We performed enrichment analysis of GO and KEGG pathways after FMDV infection and validated related genes through qPCR. RESULTS The immunohistochemical results showed that both cattle and horses had four integrin receptors that could assist FMDV entry into host cells. The transcriptome analysis revealed that after FMDV infection, pro-apoptotic genes such as caspase-3 (CASP3) and cytochrome C (CYCS) were upregulated in cattle, while apoptosis-inhibiting genes such as NAIP and BCL2A1 were downregulated. In contrast, the expression trend of related genes in horses was opposite to that in cattle. Additionally, autophagy-related genes such as beclin 1, ATG101, ATG4B, ATG4A, ATG13, and BCL2A1 were downregulated in cattle after FMDV infection, indicating that cattle did not clear the virus through autophagy. However, key autophagy genes including ATG1, ATG3, ATG9, ATG12, and ATG16L1 were significantly upregulated in horses after viral infection. CONCLUSION Both water buffaloes and Mongolian horses express integrin receptors that allow FMDV entry into cells. Therefore, the resistance of Mongolian horses to FMDV may result from more changes in intracellular mechanisms, including processes such as autophagy and apoptosis. Significant differences were observed between water buffaloes and Mongolian horses in these processes, suggesting that these processes influence FMDV replication and synthesis.
Collapse
|
159
|
Dass D, Banerjee A, Dhotre K, Sonawane V, More A, Mukherjee A. HSV-2 Manipulates Autophagy through Interferon Pathway: A Strategy for Viral Survival. Viruses 2024; 16:1383. [PMID: 39339859 PMCID: PMC11437441 DOI: 10.3390/v16091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Autophagy, an evolutionarily conserved cellular process, influences the regulation of viral infections. While the existing understanding indicates that Herpes Simplex Virus type 2 (HSV-2) maintains a basal level of autophagy to support its viral yield, the precise pathways governing the induction of autophagy during HSV-2 infection remain unknown. Therefore, this study aims to explore the role of type I interferons (IFN-I) in modulating autophagy during HSV-2 infection and to decode the associated signaling pathways. Our findings revealed an interplay wherein IFN-I regulates the autophagic response during HSV-2 infection. Additionally, we investigated the cellular pathways modulated during this complex process. Exploring the intricate network of signaling events involved in autophagy induction during HSV-2 infection holds promising therapeutic implications. Identifying these pathways advances our understanding of host-virus interactions and holds the foundation for developing targeted therapeutic strategies against HSV-2. The insight gained from this study provides a platform for exploring potential therapeutic targets to restrict HSV-2 infections, addressing a crucial need in antiviral research.
Collapse
Affiliation(s)
| | | | | | | | | | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India; (D.D.); (A.B.); (K.D.); (V.S.); (A.M.)
| |
Collapse
|
160
|
Suzuki Y, Hayashi K, Goto F, Nomura Y, Fujimoto C, Makishima M. Premature senescence is regulated by crosstalk among TFEB, the autophagy lysosomal pathway and ROS derived from damaged mitochondria in NaAsO 2-exposed auditory cells. Cell Death Discov 2024; 10:382. [PMID: 39191766 DOI: 10.1038/s41420-024-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent types of sensory decline in a superaging society. Although various studies have focused on the effect of oxidative stress on the inner ear as an inducer of ARHL, there are no effective preventive approaches for ARHL. Recent studies have suggested that oxidative stress-induced DNA damage responses (oxidative DDRs) drive cochlear cell senescence and contribute to accelerated ARHL, and autophagy could function as a defense mechanism against cellular senescence in auditory cells. However, the underlying mechanism remains unclear. Sodium arsenite (NaAsO2) is a unique oxidative stress inducer associated with reactive oxygen species (ROS) that causes high-tone hearing loss similar to ARHL. Transcription factor EB (TFEB) functions as a master regulator of the autophagy‒lysosome pathway (ALP), which is a potential target during aging and the pathogenesis of various age-related diseases. Here, we focused on the function of TFEB and the impact of intracellular ROS as a potential target for ARHL treatment in a NaAsO2-induced auditory premature senescence model. Our results suggested that short exposure to NaAsO2 leads to DNA damage, lysosomal damage and mitochondrial damage in auditory cells, triggering temporary signals for TFEB transport into the nucleus and, as a result, causing insufficient autophagic flux and declines in lysosomal function and biogenesis and mitochondrial quality. Then, intracellular ROS derived from damaged mitochondria play a role as a second messenger to induce premature senescence in auditory cells. These findings suggest that TFEB activation via transport into the nucleus contributes to anti-senescence activity in auditory cells and represents a new therapeutic target for ARHL. We have revealed the potential function of TFEB as a master regulator of the induction of oxidative stress-induced premature senescence and the senescence-associated secretion phenotype (SASP) in auditory cells, which regulates ALP and controls mitochondrial quality through ROS production.
Collapse
Affiliation(s)
- Yuna Suzuki
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Ken Hayashi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan.
- Department of Otolaryngology, Sakura Koedo Clinic, Saitama, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Keio University, Tokyo, Japan.
| | - Fumiyuki Goto
- Department of Otolaryngology-Head and Neck Surgery, Tokai University, Kanagawa, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology-Head and Neck Surgery, Nihon University, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
161
|
Ramoni D, Carbone F, Montecucco F. Navigating the autophagic landscape: Epigenetic modulation in gastrointestinal cancer. World J Gastroenterol 2024; 30:3628-3634. [PMID: 39192999 PMCID: PMC11346161 DOI: 10.3748/wjg.v30.i31.3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
This editorial comments on the manuscript by Chang et al, focusing on the still elusive interplay between epigenetic regulation and autophagy in gastrointestinal diseases, particularly cancer. Autophagy, essential for cellular homeostasis, exhibits diverse functions ranging from cell survival to death, and is particularly implicated in physiological gastrointestinal cell functions. However, its role in pathological backgrounds remains intricate and context-dependent. Studies underscore the dual nature of autophagy in cancer, where its early suppressive effects in early stages are juxtaposed with its later promotion, contributing to chemoresistance. This discrepancy is attributed to the dysregulation of autophagy-related genes and their intricate involvement in cellular processes. Epigenetic modifications and regulations of gene expression, including non-coding RNAs (ncRNAs), emerge as critical players in exerting regulatory control over autophagy flux, influencing treatment responses and tumor progression. Targeting epigenetic mechanisms and improving strategies involving the inhibition or induction of autophagy through pharmacological or genetic means present potential avenues to sensitize tumor cells to chemotherapy. Additionally, nanocarrier-based delivery of ncRNAs offers innovative therapeutic approaches. Understanding the intricate interaction between autophagy and ncRNA regulation opens avenues for the development of targeted therapies, thereby improving the prognosis of gastrointestinal malignancies with poor outcomes.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa and IRCSS Policlinico San Martino, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa and IRCSS Policlinico San Martino, Genoa 16132, Italy
| |
Collapse
|
162
|
Li D, Li X, Zhang X, Chen J, Wang Z, Yu Z, Wu M, Liu L. Geniposide for treating atherosclerotic cardiovascular disease: a systematic review on its biological characteristics, pharmacology, pharmacokinetics, and toxicology. Chin Med 2024; 19:111. [PMID: 39164773 PMCID: PMC11334348 DOI: 10.1186/s13020-024-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, the prevalence and fatality rates of atherosclerotic cardiovascular disease have not only shown a consistent rise that cannot be ignored, but have also become a pressing social health problem that requires urgent attention. While interventional surgery and drug therapy offer significant therapeutic results, they often come with common side effects. Geniposide, an active component extracted from the Chinese medicine Gardenia jasminoides Ellis, shows promise in the management of cardiac conditions. This review comprehensively outlines the underlying pharmacological mechanisms by which geniposide exerts its effects on atherosclerosis. Geniposide exhibits a range of beneficial effects including alleviating inflammation, inhibiting the development of macrophage foam cells, improving lipid metabolism, and preventing platelet aggregation and thrombosis. It also demonstrates mitochondrial preservation, anti-apoptotic effects, and modulation of autophagy. Moreover, geniposide shows potential in improving oxidative stress and endoplasmic reticulum stress by maintaining the body's antioxidant and oxidative balance. Additionally, this review comprehensively details the biological properties of geniposide, including methods of extraction and purification, as well as its pharmacokinetics and toxicological characteristics. It further discusses the clinical applications of related biopharmaceuticals, emphasizing the potential of geniposide in the prevention and treatment of atherosclerotic cardiovascular diseases. Furthermore, it highlights the limitations of current research, aiming to provide insights for future studies.
Collapse
Affiliation(s)
- Dexiu Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zeping Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zongliang Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
163
|
Xu J, Zhang Y, Cai Q, Chen L, Sun Y, Liu Q, Gao Y, Chen H. Green Late-Stage Functionalization of Tryptamines. Chemistry 2024; 30:e202401436. [PMID: 38869004 DOI: 10.1002/chem.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
An efficient and rapid protocol for the oxidative halogenation of tryptamines with 10 % aqueous NaClO has been developed. This reaction is featured by its operational simplicity, metal-free conditions, no purification, and high yield. Notably, the resulting key intermediates are suitable for further functionalization with various nucleophiles, including amines, N-aromatic heterocycles, indoles and phenols. The overall transformation exhibits broad functional-group tolerance and is applicable to the late-stage functionalization of complex biorelevant molecules.
Collapse
Affiliation(s)
- Jiayi Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yahui Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiling Cai
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yang Sun
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Qinying Liu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
164
|
Lin S, Xiao Y, Lin J, Yuan Y, Shi H, Hong M, Ding L. Chromium Affects Mitochondrial Function, Leading to Apoptosis and Autophagy in Turtle Primary Hepatocytes. Animals (Basel) 2024; 14:2403. [PMID: 39199937 PMCID: PMC11350686 DOI: 10.3390/ani14162403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves' turtles (Mauremys reevesii) primary hepatocytes. We exposed hepatocytes to two concentrations (25 μM and 50 μM) of Cr(VI) for 24 h. The results showed that compared to controls, Cr(VI)-treated cells showed elevated antioxidant enzyme activity (catalase (CAT) and superoxide dismutase (SOD)) and increased reactive oxygen species (ROS) levels. Adenosine triphosphatae (ATP) levels decreased, indicating mitochondrial dysfunction. Additionally, we found significant changes in mitochondrial dynamics related genes, with downregulation of mitofusin 2 (Mfn2) and silent information regulator 1 (SIRT1) and a decrease in sirtuin 3 (SIRT3) and tumor protein 53 (p53) mRNA levels. Annexin V-FITC fluorescence staining-positive cells increased with higher Cr(VI) concentrations, marked by elevated bcl-2-associated X protein (Bax) and cysteinyl aspartate specific proteinase (Caspase3) mRNA levels and reduced B-cell lymphoma-2 (Bcl2) expression. Autophagy-related genes were also affected, with increased microtubule-associated protein 1 light chain 3 (LC3-I), microtubule-associated protein light chain 3II (LC3-II), unc-51-like autophagy-activating kinase 1 (ULK1), and sequestosome 1 (p62/SQSTM1) mRNA levels and decreased mammalian target of rapamycin (mTOR) and Beclin1 expression. Taken together, Cr(VI) promotes cell apoptosis and autophagy in turtle hepatocytes by inducing oxidative stress and disrupting mitochondrial function. These findings highlight the serious health risks posed by Cr(VI) pollution and emphasize the need for protecting wild turtle populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
165
|
Wang Y, Lyu L, Vu T, McCarty N. TRIM44 enhances autophagy via SQSTM1 oligomerization in response to oxidative stress. Sci Rep 2024; 14:18974. [PMID: 39152142 PMCID: PMC11329658 DOI: 10.1038/s41598-024-67832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/16/2024] [Indexed: 08/19/2024] Open
Abstract
The deubiquitinase tripartite motif containing 44 (TRIM44) plays a critical role in linking the proteotoxic stress response with autophagic degradation, which is significant in the context of cancer and neurological diseases. Although TRIM44 is recognized as a prognostic marker in various cancers, the complex molecular mechanisms through which it facilitates autophagic degradation, particularly under oxidative stress conditions, have not been fully explored. In this study, we demonstrate that TRIM44 significantly enhances autophagy in response to oxidative stress, reducing cytotoxicity in cancer cells treated with arsenic trioxide. Our research emphasizes the critical role of the posttranslational modification of sequestosome-1 (SQSTM1) and its importance in improving sequestration during autophagic degradation under oxidative stress. We found that TRIM44 notably promotes SQSTM1 oligomerization in both PB1 domain-dependent and oxidation-dependent manners. Furthermore, TRIM44 amplifies the interaction between protein kinase A and oligomerized SQSTM1, leading to enhanced phosphorylation of SQSTM1 at S349. This phosphorylation event activates NFE2L2, a key transcription factor in the oxidative stress response, highlighting the importance of TRIM44 in modulating SQSTM1-mediated autophagy. Our findings support that TRIM44 plays pivotal roles in regulating autophagic sensitivity to oxidative stress, with implications for cancer, aging, aging-associated diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuqin Wang
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Lin Lyu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Trung Vu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Nami McCarty
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA.
| |
Collapse
|
166
|
Wenzhi Y, Xiangyi L, Dongsheng F. The prion-like effect and prion-like protein targeting strategy in amyotrophic lateral sclerosis. Heliyon 2024; 10:e34963. [PMID: 39170125 PMCID: PMC11336370 DOI: 10.1016/j.heliyon.2024.e34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
Collapse
Affiliation(s)
- Yang Wenzhi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Liu Xiangyi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Fan Dongsheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
167
|
Lei S, Sun J, Xie Y, Xiao X, He X, Lin S, Zhang H, Huang Z, Wang H, Wu X, Peng H, Liu J. Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024; 45:527-542. [PMID: 38902892 DOI: 10.1093/carcin/bgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
Collapse
Affiliation(s)
- Shiying Lei
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Sun
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yifang Xie
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| |
Collapse
|
168
|
Chen K, Wei L, Yu S, He N, Zhang F. Identification of autophagy-related signatures in nonalcoholic fatty liver disease and correlation with non-parenchymal cells of the liver. Mol Omics 2024; 20:469-482. [PMID: 38982979 DOI: 10.1039/d4mo00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic hepatic disease. The incidence and prevalence of NAFLD have increased greatly in recent years, and there is still a lack of effective drugs. Autophagy plays an important role in promoting liver metabolism and maintaining liver homeostasis, and defects in autophagy levels are considered to be related to the development of NAFLD. However, the molecular mechanisms of autophagy in NAFLD still remain unknown. In this study, we identified 6 autophagy-associated hub genes using gene expression profiles obtained from the GSE48452 and GSE89632 datasets. Biomarkers were screened according to gene significance (GS) and module membership (MM) using weighted gene co-expression network analysis (WGCNA), and the immune infiltration landscape of the liver in NAFLD patients was explored using the CIBERSORT algorithm. Subsequently, we analyzed the relationship between liver non-parenchymal cells and autophagy-related hub genes using scRNA-seq data (GSE129516). Finally, we separated the NAFLD patients into two groups based on 6 hub genes by consensus clustering and screened 10 potential autophagy-related small molecules based on the cMAP database.
Collapse
Affiliation(s)
- Kaiwei Chen
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, China.
| | - Ling Wei
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, China.
| | - Fengjuan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
169
|
Kilinç G, Boland R, Heemskerk MT, Spaink HP, Haks MC, van der Vaart M, Ottenhoff THM, Meijer AH, Saris A. Host-directed therapy with amiodarone in preclinical models restricts mycobacterial infection and enhances autophagy. Microbiol Spectr 2024; 12:e0016724. [PMID: 38916320 PMCID: PMC11302041 DOI: 10.1128/spectrum.00167-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) as well as nontuberculous mycobacteria are intracellular pathogens whose treatment is extensive and increasingly impaired due to the rise of mycobacterial drug resistance. The loss of antibiotic efficacy has raised interest in the identification of host-directed therapeutics (HDT) to develop novel treatment strategies for mycobacterial infections. In this study, we identified amiodarone as a potential HDT candidate that inhibited both intracellular Mtb and Mycobacterium avium in primary human macrophages without directly impairing bacterial growth, thereby confirming that amiodarone acts in a host-mediated manner. Moreover, amiodarone induced the formation of (auto)phagosomes and enhanced autophagic targeting of mycobacteria in macrophages. The induction of autophagy by amiodarone is likely due to enhanced transcriptional regulation, as the nuclear intensity of the transcription factor EB, the master regulator of autophagy and lysosomal biogenesis, was strongly increased. Furthermore, blocking lysosomal degradation with bafilomycin impaired the host-beneficial effect of amiodarone. Finally, amiodarone induced autophagy and reduced bacterial burden in a zebrafish embryo model of tuberculosis, thereby confirming the HDT activity of amiodarone in vivo. In conclusion, we have identified amiodarone as an autophagy-inducing antimycobacterial HDT that improves host control of mycobacterial infections. IMPORTANCE Due to the global rise in antibiotic resistance, there is a strong need for alternative treatment strategies against intracellular bacterial infections, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria. Stimulating host defense mechanisms by host-directed therapy (HDT) is a promising approach for treating mycobacterial infections. This study identified amiodarone, an antiarrhythmic agent, as a potential HDT candidate that inhibits the survival of Mtb and Mycobacterium avium in primary human macrophages. The antimycobacterial effect of amiodarone was confirmed in an in vivo tuberculosis model based on Mycobacterium marinum infection of zebrafish embryos. Furthermore, amiodarone induced autophagy and inhibition of the autophagic flux effectively impaired the host-protective effect of amiodarone, supporting that activation of the host (auto)phagolysosomal pathway is essential for the mechanism of action of amiodarone. In conclusion, we have identified amiodarone as an autophagy-inducing HDT that improves host control of a wide range of mycobacteria.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ralf Boland
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Matthias T. Heemskerk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
170
|
Wang S, Qiao X, Cui Y, Liu L, Cooper T, Hu Y, Lin J, Liu H, Wang M, Hayball J, Wang X. NCAPH, ubiquitinated by TRIM21, promotes cell proliferation by inhibiting autophagy of cervical cancer through AKT/mTOR dependent signaling. Cell Death Dis 2024; 15:565. [PMID: 39103348 PMCID: PMC11300717 DOI: 10.1038/s41419-024-06932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Autophagy is closely related to the occurrence and development of human malignancies; however, the detailed mechanisms underlying autophagy in cervical cancer require further investigation. Previously, we found that the ectopic expression of NCAPH, a regulatory subunit of condensed protein complexes, significantly enhanced the proliferation of tumor cells; however, the underlying mechanisms were unclear. Here, we revealed that NCAPH is a novel autophagy-associated protein in cervical cancer that promotes cell proliferation by inhibiting autophagosome formation and reducing autophagy, with no effect on the cell cycle, apoptosis, or aging. Tripartite motif-containing protein 21 (TRIM21) is well known to be involved in inflammation, autoimmunity and cancer, mainly via its E3 ubiquitin ligase activity. Mass spectrometry and immunoprecipitation assays showed that TRIM21 interacted with NCAPH and decreased the protein stability of NCAPH via ubiquitination at the K11 lysine residue. Structural domain mutation analysis revealed that TRIM21 combined with NCAPH through its PRY/SPRY and CC domains and accelerated the degradation of NCAPH through the RING domain. Furthermore, TRIM21 promoted autophagosome formation and reduced cell proliferation by inhibiting NCAPH expression and the downstream AKT/mTOR pathway in cervical cancer cells. Immunohistochemical staining revealed that the protein expression of TRIM21 was negatively correlated with that of NCAPH and positively correlated with that of beclin-1 in cervical cancer tissues. Therefore, we provide evidence for the role of the TRIM21-NCAPH axis in cervical cancer autophagy and proliferation and the involvement of the AKT/mTOR signaling pathway in this process. These results deepen our understanding of the carcinogenesis of cervical cancer, broaden the understanding of the molecular mechanisms of TRIM21 and NCAPH, and provide guidance for individualized treatment of cervical cancer in the future.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaowen Qiao
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yaqi Cui
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Tamara Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Yingxin Hu
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Jiaxiang Lin
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Haiting Liu
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Meng Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - John Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Xiao Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
171
|
Jiang Z, Dai X, Zhou L, Yang Z, Yu F, Kong X. Development of a polarity-sensitive ratiometric fluorescent probe based on the intramolecular reaction of spiro-oxazolidine and its applications for in situ visualizing the fluctuations of polarity during ER stress. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124337. [PMID: 38676988 DOI: 10.1016/j.saa.2024.124337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Polarity is a vital element in endoplasmic reticulum (ER) microenvironment, and its variation is closely related to many physiological and pathological activities of ER, so it is necessary to trace fluctuations of polarity in ER. However, most of fluorescent probes for detecting polarity dependent on the changes of single emission, which could be affected by many factors and cause false signals. Ratiometric fluorescent probe with "built-in calibration" can effectively avoid detection errors. Here, we have designed a ratiometric fluorescent probe HM for monitoring the ER polarity based on the intramolecular reaction of spiro-oxazolidine. It forms ring open/closed isomers driven by polarity to afford ratiometric sensing. Probe HM have manifested its ratiometric responses to polarity in spectroscopic results, which could offer much more precise information for the changes of polarity in living cells with the internal built-in correction. It also showed large emission shift ( 133 nm), high selectivity and photo-stability. In biological imaging, HM could selectively accumulate in ER with high photo-stability. Importantly, HM has ability for in situ tracing the changes of ER polarity with ratiometric behavior during the ER stress process with the stimulation of tunicamycin, dithiothreitol and hypoxia, suggesting that HM is an effective molecule tool for monitoring the variations of ER polarity.
Collapse
Affiliation(s)
- Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Xiaoyu Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Zheng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Faqi Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| |
Collapse
|
172
|
Rashid N, Juneja P, Rathi A, Sultan I, Rehman SU. Identification of Alternatively Spliced Novel Isoforms of Human HSPB8 Gene. Protein J 2024; 43:782-792. [PMID: 38980537 DOI: 10.1007/s10930-024-10215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
HSPB8 is a heat shock protein belonging to a family of ATP-independent stress proteins called HSPB which are present far and wide in the cells of various organisms. They are committed to protein quality control (PQC) and strive to avert protein aggregation and to procreate a pool of non-native proteins that can be swiftly folded. Their fundamental expression or stress inducibility is regulated by various cis-elements localized in the HSPB regulatory regions. In the current study we have predicted and confirmed two alternatively spliced novel transcripts of HSPB8 gene in liver, brain, and heart. These spliced variants have smaller sizes owing to smaller N terminal regions and showed remarkable changes in their cellular localization. Novel isoform (HSPB8-N1) was predicted to be majorly localized to nuclear region while the reported isoform (HSPB8) and one of the novel isoforms (HSPB8-N2) were predicted to be cytoplasmic in nature. There were many changes observed in the phosphorylation sites of the novel isoforms as well. The newly reported isoforms lack several structural motifs that are essential for various functional endeavors of the HSPB8 protein. In silico analysis of the conceptually translated protein was carried out using various bioinformatics tools to gain an understanding of their properties in order to explore their possible potential in therapeutics.
Collapse
Affiliation(s)
- Naira Rashid
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pallavi Juneja
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Akshat Rathi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Insha Sultan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
173
|
Lou R, Yang T, Zhang X, Gu J, Xue L, Gan D, Li H, Li Q, Chen Y, Jiang J. Triptonide induces apoptosis and inhibits the proliferation of ovarian cancer cells by activating the p38/p53 pathway and autophagy. Bioorg Med Chem 2024; 110:117788. [PMID: 38964974 DOI: 10.1016/j.bmc.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer is a common malignant tumor in women, and 70 % of ovarian cancer patients are diagnosed at an advanced stage. Drug chemotherapy is an important method for treating ovarian cancer, but recurrence and chemotherapy resistance often lead to treatment failure. In this study, we screened 10 extracts of Tripterygium wilfordii, a traditional Chinese herb, and found that triptonide had potent anti-ovarian cancer activity and an IC50 of only 3.803 nM against A2780 cell lines. In addition, we determined that triptonide had a better antitumor effect on A2780 cell lines than platinum chemotherapeutic agents in vitro and that triptonide had no significant side effects in vivo. We found that triptonide induced apoptosis in ovarian cancer cells through activation of the p38/p53 pathway and it also induced cell cycle arrest at the S phase. In addition, we demonstrated that triptonide could activate lethal autophagy, which led to growth inhibition and cell death in ovarian cancer cells, resulting in an anti-ovarian cancer effect. Triptonide exerts its anti-ovarian cancer effect through activation of the p38/p53 pathway and induction of autophagy to promote apoptosis, which provides a new candidate drug and strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ruoxuan Lou
- Department of Biochemistry, Basic Medical College of Jinan University, Guangzhou 510632, China
| | - Taohua Yang
- Department of Hepatobiliary Surgery, Yangchun People's Hospital, Yangchu 529600, Guangdong Province, China
| | - Xiaoying Zhang
- Department of Pathology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511486, China
| | - Jianyi Gu
- Department of Biochemistry, Basic Medical College of Jinan University, Guangzhou 510632, China
| | - LuJiadai Xue
- Department of Gynaecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Danhui Gan
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Haijing Li
- Department of Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan Eastern Central Hospital, Dongguan 523560, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuanhong Chen
- Department of Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan Eastern Central Hospital, Dongguan 523560, China.
| | - Jianwei Jiang
- Department of Biochemistry, Basic Medical College of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
174
|
Yang C, Dong W, Wang Y, Dong X, Xu X, Yu X, Wang J. DDIT3 aggravates TMJOA cartilage degradation via Nrf2/HO-1/NLRP3-mediated autophagy. Osteoarthritis Cartilage 2024; 32:921-937. [PMID: 38719085 DOI: 10.1016/j.joca.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE DNA damage-inducible transcript 3 (DDIT3), as a downstream transcription factor of endoplasmic reticulum stress, is reported to regulate chondrogenic differentiation under physiological and pathological state. However, the specific involvement of DDIT3 in the degradation of condylar cartilage of temporomandibular joint osteoarthritis (TMJOA) is unclarified. DESIGN The expression patterns of DDIT3 in condylar cartilage from monosodium iodoacetate-induced TMJOA mice were examined to uncover the potential role of DDIT3 in TMJOA. The Ddit3 knockout (Ddit3-/-) mice and their wildtype littermates (Ddit3+/+) were used to clarify the effect of DDIT3 on cartilage degradation. Primary condylar chondrocytes and ATDC5 cells were applied to explore the mechanisms of DDIT3 on autophagy and extracellular matrix (ECM) degradation in chondrocytes. The autophagy inhibitor chloroquine (CQ) was used to determine the effect of DDIT3-inhibited autophagy in vivo. RESULTS DDIT3 were highly expressed in condylar cartilage from TMJOA mice. Ddit3 knockout alleviated condylar cartilage degradation and subchondral bone loss, compared with their wildtype littermates. In vitro study demonstrated that DDIT3 exacerbated ECM degradation in chondrocytes induced by TNF-α through inhibiting autophagy. The intraperitoneal injection of CQ further confirmed that Ddit3 knockout alleviated cartilage degradation in TMJOA through activating autophagy in vivo. CONCLUSIONS Our findings identified the crucial role of DDIT3-inhibited autophagy in condylar cartilage degradation during the development of TMJOA.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaofei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
175
|
Lei Z, Ritzel RM, Li Y, Li H, Faden AI, Wu J. Old age alters inflammation and autophagy signaling in the brain, leading to exacerbated neurological outcomes after spinal cord injury in male mice. Brain Behav Immun 2024; 120:439-451. [PMID: 38925420 PMCID: PMC11269014 DOI: 10.1016/j.bbi.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Older patients with spinal cord injury (SCI) have different features with regard to neurological characteristics after injury. Recent large-scale longitudinal population-based studies showed that individuals with SCI are at a higher risk of developing dementia than non-SCI patients, indicating that SCI is a potential risk factor for dementia. Aging is known to potentiate inflammation and neurodegeneration at the injured site leading to impaired recovery from SCI. However, no research has been aimed at studying the mechanisms of SCI-mediated cognitive impairment in the elderly. The present study examined neurobehavioral and molecular changes in the brain and the underlying mechanisms associated with brain dysfunction in aged C57BL/6 male mice using a contusion SCI model. At 2 months post-injury, aged mice displayed worse performance in locomotor, cognitive and depressive-like behavioral tests compared to young adult animals. Histopathology in injured spinal cord tissue was exacerbated in aged SCI mice. In the brain, transcriptomic analysis with NanoString neuropathology panel identified activated microglia and dysregulated autophagy as the most significantly altered pathways by both age and injury. These findings were further validated by flow cytometry, which demonstrated increased myeloid and lymphocytes infiltration at both the injured site and brain of aged mice. Moreover, SCI in aged mice altered microglial function and dysregulated autophagy in microglia, resulting in worsened neurodegeneration. Taken together, our data indicate that old age exacerbates neuropathological changes in both the injured spinal cord and remote brain regions leading to poorer functional outcomes, at least in part, through altered inflammation and autophagy function.
Collapse
Affiliation(s)
- Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
176
|
Landis D, Sutter A, Khemka S, Songtanin B, Nichols J, Nugent K. Metformin as adjuvant treatment in hepatitis C virus infections and associated complications. Am J Med Sci 2024; 368:90-98. [PMID: 38701970 DOI: 10.1016/j.amjms.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Hepatitis C virus is an important global cause of hepatitis and subsequently cirrhosis and hepatocellular carcinoma. These infections may also cause extrahepatic manifestations, including insulin resistance and type 2 diabetes mellitus. These two complications can potentially reduce sustained virologic responses (SVR) in some drug regimens for this infection. Metformin has important biochemical effects that can limit viral replication in cellular cultures and can improve the response to antiviral drug therapy based on ribavirin and interferon. Clinical studies comparing treatment regimens with interferon, ribavirin, metformin with these regimens without metformin have demonstrated that metformin increases viral clearance, establishes higher rates of SVRs, and increases insulin sensitivity. Metformin also reduces the frequency of hepatocellular carcinoma in patients who have had SVRs. Larger treatment trials are needed to determine metformin's short-term and long-term treatment effects in patients with diabetes using newer antiviral drugs. In particular, if metformin reduces the frequency of cirrhosis and hepatocellular carcinoma, this would significantly reduce the morbidity and mortality associated with this infection.
Collapse
Affiliation(s)
- Dylan Landis
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Alex Sutter
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Busara Songtanin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
177
|
Lei K, Li J, Tu Z, Gong C, Liu J, Luo M, Ai W, Wu L, Li Y, Zhou Z, Chen Z, Lv S, Ye M, Wu M, Long X, Zhu X, Huang K. Endosome-microautophagy targeting chimera (eMIATAC) for targeted proteins degradation and enhance CAR-T cell anti-tumor therapy. Theranostics 2024; 14:4481-4498. [PMID: 39113807 PMCID: PMC11303074 DOI: 10.7150/thno.98574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: Since oncogene expression products often exhibit upregulation or abnormally activated activity, developing a technique to regulate abnormal protein levels represent a viable approach for treating tumors and protein abnormality-related diseases. Methods: We first screened out eMIATAC components with high targeted degradation efficiency and explored the mechanism by which eMIATAC induced target protein degradation, and verified the degradation efficiency of the target protein by protein imprinting and flow cytometry. Next, we recombined eMIATAC with some controllable elements to verify the regulatable degradation performance of the target protein. Subsequently, we constructed eMIATAC that can express targeted degradation of AKT1 and verified its effect on GBM cell development in vitro and in vivo. Finally, we concatenated eMIATAC with CAR sequences to construct CAR-T cells with low BATF protein levels and verified the changes in their anti-tumor efficacy. Results: we developed a system based on the endosome-microautophagy-lysosome pathway for degrading endogenous proteins: endosome-MicroAutophagy TArgeting Chimera (eMIATAC), dependent on Vps4A instead of lysosomal-associated membrane protein 2A (LAMP2A) to bind to the chaperone Hsc70 and the protein of interest (POI). The complex was then transported to the lysosome by late endosomes, where degradation occurred similarly to microautophagy. The eMIATACs demonstrated accuracy, efficiency, reversibility, and controllability in degrading the target protein EGFP. Moreover, eMIATAC exhibited excellent performance in knocking down POI when targeting endogenous proteins in vivo and in vitro. Conclusions: The eMIATACs could not only directly knock down abnormal proteins for glioma treatment but also enhance the therapeutic effect of CAR-T cell therapy for tumors by knocking down T cell exhaustion-related proteins. The newly developed eMIATAC system holds promise as a novel tool for protein knockdown strategies. By enabling direct control over endogenous protein levels, eMIATAC has the potential to revolutionize treatment for cancer and genetic diseases.
Collapse
Affiliation(s)
- Kunjian Lei
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Chuandong Gong
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Junzhe Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Min Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Wenqian Ai
- School of Basic Medical Sciences, Nanchang University, 330031, Nanchang, P. R. China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Yishuang Li
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Zhihong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Zhihao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, Jiangxi 334000, P. R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Neurological Diseases in Jiangxi Province, Nanchang, Jiangxi 330031, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
178
|
Zhao X, Ma D, Yang B, Wang Y, Zhang L. Research progress of T cell autophagy in autoimmune diseases. Front Immunol 2024; 15:1425443. [PMID: 39104538 PMCID: PMC11298352 DOI: 10.3389/fimmu.2024.1425443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
T cells, as a major lymphocyte population involved in the adaptive immune response, play an important immunomodulatory role in the early stages of autoimmune diseases. Autophagy is a cellular catabolism mediated by lysosomes. Autophagy maintains cell homeostasis by recycling degraded cytoplasmic components and damaged organelles. Autophagy has a protective effect on cells and plays an important role in regulating T cell development, activation, proliferation and differentiation. Autophagy mediates the participation of T cells in the acquired immune response and plays a key role in antigen processing as well as in the maintenance of T cell homeostasis. In autoimmune diseases, dysregulated autophagy of T cells largely influences the pathological changes. Therefore, it is of great significance to study how T cells play a role in the immune mechanism of autoimmune diseases through autophagy pathway to guide the clinical treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
179
|
Baimanov D, Li S, Gao XJ, Cai R, Liu K, Li J, Liu Y, Cong Y, Wang X, Liu F, Li Q, Zhang G, Wei H, Wang J, Chen C, Gao X, Li Y, Wang L. A phosphatase-like nanomaterial promotes autophagy and reprograms macrophages for cancer immunotherapy. Chem Sci 2024; 15:10838-10850. [PMID: 39027281 PMCID: PMC11253186 DOI: 10.1039/d4sc01690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Macrophages are plastic and play a key role in the maintenance of tissue homeostasis. In cancer progression, macrophages also take part in all processes, from initiation to progression, to final tumor metastasis. Although energy deprivation and autophagy are widely used for cancer therapy, most of these strategies do not target macrophages, resulting in undesired effects and unsatisfactory outcomes for cancer immunotherapy. Herein, we developed a lanthanum nickel oxide (LNO) nanozyme with phosphatase-like activity for ATP hydrolysis. Meanwhile, the autophagy of macrophages induced by LNO promotes the polarization of macrophages from M2-like macrophages (M2) to M1-like macrophages (M1) and reduces tumor-associated macrophages in tumor-bearing mice, exhibiting the capability of killing tumor-associated macrophages and antitumor effects in vivo. Furthermore, pre-coating the surface of LNO with a myeloid cell membrane significantly enhanced antitumor immunity. Our findings demonstrate that phosphatase-like nanozyme LNO can specifically induce macrophage autophagy, which improves therapeutic efficacy and offers valuable strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Su Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg 5020 Salzburg Austria
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Rui Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Ke Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Junjie Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 P. R. China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
- New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Xiaoyu Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 P. R. China
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 P. R. China
| | - Qi Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 P. R. China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
- New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences Shenzhen P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| |
Collapse
|
180
|
Liu L, Wang Q, Li Y, Cai J, Wang Y, Li Y, Wang R, Sun L, Zheng X, Yin A. TAT-beclin1 treatment accelerates the development of atherosclerotic lesions in ApoE-deficient mice. FASEB J 2024; 38:e23765. [PMID: 38934372 DOI: 10.1096/fj.202400161rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
The importance of autophagy in atherosclerosis has garnered significant attention regarding the potential applications of autophagy inducers. However, the impact of TAT-Beclin1, a peptide inducer of autophagy, on the development of atherosclerotic plaques remains unclear. Single-cell omics analysis indicates a notable reduction in GAPR1 levels within fibroblasts, stromal cells, and macrophages during atherosclerosis. Tat-beclin1 (T-B), an autophagy-inducing peptide derived from Beclin1, could selectively bind to GAPR1, relieving its inhibition on Beclin1 and thereby augmenting autophagosome formation. To investigate its impact on atherosclerosic plaque progression, we established the ApoE-/- mouse model of carotid atherosclerotic plaques. Surprisingly, intravenous administration of Tat-beclin1 dramatically accelerated the development of carotid artery plaques. Immunofluorescence analysis suggested that macrophage aggregation and autophagosome formation within atherosclerotic plaques were significantly increased upon T-B treatment. However, immunofluorescence and transmission electron microscopy (TEM) analysis revealed a reduction in autophagy flux through lysosomes. In vitro, the interaction between T-B and GAPR1 was confirmed in RAW264.7 cells, resulting in the increased accumulation of p62/SQSTM1 and LC3-II in the presence of ox-LDL. Additionally, T-B treatment elevated the protein levels of p62/SQSTM1, LC3-II, and cleaved caspase 1, along with the secretion of IL-1β in response to ox-LDL exposure. In summary, our study underscores that T-B treatment amplifies abnormal autophagy and inflammation, consequently exacerbating atherosclerotic plaque development in ApoE-/- mice.
Collapse
Affiliation(s)
- Lianbo Liu
- Department of Thoracic and Cardiovascular Surgery, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Qingjie Wang
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yawen Li
- Department of Neonatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Jiali Cai
- General Medicine Department, The First Hospital of Putian City, Putian, China
| | - Yexing Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yun Li
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Ruxing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ling Sun
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaowei Zheng
- Public Health Research Center, Department of Public Health and Preventive Medicine, Wuxi School of Medicine Jiangnan University, Wuxi, China
| | - Anwen Yin
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
181
|
Fukui T, Yabumoto M, Nishida M, Hirokawa S, Sato R, Kurisu T, Nakai M, Hassan MA, Kishimoto K. Amino acid deprivation in cancer cells with compensatory autophagy induction increases sensitivity to autophagy inhibitors. Mol Cell Oncol 2024; 11:2377404. [PMID: 39021618 PMCID: PMC11253891 DOI: 10.1080/23723556.2024.2377404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Inhibition of autophagy is an important strategy in cancer therapy. However, prolonged inhibition of certain autophagies in established cancer cells may increase therapeutic resistance, though the underlying mechanisms of its induction and enhancement remain unclear. This study sought to elucidate the mechanisms of therapeutic resistance through repeated autophagy inhibition and amino acid deprivation (AD) in an in vitro model of in vivo chronic nutrient deprivation associated with cancer cell treatment. In the human cervical cancer cell line HeLa and human breast cancer cell line MCF-7, initial extracellular AD induced the immediate expression of endosomal microautophagy (eMI). However, repeated inhibition of eMI with U18666A and extracellular AD induced macroautophagy (MA) to compensate for reduced eMI, simultaneously decreasing cytotoxicity. Here, hyperphosphorylated JNK was transformed into a hypophosphorylated state, suggesting conversion of the cell death signal to a survival signal. In a nutrient medium, cell death could not be induced by MA inhibition. However, since LAT1 inhibitors induce intracellular AD, combining them with MA and eMI inhibitors successfully promoted cell death in resistant cells. Our study identified a novel therapeuic approach for promoting cell death and addressing therapeutic resistance in cancers under autophagy-inhibitor treatment.
Collapse
Affiliation(s)
- Takahito Fukui
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Manami Yabumoto
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Misuzu Nishida
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Shiori Hirokawa
- Graduate School of Environment and Energy Engineering, Waseda University, Tokyo, Japan
| | - Riho Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Taichi Kurisu
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Miyu Nakai
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Md. Abul Hassan
- Faculty of Bioscience and Bioindustry, Tokushima University Graduate School of Advanced Technology and Science, Tokushima, Japan
| | - Koji Kishimoto
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Technology, Industrial and Social Sciences, Tokushima, Japan
| |
Collapse
|
182
|
Levy E, Fallet-Bianco C, Auclair N, Patey N, Marcil V, Sané AT, Spahis S. Unraveling Chylomicron Retention Disease Enhances Insight into SAR1B GTPase Functions and Mechanisms of Actions, While Shedding Light of Intracellular Chylomicron Trafficking. Biomedicines 2024; 12:1548. [PMID: 39062121 PMCID: PMC11274388 DOI: 10.3390/biomedicines12071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, significant efforts have been focused on unraveling congenital intestinal disorders that disrupt the absorption of dietary lipids and fat-soluble vitamins. The primary goal has been to gain deeper insights into intra-enterocyte sites, molecular steps, and crucial proteins/regulatory pathways involved, while simultaneously identifying novel therapeutic targets and diagnostic tools. This research not only delves into specific and rare malabsorptive conditions, such as chylomicron retention disease (CRD), but also contributes to our understanding of normal physiology through the utilization of cutting-edge cellular and animal models alongside advanced research methodologies. This review elucidates how modern techniques have facilitated the decoding of CRD gene defects, the identification of dysfunctional cellular processes, disease regulatory mechanisms, and the essential role of coat protein complex II-coated vesicles and cargo receptors in chylomicron trafficking and endoplasmic reticulum (ER) exit sites. Moreover, experimental approaches have shed light on the multifaceted functions of SAR1B GTPase, wherein loss-of-function mutations not only predispose individuals to CRD but also exacerbate oxidative stress, inflammation, and ER stress, potentially contributing to clinical complications associated with CRD. In addition to dissecting the primary disease pathology, genetically modified animal models have emerged as invaluable assets in exploring various ancillary aspects, including responses to environmental challenges such as dietary alterations, gender-specific disparities in disease onset and progression, and embryonic lethality or developmental abnormalities. In summary, this comprehensive review provides an in-depth and contemporary analysis of CRD, offering a meticulous examination of the CRD current landscape by synthesizing the latest research findings and advancements in the field.
Collapse
Affiliation(s)
- Emile Levy
- Azrieli Research Center, CHU Ste-Justine and Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Catherine Fallet-Bianco
- Azrieli Research Center, CHU Ste-Justine and Pathology & Cell Biology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nickolas Auclair
- Azrieli Research Center, CHU Ste-Justine and Pharmacology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Natalie Patey
- Azrieli Research Center, CHU Ste-Justine and Pathology & Cell Biology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Valérie Marcil
- Azrieli Research Center, CHU Ste-Justine and Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | | | - Schohraya Spahis
- Azrieli Research Center, CHU Ste-Justine and Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| |
Collapse
|
183
|
Xu L, Ning R, Du X, Zhang Y, Gu C, Wang B, Bian L, Sun Q, Sun Y, Ren J. Bone Morphogenetic Protein Signaling Agonist SB4 (BMPSB4) Inhibits Corticotroph Pituitary Neuroendocrine Tumors by Activation of Autophagy via a BMP4/SMADs-Dependent Pathway. ACS Pharmacol Transl Sci 2024; 7:1951-1970. [PMID: 39022361 PMCID: PMC11249644 DOI: 10.1021/acsptsci.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Corticotroph pituitary neuroendocrine tumors (PitNETs), associated with Cushing's disease (CD), have limited treatment options other than surgical resection. Bone morphogenetic protein 4 (BMP4), a potential therapeutic target, is decreased in patients with CD. Previous studies have identified BMPSB4 as a potent agonist of the BMP4 signaling pathway. Here, we investigated the effect of BMPSB4 on the corticotroph PitNET cell line AtT20/D16v-F2 and explored the underlying mechanisms and therapeutic potential. We verified the low expression patterns of BMP4 and downstream p-SMAD1/5/9 in CD samples at the transcriptional and protein levels. In addition, BMPSB4 activated SMAD1/5/9 in a time- and concentration-dependent manner, with concomitant inhibitory effects on AtT20/D16v-F2 cells. Further RNA sequencing, transmission electron microscopy (TEM), and transfection with the mRFP-EGFP-LC3 adenoviral vector revealed that BMPSB4 induced cellular autophagy, which was the basis for the inhibitory effect of BMPSB4. Moreover, we demonstrated that autophagy induced by BMPSB4 was achieved through the SMADs-dependent pathway. In vivo, BMPSB4 inhibited tumor growth and significantly reduced adrenocorticotrophin (ACTH) and corticosterone (CORT) secretion, thereby alleviating the CD phenotype. In conclusion, this study identified BMPSB4 as an effective therapeutic agent for CD. BMPSB4 activates autophagy through a SMADs-dependent pathway, which in turn promotes autophagy-mediated cell death. Our work further elucidates the mechanism of the BMP4 signaling pathway in CD and suggests broad prospects for the development and application of BMPSB4 in CD therapy.
Collapse
Affiliation(s)
- Longyu Xu
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Ruonan Ning
- Department
of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xueqing Du
- Department
of Respiratory and Critical Care Medicine of Ruijin Hospital, Department
of Immunology and Microbiology, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yuxin Zhang
- Department
of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Changwei Gu
- Department
of Neurosurgery, Ruijin Hospital, Luwan
Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Baofeng Wang
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Liuguan Bian
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Qingfang Sun
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
- Department
of Neurosurgery, Ruijin Hospital, Luwan
Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Yuhao Sun
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Jie Ren
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
184
|
Li S, Ren W, Zheng J, Li S, Zhi K, Gao L. Role of O-linked N-acetylglucosamine protein modification in oxidative stress-induced autophagy: a novel target for bone remodeling. Cell Commun Signal 2024; 22:358. [PMID: 38987770 PMCID: PMC11238385 DOI: 10.1186/s12964-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic post-translational modification (PTM) involving the covalent binding of serine and/or threonine residues, which regulates bone cell homeostasis. Reactive oxygen species (ROS) are increased due to oxidative stress in various pathological contexts related to bone remodeling, such as osteoporosis, arthritis, and bone fracture. Autophagy serves as a scavenger for ROS within bone marrow-derived mesenchymal stem cells, osteoclasts, and osteoblasts. However, oxidative stress-induced autophagy is affected by the metabolic status, leading to unfavorable clinical outcomes. O-GlcNAcylation can regulate the autophagy process both directly and indirectly through oxidative stress-related signaling pathways, ultimately improving bone remodeling. The present interventions for the bone remodeling process often focus on promoting osteogenesis or inhibiting osteoclast absorption, ignoring the effect of PTM on the overall process of bone remodeling. This review explores how O-GlcNAcylation synergizes with autophagy to exert multiple regulatory effects on bone remodeling under oxidative stress stimulation, indicating the application of O-GlcNAcylation as a new molecular target in the field of bone remodeling.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
185
|
Bie J, Li R, Li Y, Song C, Chen Z, Zhang T, Tang Z, Su L, Zhu L, Wang J, Wan Y, Chen J, Liu X, Li T, Luo J. PKM2 aggregation drives metabolism reprograming during aging process. Nat Commun 2024; 15:5761. [PMID: 38982055 PMCID: PMC11233639 DOI: 10.1038/s41467-024-50242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
While protein aggregation's association with aging and age-related diseases is well-established, the specific proteins involved and whether dissolving them could alleviate aging remain unclear. Our research addresses this gap by uncovering the role of PKM2 aggregates in aging. We find that PKM2 forms aggregates in senescent cells and organs from aged mice, impairing its enzymatic activity and glycolytic flux, thereby driving cells into senescence. Through a rigorous two-step small molecule library screening, we identify two compounds, K35 and its analog K27, capable of dissolving PKM2 aggregates and alleviating senescence. Further experiments show that treatment with K35 and K27 not only alleviate aging-associated signatures but also extend the lifespan of naturally and prematurely aged mice. These findings provide compelling evidence for the involvement of PKM2 aggregates in inducing cellular senescence and aging phenotypes, and suggest that targeting these aggregates could be a promising strategy for anti-aging drug discovery.
Collapse
Affiliation(s)
- Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, 225316, China
| | - Ridong Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Zhaoming Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tianzhuo Zhang
- Department of Anesthesiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Su
- Peking university medical and health analysis center, Beijing, 100191, China
| | - Liangyi Zhu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Jiaxin Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - You Wan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| | - Tingting Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China.
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, 225316, China.
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
186
|
Fernandez-Fuente G, Farrugia MA, Peng Y, Schneider A, Svaren J, Puglielli L. Spatial selectivity of ATase inhibition in mouse models of Charcot-Marie-Tooth disease. Brain Commun 2024; 6:fcae232. [PMID: 39035418 PMCID: PMC11258571 DOI: 10.1093/braincomms/fcae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
The endoplasmic reticulum acetylation machinery has emerged as a new branch of the larger endoplasmic reticulum quality control system. It regulates the selection of correctly folded polypeptides as well as reticulophagy-mediated removal of toxic protein aggregates with the former being a particularly important aspect of the proteostatic functions of endoplasmic reticulum acetylation. Essential to this function is the Nε-lysine acetyltransferase activity of acetyltransferase 1 and acetyltransferase 2, which regulates the induction of endoplasmic reticulum-specific autophagy through the acetylation of the autophagy-related protein 9A. Here, we used three mouse models of Charcot-Marie-Tooth disease, peripheral myelin protein 22/Tr-J, C3-peripheral myelin protein 22 and myelin protein zero/ttrr, to study spatial and translational selectivity of endoplasmic reticulum acetyltransferase inhibitors. The results show that inhibition of the endoplasmic reticulum acetyltransferases selectively targets misfolding/pro-aggregating events occurring in the lumen of the organelle. Therefore, they establish acetyltransferase 1 and acetyltransferase 2 as the first proven targets for disease-causing proteotoxic states that initiate within the lumen of the endoplasmic reticulum/secretory pathway.
Collapse
Affiliation(s)
- Gonzalo Fernandez-Fuente
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark A Farrugia
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yajing Peng
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Luigi Puglielli
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA
| |
Collapse
|
187
|
Mella A, Calvetti R, Barreca A, Congiu G, Biancone L. Kidney transplants from elderly donors: what we have learned 20 years after the Crystal City consensus criteria meeting. J Nephrol 2024; 37:1449-1461. [PMID: 38446386 PMCID: PMC11473582 DOI: 10.1007/s40620-024-01888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/03/2024] [Indexed: 03/07/2024]
Abstract
Based on the current projection of the general population and the combined increase in end-stage kidney disease with age, the number of elderly donors and recipients is increasing, raising crucial questions about how to minimize the discard rate of organs from elderly donors and improve graft and patient outcomes. In 2002, extended criteria donors were the focus of a meeting in Crystal City (VA, USA), with a goal of maximizing the use of organs from deceased donors. Since then, extended criteria donors have progressively contributed to a large number of transplanted grafts worldwide, posing specific issues for allocation systems, recipient management, and therapeutic approaches. This review analyzes what we have learned in the last 20 years about extended criteria donor utilization, the promising innovations in immunosuppressive management, and the molecular pathways involved in the aging process, which constitute potential targets for novel therapies.
Collapse
Affiliation(s)
- Alberto Mella
- Renal Transplant Center" A. Vercellone," Nephrology, Dialysis, and Renal Transplant Division, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Corso Bramante, 88, 10126, Turin, Italy
| | - Ruggero Calvetti
- Renal Transplant Center" A. Vercellone," Nephrology, Dialysis, and Renal Transplant Division, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Corso Bramante, 88, 10126, Turin, Italy
| | - Antonella Barreca
- Division of Pathology, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Congiu
- Renal Transplant Center" A. Vercellone," Nephrology, Dialysis, and Renal Transplant Division, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Corso Bramante, 88, 10126, Turin, Italy
| | - Luigi Biancone
- Renal Transplant Center" A. Vercellone," Nephrology, Dialysis, and Renal Transplant Division, "Città Della Salute e Della Scienza" Hospital, Department of Medical Sciences, University of Turin, Corso Bramante, 88, 10126, Turin, Italy.
| |
Collapse
|
188
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
189
|
Gao X, Li Q, Hao J, Sun K, Feng H, Guo K, Gao C. Therapeutic effects of exendin-4 on spinal cord injury via restoring autophagy function and decreasing necroptosis in neuron. CNS Neurosci Ther 2024; 30:e14835. [PMID: 39004783 PMCID: PMC11246977 DOI: 10.1111/cns.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
AIMS Necroptosis is one of programmed death that may aggravate spinal cord injury (SCI). We aimed to investigate the effect and mechanism of exendin-4 (EX-4) on the recovery of motor function and necroptosis after SCI. METHODS The SD rats with left hemisection in the T10 spinal cord as SCI model were used. The behavior tests were measured within 4 weeks. The effects of EX-4 on necroptosis-associated proteins and autophagy flux were explored. In addition, the SHSY5Y cell model was introduced to explore the direct effect of EX-4 on neurons. The effect of lysosome was explored using mTOR activator and AO staining. RESULTS EX-4 could improve motor function and limb strength, promote the recovery of autophagy flux, and accelerate the degradation of necroptosis-related protein at 3 d after injury in rats. EX-4 reduced lysosome membrane permeability, promoted the recovery of lysosome function and autophagy flux, and accelerated the degradation of necroptosis-related proteins by inhibiting the phosphorylation level of mTOR in the SHSY5Y cell model. CONCLUSION Our results demonstrated that EX-4 may improve motor function after SCI via inhibiting mTOR phosphorylation level and accelerating the degradation of necroptosis-related proteins in neurons. Our findings may provide new therapeutic targets for clinical treatment after SCI.
Collapse
Affiliation(s)
- Xiao Gao
- Nanjing Medical UniversityNanjingChina
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Qu‐Peng Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Jing‐Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| | - Kai Sun
- Nanjing Medical UniversityNanjingChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| | - Hu Feng
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Kai‐Jin Guo
- Nanjing Medical UniversityNanjingChina
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Can Gao
- Nanjing Medical UniversityNanjingChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
190
|
Sun J, Zhang H, Xie B, Shen Y, Zhu Y, Xu W, Zhang B, Song X. Transient stimulation of TRPMLs enhance the functionality of hDPCs and facilitate hair growth in mice. Cell Signal 2024; 119:111167. [PMID: 38604341 DOI: 10.1016/j.cellsig.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Autophagy is essential for eliminating aging and organelle damage that maintaining cellular homeostasis. However, the dysfunction of autophagy has been proven in hair loss such as AGA. Despite the crucial role of TRPML channels in regulating autophagy, their specific function in hair growth remains unclarified. To investigate the biological functions and associated molecular mechanisms of TRPMLs in hair growth, Animal experiments were conducted to confirm the function of TRLMLs activation in promoting hair growth. Subsequently, we analyzed molecular mechanisms in human dermal papilla cells (hDPCs) activated by TRPMLs through transcriptome sequencing analysis. MLSA1(a TRPML agonist) promoted hair regeneration and accelerated hair cycle transition in mice. The activation of TRPMLs upregulated calcium signaling inducing hDPCs to secrete hair growth promoting factors and decrease hair growth inhibiting factors. In addition, activation of TRPMLs triggered autophagy and reduced the generation of ROS, thereby delaying the senescence of hDPCs. All these findings suggested that TRPMLs activation could promote hair growth by regulating hDPCs secretion of hair growth-related factors. Moreover, it may play a prominent role in preventing hDPCs from ROS damage induced by H2O2 or DHT. Targeting TRPMLs may represent a promising therapeutic strategy for treating hair loss.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Beilei Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
191
|
Gao C, Wan Q, Yan J, Zhu Y, Tian L, Wei J, Feng B, Niu L, Jiao K. Exploring the Link Between Autophagy-Lysosomal Dysfunction and Early Heterotopic Ossification in Tendons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400790. [PMID: 38741381 PMCID: PMC11267276 DOI: 10.1002/advs.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Heterotopic ossification (HO), the pathological formation of bone within soft tissues such as tendon and muscle, is a notable complication resulting from severe injury. While soft tissue injury is necessary for HO development, the specific molecular pathology responsible for trauma-induced HO remains a mystery. The previous study detected abnormal autophagy function in the early stages of tendon HO. Nevertheless, it remains to be determined whether autophagy governs the process of HO generation. Here, trauma-induced tendon HO model is used to investigate the relationship between autophagy and tendon calcification. In the early stages of tenotomy, it is observed that autophagic flux is significantly impaired and that blocking autophagic flux promoted the development of more rampant calcification. Moreover, Gt(ROSA)26sor transgenic mouse model experiments disclosed lysosomal acid dysfunction as chief reason behind impaired autophagic flux. Stimulating V-ATPase activity reinstated both lysosomal acid functioning and autophagic flux, thereby reversing tendon HO. This present study demonstrates that autophagy-lysosomal dysfunction triggers HO in the stages of tendon injury, with potential therapeutic targeting implications for HO.
Collapse
Affiliation(s)
- Chang‐He Gao
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- Department of StomatologyThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453000P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jan‐Fei Yan
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Yi‐Na Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jian‐Hua Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Bin Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Li‐Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Kai Jiao
- Department of StomatologyTangdu HospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| |
Collapse
|
192
|
Wang Q, Bu Q, Xu Z, Liang Y, Zhou J, Pan Y, Zhou H, Lu L. Macrophage ATG16L1 expression suppresses metabolic dysfunction-associated steatohepatitis progression by promoting lipophagy. Clin Mol Hepatol 2024; 30:515-538. [PMID: 38726504 PMCID: PMC11261221 DOI: 10.3350/cmh.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is an unmet clinical challenge due to the rapid increased occurrence but lacking approved drugs. Autophagy-related protein 16-like 1 (ATG16L1) plays an important role in the process of autophagy, which is indispensable for proper biogenesis of the autophagosome, but its role in modulating macrophage-related inflammation and metabolism during MASH has not been documented. Here, we aimed to elucidate the role of ATG16L1 in the progression of MASH. METHODS Expression analysis was performed with liver samples from human and mice. MASH models were induced in myeloid-specific Atg16l1-deficient and myeloid-specific Atg16l1-overexpressed mice by high-fat and high-cholesterol diet or methionine- and choline-deficient diet to explore the function and mechanism of macrophage ATG16L1 in MASH. RESULTS Macrophage-specific Atg16l1 knockout exacerbated MASH and inhibited energy expenditure, whereas macrophage-specific Atg16l1 transgenic overexpression attenuated MASH and promotes energy expenditure. Mechanistically, Atg16l1 knockout inhibited macrophage lipophagy, thereby suppressing macrophage β-oxidation and decreasing the production of 4-hydroxynonenal, which further inhibited stimulator of interferon genes(STING) carbonylation. STING palmitoylation was enhanced, STING trafficking from the endoplasmic reticulum to the Golgi was promoted, and downstream STING signaling was activated, promoting proinflammatory and profibrotic cytokines secretion, resulting in hepatic steatosis and hepatic stellate cells activation. Moreover, Atg16l1-deficiency enhanced macrophage phagosome ability but inhibited lysosome formation, engulfing mtDNA released by pyroptotic hepatocytes. Increased mtDNA promoted cGAS/STING signaling activation. Moreover, pharmacological promotion of ATG16L1 substantially blocked MASH progression. CONCLUSION ATG16L1 suppresses MASH progression by maintaining macrophage lipophagy, restraining liver inflammation, and may be a promising therapeutic target for MASH management.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yufeng Pan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
193
|
Yang T, Hu J, Zhang L, Liu L, Pan X, Zhou Y, Wu Y, Shi X, Obiegbusi CN, Dong X. CircCUL1 inhibits trophoblast cell migration and invasion and promotes cell autophagy by sponging hsa-miR-30e-3p in fetal growth restriction via the ANXA1/PI3K/AKT axis. J Biochem Mol Toxicol 2024; 38:e23759. [PMID: 39003567 DOI: 10.1002/jbt.23759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Fetal growth restriction (FGR) severely affects the health outcome of newborns and represents a major cause of perinatal morbidity. The precise involvement of circCULT1 in the progression of FGR remains unclear. We performed next-generation sequencing and RT-qPCR to identify differentially expressed circRNAs in placental tissues affected by FGR by comparing them with unaffected counterparts. Edu, flow cytometry, and transwell assay were conducted to detect HTR8/SVneo cell's function in regard to cell proliferation, migration, and invasion. The interaction between circCUL1 and hsa-miR-30e-3p was assessed through dual-luciferase reporter assays, validation of the interaction between circCUL1 and ANXA1 was performed using RNA pulldown and immunoprecipitation assays. Western blot analysis was performed to evaluate protein levels of autophagy markers and components of the PI3K/AKT signaling pathway. A knockout (KO) mouse model was established for homologous mmu-circ-0001469 to assess fetal mouse growth and development indicators. Our findings revealed an upregulation of circCUL1 expression in placental tissues from patients with FGR. We found that suppression of circCUL1 increased the trophoblast cell proliferation, migration, and invasion, circCUL1 could interact with hsa-miR-30e-3p. Further, circCUL1 stimulated autophagy, modulating trophoblast cell autophagy via the ANXA1/PI3K/AKT pathway, and a notable disparity was observed, with KO mice displaying accelerated embryo development and exhibiting heavier placentas in comparison to wild-type C57BL/6 mice. By modulating the ANXA1/PI3K/AKT signaling pathway through the interaction with hsa-miR-30e-3p, circCUL1 promotes autophagy while concurrently suppressing trophoblast cell proliferation, migration, and invasion. These findings offer novel insights into potential diagnostic markers and therapeutic targets for FGR research.
Collapse
Affiliation(s)
- Tong Yang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Pan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yanqiu Zhou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xian Shi
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chidera N Obiegbusi
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
194
|
Liu R, Hong W, Hou D, Huang H, Duan C. Decoding Organelle Interactions: Unveiling Molecular Mechanisms and Disease Therapies. Adv Biol (Weinh) 2024; 8:e2300288. [PMID: 38717793 DOI: 10.1002/adbi.202300288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/05/2024] [Indexed: 07/13/2024]
Abstract
Organelles, substructures in the cytoplasm with specific morphological structures and functions, interact with each other via membrane fusion, membrane transport, and protein interactions, collectively termed organelle interaction. Organelle interaction is a complex biological process involving the interaction and regulation of several organelles, including the interaction between mitochondria-endoplasmic reticulum, endoplasmic reticulum-Golgi, mitochondria-lysosomes, and endoplasmic reticulum-peroxisomes. This interaction enables intracellular substance transport, metabolism, and signal transmission, and is closely related to the occurrence, development, and treatment of many diseases, such as cancer, neurodegenerative diseases, and metabolic diseases. Herein, the mechanisms and regulation of organelle interactions are reviewed, which are critical for understanding basic principles of cell biology and disease development mechanisms. The findings will help to facilitate the development of novel strategies for disease prevention, diagnosis, and treatment opportunities.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
195
|
Wang J, Lin Y, Li C, Lei F, Luo H, Jing P, Fu Y, Zhang Z, Wang C, Liu Z, Jiang J, Zhou M, Du X, Liu Z, Zhou X, Sun X, Zhong Z. Zein-Based Triple-Drug Nanoparticles to Promote Anti-Inflammatory Responses for Nerve Regeneration after Spinal Cord Injury. Adv Healthc Mater 2024; 13:e2304261. [PMID: 38482944 DOI: 10.1002/adhm.202304261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Defects in autophagy contribute to neurological deficits and motor dysfunction after spinal cord injury. Here a nanosystem is developed to deliver autophagy-promoting, anti-inflammatory drugs to nerve cells in the injured spinal cord. Celastrol, metformin, and everolimus as the mTOR inhibitor are combined into the zein-based nanoparticles, aiming to solubilize the drugs and prolong their circulation. The nanoparticles are internalized by BV2 microglia and SH-SY5Y neuron-like cells in culture; they inhibit the secretion of inflammatory factors by BV2 cells after insult with lipopolysaccharide, and they protect SH-SY5Y cells from the toxicity of H2O2. In a rat model of spinal cord injury, the nanoparticles mitigate inflammation and promote spinal cord repair. In the in vitro and in vivo experiments, the complete nanoparticles function better than the free drugs or nanoparticles containing only one or two drugs. These results suggest that the triple-drug nanoparticles show promise for treating spinal cord injury.
Collapse
Affiliation(s)
- Jingxuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chunhan Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Fei Lei
- Department of Spine Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hongli Luo
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Pei Jing
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yao Fu
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhirong Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Meiling Zhou
- Department of Spine Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xingjie Du
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoduan Sun
- Department of Spine Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
196
|
Wu HT, Wu BX, Fang ZX, Wu Z, Hou YY, Deng Y, Cui YK, Liu J. Lomitapide repurposing for treatment of malignancies: A promising direction. Heliyon 2024; 10:e32998. [PMID: 38988566 PMCID: PMC11234027 DOI: 10.1016/j.heliyon.2024.e32998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
197
|
Ling Z, Pan J, Zhang Z, Chen G, Geng J, Lin Q, Zhang T, Cao S, Chen C, Lin J, Yuan H, Ding W, Xiao F, Xu X, Li F, Wang G, Zhang Y, Li J. Small-molecule Molephantin induces apoptosis and mitophagy flux blockage through ROS production in glioblastoma. Cancer Lett 2024; 592:216927. [PMID: 38697460 DOI: 10.1016/j.canlet.2024.216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Glioblastoma (GBM), one of the most malignant brain tumors in the world, has limited treatment options and a dismal survival rate. Effective and safe disease-modifying drugs for glioblastoma are urgently needed. Here, we identified a small molecule, Molephantin (EM-5), effectively penetrated the blood-brain barrier (BBB) and demonstrated notable antitumor effects against GBM with good safety profiles both in vitro and in vivo. Mechanistically, EM-5 not only inhibits the proliferation and invasion of GBM cells but also induces cell apoptosis through the reactive oxygen species (ROS)-mediated PI3K/Akt/mTOR pathway. Furthermore, EM-5 causes mitochondrial dysfunction and blocks mitophagy flux by impeding the fusion of mitophagosomes with lysosomes. It is noteworthy that EM-5 does not interfere with the initiation of autophagosome formation or lysosomal function. Additionally, the mitophagy flux blockage caused by EM-5 was driven by the accumulation of intracellular ROS. In vivo, EM-5 exhibited significant efficacy in suppressing tumor growth in a xenograft model. Collectively, our findings not only identified EM-5 as a promising, effective, and safe lead compound for treating GBM but also uncovered its underlying mechanisms from the perspective of apoptosis and mitophagy.
Collapse
Affiliation(s)
- Zhipeng Ling
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Junping Pan
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guisi Chen
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Jiayuan Geng
- Department of Microbial and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiang Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuqin Cao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jinrong Lin
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hongyao Yuan
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Weilong Ding
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| | - Yubo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
198
|
Esrefoglu M. Harnessing autophagy: A potential breakthrough in digestive disease treatment. World J Gastroenterol 2024; 30:3036-3043. [PMID: 38983959 PMCID: PMC11230060 DOI: 10.3748/wjg.v30.i24.3036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Autophagy, a conserved cellular degradation process, is crucial for various cellular processes such as immune responses, inflammation, metabolic and oxidative stress adaptation, cell proliferation, development, and tissue repair and remodeling. Dysregulation of autophagy is suspected in numerous diseases, including cancer, neurodegenerative diseases, digestive disorders, metabolic syndromes, and infectious and inflammatory diseases. If autophagy is disrupted, for example, this can have serious consequences and lead to chronic inflammation and tissue damage, as occurs in diseases such as Chron's disease and ulcerative colitis. On the other hand, the influence of autophagy on the development and progression of cancer is not clear. Autophagy can both suppress and promote the progression and metastasis of cancer at various stages. From inflammatory bowel diseases to gastrointestinal cancer, researchers are discovering the intricate role of autophagy in maintaining gut health and its potential as a therapeutic target. Researchers should carefully consider the nature and progression of diseases such as cancer when trying to determine whether inhibiting or stimulating autophagy is likely to be beneficial. Multidisciplinary approaches that combine cutting-edge research with clinical expertise are key to unlocking the full therapeutic potential of autophagy in digestive diseases.
Collapse
Affiliation(s)
- Mukaddes Esrefoglu
- Department of Histology and Embryology, Bezmialem Vakif University Medical Faculty, Istanbul 34093, Türkiye
| |
Collapse
|
199
|
Maglica M, Kelam N, Perutina I, Racetin A, Rizikalo A, Filipović N, Kuzmić Prusac I, Mišković J, Vukojević K. Immunoexpression Pattern of Autophagy-Related Proteins in Human Congenital Anomalies of the Kidney and Urinary Tract. Int J Mol Sci 2024; 25:6829. [PMID: 38999938 PMCID: PMC11241479 DOI: 10.3390/ijms25136829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The purpose of this study was to evaluate the spatiotemporal immunoexpression pattern of microtubule-associated protein 1 light chain 3 beta (LC3B), glucose-regulated protein 78 (GRP78), heat shock protein 70 (HSP70), and lysosomal-associated membrane protein 2A (LAMP2A) in normal human fetal kidney development (CTRL) and kidneys affected with congenital anomalies of the kidney and urinary tract (CAKUT). Human fetal kidneys (control, horseshoe, dysplastic, duplex, and hypoplastic) from the 18th to the 38th developmental week underwent epifluorescence microscopy analysis after being stained with antibodies. Immunoreactivity was quantified in various kidney structures, and expression dynamics were examined using linear and nonlinear regression modeling. The punctate expression of LC3B was observed mainly in tubules and glomerular cells, with dysplastic kidneys displaying distinct staining patterns. In the control group's glomeruli, LAMP2A showed a sporadic, punctate signal; in contrast to other phenotypes, duplex kidneys showed significantly stronger expression in convoluted tubules. GRP78 had a weaker expression in CAKUT kidneys, especially hypoplastic ones, while normal kidneys exhibited punctate staining of convoluted tubules and glomeruli. HSP70 staining varied among phenotypes, with dysplastic and hypoplastic kidneys exhibiting stronger staining compared to controls. Expression dynamics varied among observed autophagy markers and phenotypes, indicating their potential roles in normal and dysfunctional kidney development.
Collapse
Affiliation(s)
- Mirko Maglica
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ilija Perutina
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Azer Rizikalo
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Natalija Filipović
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Kuzmić Prusac
- Department of Pathology, University Hospital Center Split, 21000 Split, Croatia
| | - Josip Mišković
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
200
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|