151
|
Stevenson TJ. Epigenetic Regulation of Biological Rhythms: An Evolutionary Ancient Molecular Timer. Trends Genet 2017; 34:90-100. [PMID: 29221677 DOI: 10.1016/j.tig.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 01/12/2023]
Abstract
Biological rhythms are pervasive in nature, yet our understanding of the molecular mechanisms that govern timing is far from complete. The rapidly emerging research focus on epigenetic plasticity has revealed a system that is highly dynamic and reversible. In this Opinion, I propose an epigenetic clock model that outlines how molecular modifications, such as DNA methylation, are integral components for timing endogenous biological rhythms. The hypothesis proposed is that an epigenetic clock serves to maintain the period of molecular rhythms via control over the phase of gene transcription and this timing mechanism resides in all cells, from unicellular to complex organisms. The model also provides a novel framework for the timing of epigenetic modifications during the lifespan and transgenerational inheritance of an organism.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
152
|
Dunn IC, Wilson PW, Shi Y, Burt DW, Loudon ASI, Sharp PJ. Diurnal and photoperiodic changes in thyrotrophin-stimulating hormone β expression and associated regulation of deiodinase enzymes (DIO2, DIO3) in the female juvenile chicken hypothalamus. J Neuroendocrinol 2017; 29:e12554. [PMID: 29117457 PMCID: PMC5767736 DOI: 10.1111/jne.12554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Increased thyrotrophin-stimulating hormone β (TSHβ) expression in the pars tuberalis is assumed to be an early step in the neuroendocrine mechanism transducing photoperiodic information. The present study aimed to determine the relationship between long-photoperiod (LP) and diurnal TSHβ gene expression in the juvenile chicken by comparing LP-photostimulated birds with groups kept on a short photoperiod (SP) for 1 or 12 days. TSHβ expression increased by 3- and 23-fold after 1 and 12 days of LP-photostimulation both during the day and at night. Under both SP and LP conditions, TSHβ expression was between 3- and 14-fold higher at night than in the day, suggesting that TSHβ expression cycles in a diurnal pattern irrespective of photoperiod. The ratio of DIO2/3 was decreased on LPs, consequent to changes in DIO3 expression, although there was no evidence of any diurnal effect on DIO2 or DIO3 expression. Plasma prolactin concentrations revealed both an effect of LPs and time-of-day. Thus, TSHβ expression changes in a dynamic fashion both diurnally and in response to photoperiod.
Collapse
Affiliation(s)
- I. C. Dunn
- Roslin Institute and Royal (Dick) School of Veterinary StudiesRoslinScotlandUK
| | - P. W. Wilson
- Roslin Institute and Royal (Dick) School of Veterinary StudiesRoslinScotlandUK
| | - Y. Shi
- Roslin Institute and Royal (Dick) School of Veterinary StudiesRoslinScotlandUK
- College of Animal Science and Veterinary MedicineHenan Agricultural UniversityZhengzhouChina
| | - D. W. Burt
- UQ Genomics InitiativeUniversity of QueenslandSaint LuciaQldAustralia
| | - A. S. I. Loudon
- Faculty of Life SciencesUniversity of ManchesterManchesterUK
| | - P. J. Sharp
- Roslin Institute and Royal (Dick) School of Veterinary StudiesRoslinScotlandUK
| |
Collapse
|
153
|
Ikegami K, Yoshimura T. The hypothalamic-pituitary-thyroid axis and biological rhythms: The discovery of TSH's unexpected role using animal models. Best Pract Res Clin Endocrinol Metab 2017; 31:475-485. [PMID: 29223282 DOI: 10.1016/j.beem.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Division of Seasonal Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan.
| |
Collapse
|
154
|
Mishra I, Kumar V. Circadian basis of seasonal timing in higher vertebrates. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ila Mishra
- Department of Zoology, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
155
|
Mohanty B, Pandey SP, Tsutsui K. Thyroid disrupting pesticides impair the hypothalamic-pituitary-testicular axis of a wildlife bird, Amandava amandava. Reprod Toxicol 2017; 71:32-41. [DOI: 10.1016/j.reprotox.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 02/01/2023]
|
156
|
Bank JHH, Wilson D, Rijntjes E, Barrett P, Herwig A. Alternation between short- and long photoperiod reveals hypothalamic gene regulation linked to seasonal body weight changes in Djungarian hamsters (Phodopus sungorus). J Neuroendocrinol 2017; 29. [PMID: 28514514 DOI: 10.1111/jne.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/10/2017] [Accepted: 05/14/2017] [Indexed: 01/28/2023]
Abstract
Djungarian hamsters are able to reduce their body weight by more than 30% in anticipation of the winter season. This particular adaptation to extreme environmental conditions is primarily driven by a natural reduction in day length and conserved under laboratory conditions. We used this animal model to investigate hypothalamic gene expression linked to body weight regulation behind this physiological phenomenon. After an initial collective short photoperiod (SP) adaptation for 14 weeks from a preceding long photoperiod (LP), hamsters were re-exposed to LP for either 6 or 14 weeks, followed by a second re-exposure to SP for 8 weeks. Our data showed that re-exposure to LP led to an increase in body weight. In the hypothalamus Dio2, Vimentin, Crbp1 and Grp50 expression increased, whereas expression of Dio3, Mct8 and Srif decreased. The changes in body weight and gene expression were reversible in most hamsters after a further re-exposure to SP following 6 or 14 weeks in LP. Interestingly, after 14 weeks in LP, body weight loss was pronounced in six hamsters re-exposed to SP, but five hamsters did not respond. In nonresponding hamsters, a different gene expression pattern was manifested, with the exception of Dio2, which was reduced not only in SP re-exposed hamsters, but also in hamsters maintained in LP. Taken together, these data suggest that body weight regulation appears to be tightly linked to a co-ordinated regulation of several genes in the hypothalamus, including those involved in thyroid hormone metabolism.
Collapse
Affiliation(s)
- J H H Bank
- Zoologisches Institut, Universität Hamburg, Hamburg, Germany
| | - D Wilson
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - E Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - P Barrett
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - A Herwig
- Zoologisches Institut, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
157
|
Kumar J, Gupta P, Naseem A, Malik S. Light spectrum and intensity, and the timekeeping in birds. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jayant Kumar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Preeti Gupta
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Asma Naseem
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
158
|
Holzer G, Laudet V. New Insights into Vertebrate Thyroid Hormone Receptor Evolution. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guillaume Holzer
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, 1 avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
159
|
Mishra I, Singh D, Kumar V. Seasonal alterations in the daily rhythms in hypothalamic expression of genes involved in the photoperiodic transduction and neurosteroid-dependent processes in migratory blackheaded buntings. J Neuroendocrinol 2017; 29. [PMID: 28295708 DOI: 10.1111/jne.12469] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 01/23/2023]
Abstract
The present study investigated seasonal alterations in the daily rhythms of hypothalamic expression of genes involved in the photoperiodic regulation of annual cycles in birds. We measured the 4-hourly mRNA expression of genes involved in the photoperiodic transduction (OPN5, EYA3, CGA, TSHβ, DIO2, DIO3) and neurosteroid-dependent processes (AR, CYP19, ERα, ERβ) in the hypothalamus of migratory blackheaded buntings photoinduced with photosensitive, photostimulated (early and late stimulated) and photorefractory seasonal states. There were significant differences in daily mRNA profiles between the photoperiodic states. Particularly, increased CGA, TSHβ and DIO2 and decreased DIO3 mRNA levels in the early photostimulated state, compared to the photosensitive state, suggest that thyroid hormones have a role in photostimulation in buntings. Similar differences in the expression of genes coding for the aromatase enzyme (CYP19) and receptors for oestrogen (ERα, ERβ) (but not androgen; AR) indicate that there is seasonal alteration in the neuro-oestrogen-mediated functions. Furthermore, peak expression times of CGA, TSHβ and DIO2 genes at hours 14-15 of the day in the early stimulated state indicated molecular regulation of the daily rhythm of photoinducibility in buntings. Most significantly, however, we found an attenuated daily rhythm in thyroid hormone modulatory genes and a switch of peak expression time from day to night in CYP19 mRNA rhythm in the subsequent late photostimulated state, although testicular maturation still persisted. These alterations in daily rhythms may have signalled the initiation of processes underlying other seasonal phenologies in parallel with the gonadal response, such as a manifestation of the night-time flight in buntings. These results show alterations in daily rhythms underlying the transcriptional regulation of the photoperiod-induced seasonal states in migratory blackheaded buntings.
Collapse
Affiliation(s)
- I Mishra
- Department of Zoology, IndoUS Center for Biological Timing, University of Delhi, Delhi, India
| | - D Singh
- Department of Zoology, IndoUS Center for Biological Timing, University of Delhi, Delhi, India
| | - V Kumar
- Department of Zoology, IndoUS Center for Biological Timing, University of Delhi, Delhi, India
| |
Collapse
|
160
|
Disruption of the hypothalamic-pituitary-thyroid axis on co-exposures to dithiocarbamate and neonicotinoid pesticides: Study in a wildlife bird, Amandava amandava. Neurotoxicology 2017; 60:16-22. [DOI: 10.1016/j.neuro.2017.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
|
161
|
Lamichhaney S, Fuentes-Pardo AP, Rafati N, Ryman N, McCracken GR, Bourne C, Singh R, Ruzzante DE, Andersson L. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc Natl Acad Sci U S A 2017; 114:E3452-E3461. [PMID: 28389569 PMCID: PMC5410801 DOI: 10.1073/pnas.1617728114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Atlantic herring is an excellent species for studying the genetic basis of adaptation in geographically distant populations because of its characteristically large population sizes and low genetic drift. In this study we compared whole-genome resequencing data of Atlantic herring populations from both sides of the Atlantic Ocean. An important finding was the very low degree of genetic differentiation among geographically distant populations (fixation index = 0.026), suggesting lack of reproductive isolation across the ocean. This feature of the Atlantic herring facilitates the detection of genetic factors affecting adaptation because of the sharp contrast between loci showing genetic differentiation resulting from natural selection and the low background noise resulting from genetic drift. We show that genetic factors associated with timing of reproduction are shared between genetically distinct and geographically distant populations. The genes for thyroid-stimulating hormone receptor (TSHR), the SOX11 transcription factor (SOX11), calmodulin (CALM), and estrogen receptor 2 (ESR2A), all with a significant role in reproductive biology, were among the loci that showed the most consistent association with spawning time throughout the species range. In fact, the same two SNPs located at the 5' end of TSHR showed the most significant association with spawning time in both the east and west Atlantic. We also identified unexpected haplotype sharing between spring-spawning oceanic herring and autumn-spawning populations across the Atlantic Ocean and the Baltic Sea. The genomic regions showing this pattern are unlikely to control spawning time but may be involved in adaptation to ecological factor(s) shared among these populations.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden
| | | | - Nima Rafati
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden
| | - Nils Ryman
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Gregory R McCracken
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Christina Bourne
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St John's, Newfoundland A1C 5X1, Canada
| | - Rabindra Singh
- Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, New Brunswick E5B 2L9, Canada
| | - Daniel E Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden;
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| |
Collapse
|
162
|
Stevenson TJ. Circannual and circadian rhythms of hypothalamic DNA methyltransferase and histone deacetylase expression in male Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 2017; 243:130-137. [PMID: 27916575 DOI: 10.1016/j.ygcen.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
Precise timing of gene transcription is a fundamental component of many biological rhythms. DNA methylation and histone acetylation are two epigenetic modifications that can affect the probability of gene transcription and RNA expression. Enzymes involved in DNA methylation (dnmts) have been shown to exhibit photoperiodic rhythms in expression in the hypothalamus, which coincide with hypothalamic expression of deiodinase type III (dio3), a gene involved in the photoperiodic regulation of reproduction. It is currently unknown whether enzymes involved in histone deacetylation (hdacs) also vary in response to photoperiod, nor have seasonal changes in the circadian waveforms of methylation and/or acetylation enzymes been examined. The present work documents circadian and photoperiodic changes in dnmts and hdacs in whole hypothalamic dissections obtained from male Siberian hamsters (Phodopus sungorus) after 5-6weeks of exposure to SD. The data indicate that short days (SD) markedly inhibit dnmt3a expression, and that SD inhibition of dnmt3a was evident regardless of the alignment of circadian waveforms. Among hdacs, photoperiodic and circadian changes in expression were only observed in hdac4 expression. Recurrent temporal waveforms in epigenetic enzyme expression may provide molecular inputs to the timing systems that reprogram RNA expression to generate daily and annual phenotypic plasticity.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
163
|
Zhu H, Chen Z, Shao X, Yu J, Wei C, Dai Z, Shi Z. Reproductiveaxis gene regulation during photostimulation and photorefractoriness in Yangzhou goose ganders. Front Zool 2017; 14:11. [PMID: 28250798 PMCID: PMC5324292 DOI: 10.1186/s12983-017-0200-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/21/2017] [Indexed: 11/23/2022] Open
Abstract
Background The Yangzhou goose is a long-day breeding bird that has been increasingly produced in China. Artificial lighting programs are used for controlling its reproductive activities. This study investigated the regulations of photostimulation and photorefractoriness that govern the onset and cessation of the breeding period. Results Increasing the daily photoperiod from 8 to 12 h rapidly stimulated testis development and increased plasma testosterone concentrations, with peak levels being reached 2 months after the photoperiod increase. Subsequently, testicular activities, testicular weight, spermatogenesis, and plasma testosterone concentrations declined steadily and reached to the nadir at 5 months after the 12-hour photoperiod. Throughout the experiment, plasma concentrations of triiodothyronine and thyroxine changed in reciprocal fashions to that of testosterone. The stimulation of reproductive activities caused by the increasing photoperiod was associated with increases in gonadotropin-releasing hormone (GnRH), but decreases in gonadotropin-inhibitory hormone (GnIH) and vasoactive intestinal peptide (VIP) gene messenger RNA (mRNA) levels in the hypothalamus. In the pituitary gland, the levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) mRNA abruptly increased during the longer 12-hour photoperiod. The occurrence of photorefractoriness was associated with increased GnIH gene transcription by over 250-fold, together with increased VIP mRNA levels in the hypothalamus, and then prolactin and thyroid-stimulating hormone in the pituitary gland. FSH receptor, LH receptor, and StAR mRNA levels in the testis changed in ways paralleling those of testicular weight and testosterone concentrations. Conclusions The seasonal reproductive activities in Yangzhou geese were directly stimulated by a long photoperiod via upregulation of GnRH gene transcription, downregulation of GnIH, VIP gene transcription, and stimulation of gonadotrophin. Development of photorefractoriness was characterized by hyper-regulation of GnIH gene transcription in the hypothalamus, in addition of upregulation of VIP and TRH gene transcription, and that of their receptors, in the pituitary gland.
Collapse
Affiliation(s)
- Huanxi Zhu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Zhe Chen
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Xibin Shao
- Sunlake Swan Farm, Changzhou, 213101 China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Chuankun Wei
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Zichun Dai
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| |
Collapse
|
164
|
Chi L, Li X, Liu Q, Liu Y. Photoperiod regulate gonad development via kisspeptin/kissr in hypothalamus and saccus vasculosus of Atlantic salmon (Salmo salar). PLoS One 2017; 12:e0169569. [PMID: 28199332 PMCID: PMC5310791 DOI: 10.1371/journal.pone.0169569] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Atlantic salmon exhibit seasonal reproduction. However, the mechanisms governing this are still unclear. Generally speaking, kisspeptin has been recognized as a regulator of reproduction. Here, we report a relationship between kisspeptin, GnRH and photoperiod in Atlantic salmon. The results demonstrated that the expression of the Atlantic salmon kisspeptin-receptor (skissr) was not always consistent with the expression pattern of Atlantic salmon GnRH3 (sGnRH3) during all developmental processes. Kisspeptin may exert its influence primarily in the early and later stages of gonad development by promoting the secretion of sGnRH3. Meanwhile, the expression levels of kissr were higher in fish with gonads at stage II and stage V under the long-day photoperiod regime than under the short-day regime. In addition, both skissr and sGnRH3 were also expressed in the saccus vasculosus (SV), an organ only found in fish. The SV might be a seasonal sensor regulating reproduction in addition to the hypothalamus (Hyp).
Collapse
Affiliation(s)
- Liang Chi
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P.R. China
| | - Xian Li
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
- National & Local Joint Engineering Laboratory of Ecological Mari culture, Qingdao, China
| | - Qinghua Liu
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Ying Liu
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
- National & Local Joint Engineering Laboratory of Ecological Mari culture, Qingdao, China
- * E-mail:
| |
Collapse
|
165
|
Mishra I, Bhardwaj SK, Malik S, Kumar V. Concurrent hypothalamic gene expression under acute and chronic long days: Implications for initiation and maintenance of photoperiodic response in migratory songbirds. Mol Cell Endocrinol 2017; 439:81-94. [PMID: 27789391 DOI: 10.1016/j.mce.2016.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 01/22/2023]
Abstract
Hypothalamic expression of the thyroid hormone (TH) responsive gonadostimulatory (eya3, cga, tshβ, dio2, dio3, gnrh, gnih) and neurosteroid pathway genes (androgen receptor [ar], aromatase [cyp19], estrogen receptor [er] α and β) was examined in photosensitive redheaded buntings exposed to 2 (acute, experiment 1) or 12 (chronic, experiment 2) long days (16L:8D). Experiment 2 also included a photorefractory group. Acute long days caused a significant increase in eya3, cga, tshβ, dio2 and gnrh and decrease in dio3 mRNA levels. eya3, cga and tshβ expressions were unchanged after the chronic long days. We also found increased cyp19, erα and erβ mRNA levels after acute, and increased cyp19 and decreased erβ levels after the chronic long-day exposure. Photorefractory buntings showed expression patterns similar to that in the photosensitive state, except for high gnrh and gnih and low dio3 mRNA levels. Consistent with gene expression patterns, there were changes in fat deposition, body mass, testis size, and plasma levels of testosterone, tri-iodothyronine and thyroxine. These results show concurrent photostimulation of the TH-signalling and neurosteroid pathways, and extend the idea, based on differences in gene expression, that transitions in seasonal photoperiodic states are accomplished at the transcriptional levels in absolute photorefractory species.
Collapse
Affiliation(s)
- Ila Mishra
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow 226 007, India
| | - Vinod Kumar
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
166
|
Abstract
In the majority of vertebrates, survival of offspring to sexual maturation is important for increasing population size, and parental investment in the young is important for reproductive success. Consequently, parental care is critical for the survival of offspring in many species, and many vertebrates have adapted this behavior to their social and ecological environments. Parental care is defined as any behavior that is performed in association with one's offspring (Rosenblatt, Mayer, Siegel. Maternal behavior among nonprimate mammals. In: Adler, Pfaff, Goy, editors. Handbook of behavioral neurobiology. New York: Plenum; 1985. p. 229-98) and is well characterized in mammals and birds. In birds (class Aves), this is due to the high level of diversity across species. Parental behavior in birds protects the young from intruders, and generally involves nest building, incubation, and broody behavior which protect their young from an intruder, and the offspring are reared to independence. Broodiness is complexly regulated by the central nervous system and is associated with multiple hormones and neurotransmitters produced by the hypothalamus and pituitary gland. The mechanism of this behavior has been extensively characterized in domestic chicken (Gallus domesticus), turkey (Meleagris gallopavo), and pigeons and doves (family Columbidae). This chapter summarizes broodiness in birds from a physiology, genetics, and molecular biology perspective.
Collapse
Affiliation(s)
- Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ibaraki, Japan.
| |
Collapse
|
167
|
Tamai TK, Yoshimura T. Molecular and Neuroendocrine Mechanisms of Avian Seasonal Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:125-136. [PMID: 28980233 DOI: 10.1007/978-981-10-3975-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Animals living outside tropical zones experience seasonal changes in the environment and accordingly, adapt their physiology and behavior in reproduction, molting, and migration. Subtropical birds are excellent models for the study of seasonal reproduction because of their rapid and dramatic response to changes in photoperiod. For example, testicular weight typically changes by more than a 100-fold. In birds, the eyes are not necessary for seasonal reproduction, and light is instead perceived by deep brain photoreceptors. Functional genomic analysis has revealed that long day (LD)-induced thyrotropin from the pars tuberalis of the pituitary gland causes local thyroid hormone (TH) activation within the mediobasal hypothalamus. This local bioactive TH, triiodothyronine (T3), appears to regulate seasonal gonadotropin-releasing hormone (GnRH) secretion through morphological changes in neuro-glial interactions. GnRH, in turn, stimulates gonadotropin secretion and hence, gonadal development under LD conditions. In marked contrast, low temperatures accelerate short day (SD)-induced testicular regression in winter. Interestingly, low temperatures increase circulating levels of T3 to support adaptive thermogenesis, but this induction of T3 also triggers the apoptosis of germ cells by activating genes involved in metamorphosis. This apparent contradiction in the role of TH has recently been clarified. Central activation of TH during spring results in testicular growth, while peripheral activation of TH during winter regulates adaptive thermogenesis and testicular regression.
Collapse
Affiliation(s)
- T Katherine Tamai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
| |
Collapse
|
168
|
Identification of an endocannabinoid system in the rat pars tuberalis—a possible interface in the hypothalamic-pituitary-adrenal system? Cell Tissue Res 2016; 368:115-123. [DOI: 10.1007/s00441-016-2544-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023]
|
169
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
170
|
Verma R, Haldar C. Photoperiodic modulation of thyroid hormone receptor (TR-α), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:351-358. [DOI: 10.1016/j.jphotobiol.2016.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
171
|
Aizawa S, Higaki Y, Dudaui A, Nagasaka M, Takahashi S, Sakata I, Sakai T. Identification of marker genes for pars tuberalis morphogenesis in chick embryo: expression of Cytokine-like 1 and Gap junction protein alpha 5 in pars tuberalis. Cell Tissue Res 2016; 366:721-731. [PMID: 27590887 DOI: 10.1007/s00441-016-2484-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
The adenohypophysis is formed from the oral ectoderm and consists of the pars distalis (PD), pars intermedia, and pars tuberalis (PT). The mechanisms of PD development have been extensively studied, and the cellular differentiation of the PD is well understood. However, the morphogenesis and differentiation of the PT are still unclear, and the genes expressed during PT development remain largely unknown. We have explored genes specifically expressed in the PT during embryonic development and analyzed their spatiotemporal expression patterns. Microarray analysis of laser-captured PT and PD tissues obtained from chick embryos on embryonic day 10 (E10.0) has shown high expression of Cytokine-like 1 (CYTL1) and Gap junction protein alpha 5 (GJA5) genes in the PT. Detailed analysis of these spatiotemporal expression patterns during chick embryo development by in situ hybridization has revealed that CYTL1 mRNA first appears in the lateral head ectoderm and ventral head ectoderm at E1.5. The expression of CYTL1 moves into Rathke's pouch at E2.5 and is then localized in the PT primordium where it is continuously expressed until E12.0. GJA5 mRNA is transiently detected in the PT primordium from E6.0 to E12.0, whereas its expression is not detected in the PD during development. Thus, these genes might be involved in the regulation mechanisms of PT development and could be useful markers for PT development.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.
| | - Yuriko Higaki
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Amrita Dudaui
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Mai Nagasaka
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Sumio Takahashi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ichiro Sakata
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| |
Collapse
|
172
|
Chronobiological Hypothesis about the Association Between Height Growth Seasonality and Geographical Differences in Body Height According to Effective Day Length. J Circadian Rhythms 2016. [PMCID: PMC5388030 DOI: 10.5334/jcr.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on growth hormone therapy in children have shown that height velocity is greater in summer than in winter and that this difference increases with latitude. It is hypothesized that summer daylight is a causative factor and that geographical distribution of body height will approximate the distribution of summer day length over time. This is an ecological analysis of prefecture-level data on the height of Japanese youth. Mesh climatic data of effective day length were collated. While height velocity was greatest during the summer, the height of Japanese youth was strongly and negatively correlated with the distribution of winter effective day length. Therefore, it is anticipated that summer height velocity is greater according to winter day length (dark period). This may be due to epigenetic modifications, involving reversible DNA methylation and thyroid hormone regulation found in the reproductive system of seasonal breeding vertebrates. If the function is applicable to humans, summer height growth may quantitatively increase with winter day length, and height growth seasonality can be explained by thyroid hormone activities that-induced by DNA methylation-change depending on the seasonal difference in day length. Moreover, geographical differences in body height may be caused by geographical differences in effective day length, which could influence melatonin secretion among subjects who spend a significant time indoors.
Collapse
|
173
|
Liu Z, Ji Z, Wang G, Chao T, Hou L, Wang J. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics 2016; 17:863. [PMID: 27809776 PMCID: PMC5094087 DOI: 10.1186/s12864-016-3212-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Background Throughout a long period of adaptation and selection, sheep have thrived in a diverse range of ecological environments. Mongolian sheep is the common ancestor of the Chinese short fat-tailed sheep. Migration to different ecoregions leads to changes in selection pressures and results in microevolution. Mongolian sheep and its subspecies differ in a number of important traits, especially reproductive traits. Genome-wide intraspecific variation is required to dissect the genetic basis of these traits. Results This research resequenced 3 short fat-tailed sheep breeds with a 43.2-fold coverage of the sheep genome. We report more than 17 million single nucleotide polymorphisms and 2.9 million indels and identify 143 genomic regions with reduced pooled heterozygosity or increased genetic distance to each other breed that represent likely targets for selection during the migration. These regions harbor genes related to developmental processes, cellular processes, multicellular organismal processes, biological regulation, metabolic processes, reproduction, localization, growth and various components of the stress responses. Furthermore, we examined the haplotype diversity of 3 genomic regions involved in reproduction and found significant differences in TSHR and PRL gene regions among 8 sheep breeds. Conclusions Our results provide useful genomic information for identifying genes or causal mutations associated with important economic traits in sheep and for understanding the genetic basis of adaptation to different ecological environments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3212-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaohua Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
174
|
Jastroch M, Giroud S, Barrett P, Geiser F, Heldmaier G, Herwig A. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation. J Neuroendocrinol 2016; 28. [PMID: 27755687 DOI: 10.1111/jne.12437] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022]
Abstract
Endothermic mammals and birds require intensive energy turnover to sustain high body temperatures and metabolic rates. To cope with the energetic bottlenecks associated with the change of seasons, and to minimise energy expenditure, complex mechanisms and strategies are used, such as daily torpor and hibernation. During torpor, metabolic depression and low body temperatures save energy. However, these bouts of torpor, lasting for hours to weeks, are interrupted by active 'euthermic' phases with high body temperatures. These dynamic transitions require precise communication between the brain and peripheral tissues to defend rheostasis in energetics, body mass and body temperature. The hypothalamus appears to be the major control centre in the brain, coordinating energy metabolism and body temperature. The sympathetic nervous system controls body temperature by adjustments of shivering and nonshivering thermogenesis, with the latter being primarily executed by brown adipose tissue. Over the last decade, comparative physiologists have put forward integrative studies on the ecophysiology, biochemistry and molecular regulation of energy balance in response to seasonal challenges, food availability and ambient temperature. Mammals coping with such environments comprise excellent model organisms for studying the dynamic regulation of energy metabolism. Beyond the understanding of how animals survive in nature, these studies also uncover general mechanisms of mammalian energy homeostasis. This research will benefit efforts of translational medicine aiming to combat emerging human metabolic disorders. The present review focuses on recent advances in the understanding of energy balance and its neuronal and endocrine control during the most extreme metabolic fluctuations in nature: daily torpor and hibernation.
Collapse
Affiliation(s)
- M Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - S Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - P Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - F Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - G Heldmaier
- Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - A Herwig
- Zoological Institute, University of Hamburg, Hamburg, Germany
| |
Collapse
|
175
|
Stevenson TJ, Visser ME, Arnold W, Barrett P, Biello S, Dawson A, Denlinger DL, Dominoni D, Ebling FJ, Elton S, Evans N, Ferguson HM, Foster RG, Hau M, Haydon DT, Hazlerigg DG, Heideman P, Hopcraft JGC, Jonsson NN, Kronfeld-Schor N, Kumar V, Lincoln GA, MacLeod R, Martin SAM, Martinez-Bakker M, Nelson RJ, Reed T, Robinson JE, Rock D, Schwartz WJ, Steffan-Dewenter I, Tauber E, Thackeray SJ, Umstatter C, Yoshimura T, Helm B. Disrupted seasonal biology impacts health, food security and ecosystems. Proc Biol Sci 2016; 282:20151453. [PMID: 26468242 PMCID: PMC4633868 DOI: 10.1098/rspb.2015.1453] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with potential consequences for industries relating to health, ecosystems and food security. Disconcertingly, human lifestyles under artificial conditions of eternal summer provide the most extreme example for disconnect from natural seasons, making humans vulnerable to increased morbidity and mortality. In this review, we introduce scenarios of seasonal disruption, highlight key aspects of seasonal biology and summarize from biomedical, anthropological, veterinary, agricultural and environmental perspectives the recent evidence for seasonal desynchronization between environmental factors and internal rhythms. Because annual rhythms are pervasive across biological systems, they provide a common framework for trans-disciplinary research.
Collapse
Affiliation(s)
- T J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - M E Visser
- Department of Animal Ecology, Nederlands Instituut voor Ecologie, Wageningen, The Netherlands
| | - W Arnold
- Research Institute of Wildlife Ecology, University of Vienna, Vienna, Austria
| | - P Barrett
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - S Biello
- School of Psychology, University of Glasgow, Glasgow, UK
| | - A Dawson
- Centre for Ecology and Hydrology, Penicuik, Midlothian, UK
| | - D L Denlinger
- Department of Entomology, Ohio State University, Columbus, OH, USA
| | - D Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - F J Ebling
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - S Elton
- Department of Anthropology, Durham University, Durham, UK
| | - N Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - H M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - R G Foster
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
| | - D T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - D G Hazlerigg
- Department of Arctic and Marine Biology, University of Tromso, Tromso, Norway
| | - P Heideman
- Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| | - J G C Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - N N Jonsson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - V Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - G A Lincoln
- School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - R MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - S A M Martin
- Department of Animal Ecology, Nederlands Instituut voor Ecologie, Wageningen, The Netherlands
| | - M Martinez-Bakker
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, USA
| | - R J Nelson
- Department of Psychology, Ohio State University, Columbus, OH, USA
| | - T Reed
- Aquaculture and Fisheries Development Centre, University of College Cork, Cork, Ireland
| | - J E Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - D Rock
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Australia
| | - W J Schwartz
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - I Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Wuerzburg, Germany
| | - E Tauber
- Department of Genetics, University of Leicester, Leicester, UK
| | - S J Thackeray
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - C Umstatter
- Agroscope, Tanikon, CH-8356 Ettenhausen, Switzerland
| | - T Yoshimura
- Department of Applied Molecular Biosciences, University of Nagoya, Nagoya, Japan
| | - B Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
176
|
Abstract
Endogenous long-term timing is a key component of seasonality. Where and how are such rhythms generated? Recent findings pointed to the pituitary pars tuberalis, already implicated in photoperiod responsiveness. Now, a new study provides mechanistic insights which support this hypothesis.
Collapse
|
177
|
Pérez JH, Furlow JD, Wingfield JC, Ramenofsky M. Regulation of vernal migration in Gambel's white-crowned sparrows: Role of thyroxine and triiodothyronine. Horm Behav 2016; 84:50-6. [PMID: 27234300 DOI: 10.1016/j.yhbeh.2016.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/21/2022]
Abstract
Appropriate timing of migratory behavior is critical for migrant species. For many temperate zone birds in the spring, lengthening photoperiod is the initial cue leading to morphological, physiological and behavior changes that are necessary for vernal migration and breeding. Strong evidence has emerged in recent years linking thyroid hormone signaling to the photoinduction of breeding in birds while more limited information suggest a potential role in the regulation of vernal migration in photoperiodic songbirds. Here we investigate the development and expression of the vernal migratory life history stage in captive Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) in a hypothyroidic state, induced by chemical inhibition of thyroid hormone production. To explore possible variations in the effects of the two thyroid hormones, triiodothyronine and thyroxine, we subsequently performed a thyroid inhibition coupled with replacement therapy. We found that chemical inhibition of thyroid hormones resulted in complete abolishment of mass gain, fattening, and muscle hypertrophy associated with migratory preparation as well as resulting in failure to display nocturnal restlessness behavior. Replacement of thyroxine rescued all of these elements to near control levels while triiodothyronine replacement displayed partial or delayed rescue. Our findings support thyroid hormones as being necessary for the expression of changes in morphology and physiology associated with migration as well as migratory behavior itself.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - J David Furlow
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
178
|
Petri I, Diedrich V, Wilson D, Fernández-Calleja J, Herwig A, Steinlechner S, Barrett P. Orchestration of gene expression across the seasons: Hypothalamic gene expression in natural photoperiod throughout the year in the Siberian hamster. Sci Rep 2016; 6:29689. [PMID: 27406810 PMCID: PMC4942572 DOI: 10.1038/srep29689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
In nature Siberian hamsters utilize the decrement in day length following the summer solstice to implement physiological adaptations in anticipation of the forthcoming winter, but also exploit an intrinsic interval timer to initiate physiological recrudescence following the winter solstice. However, information is lacking on the temporal dynamics in natural photoperiod of photoperiodically regulated genes and their relationship to physiological adaptations. To address this, male Siberian hamsters born and maintained outdoors were sampled every month over the course of one year. As key elements of the response to photoperiod, thyroid hormone signalling components were assessed in the hypothalamus. From maximum around the summer solstice (late-June), Dio2 expression rapidly declined in advance of physiological adaptations. This was followed by a rapid increase in Mct8 expression (T3/T4 transport), peaking early-September before gradually declining to minimum expression by the following June. Dio3 showed a transient peak of expression beginning late-August. A recrudescence of testes and body mass occurred from mid-February, but Dio2 expression remained low until late-April of the following year, converging with the time of year when responsiveness to short-day length is re-established. Other photoperiodically regulated genes show temporal regulation, but of note is a transient peak in Gpr50 around late-July.
Collapse
Affiliation(s)
- Ines Petri
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Victoria Diedrich
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Dana Wilson
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| | - José Fernández-Calleja
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| | - Annika Herwig
- Zoological Institute, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Stephan Steinlechner
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
179
|
Dardente H, Lomet D, Robert V, Decourt C, Beltramo M, Pellicer-Rubio MT. Seasonal breeding in mammals: From basic science to applications and back. Theriogenology 2016; 86:324-32. [DOI: 10.1016/j.theriogenology.2016.04.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 12/29/2022]
|
180
|
Egri P, Fekete C, Dénes Á, Reglődi D, Hashimoto H, Fülöp BD, Gereben B. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice. Endocrinology 2016; 157:2356-66. [PMID: 27046436 DOI: 10.1210/en.2016-1043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamic activation of thyroid hormones by type 2 deiodinase (D2), catalyzing the conversion of thyroxine to T3, is critical for the proper function of the hypothalamo-pituitary-thyroid (HPT) axis. Regulation of D2 expression in tanycytes alters the activity of the HPT axis. However, signals that regulate D2 expression in tanycytes are poorly understood. The pituitary adenylate cyclase-activating polypeptide (PACAP) increases intracellular cAMP level, a second messenger known to stimulate the DIO2 gene; however, its importance in tanycytes is not completely characterized. Therefore, we tested whether this ubiquitously expressed neuropeptide regulates the HPT axis through stimulation of D2 in tanycytes. PACAP increased the activity of human DIO2 promoter in luciferase reporter assay that was abolished by mutation of cAMP-response element. Furthermore, PAC1R receptor immunoreactivity was identified in hypothalamic tanycytes, suggesting that these D2-expressing cells could be regulated by PACAP. Intracerebroventricular PACAP administration resulted in increased D2 activity in the mediobasal hypothalamus, suppressed Trh expression in the hypothalamic paraventricular nucleus, and decreased Tshb expression in the pituitary demonstrating that PACAP affects the D2-mediated control of the HPT axis. To understand the role of endogenous PACAP in the regulation of HPT axis, the effect of decreased PACAP expression was studied in heterozygous Adcyap1 (PACAP) knockout mice. These animals were hypothyroid that may be the consequence of altered hypothalamic T3 degradation during set-point formation of the HPT axis. In conclusion, PACAP is an endogenous regulator of the HPT axis by affecting T3-mediated negative feedback via cAMP-induced D2 expression of tanycytes.
Collapse
Affiliation(s)
- P Egri
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - C Fekete
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - Á Dénes
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - D Reglődi
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - H Hashimoto
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - B D Fülöp
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - Balázs Gereben
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| |
Collapse
|
181
|
Nishiwaki-Ohkawa T, Yoshimura T. Molecular basis for regulating seasonal reproduction in vertebrates. J Endocrinol 2016; 229:R117-27. [PMID: 27068698 DOI: 10.1530/joe-16-0066] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
Abstract
Animals that inhabit mid- to high-latitude regions exhibit various adaptive behaviors, such as migration, reproduction, molting and hibernation in response to seasonal cues. These adaptive behaviors are tightly regulated by seasonal changes in photoperiod, the relative day length vs night length. Recently, the regulatory pathway of seasonal reproduction has been elucidated using quail. In birds, deep brain photoreceptors receive and transmit light information to the pars tuberalis in the pituitary gland, which induces the secretion of thyroid-stimulating hormone. Thyroid-stimulating hormone locally activates thyroid hormone via induction of type 2 deiodinase in the mediobasal hypothalamus. Thyroid hormone then induces morphological changes in the terminals of neurons that express gonadotropin-releasing hormone and facilitates gonadotropin secretion from the pituitary gland. In mammals, light information is received by photoreceptors in the retina and neurally transmitted to the pineal gland, where it inhibits the synthesis and secretion of melatonin, which is crucial for seasonal reproduction. Importantly, the signaling pathway downstream of light detection and signaling is fully conserved between mammals and birds. In fish, the regulatory components of seasonal reproduction are integrated, from light detection to neuroendocrine output, in a fish-specific organ called the saccus vasculosus. Various physiological processes in humans are also influenced by seasonal environmental changes. The findings discussed herein may provide clues to addressing human diseases, such as seasonal affective disorder.
Collapse
Affiliation(s)
- Taeko Nishiwaki-Ohkawa
- Laboratory of Animal PhysiologyGraduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Laboratory of Animal PhysiologyGraduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Nagoya, Japan Division of Seasonal BiologyNational Institute for Basic Biology, Okazaki, Japan Avian Bioscience Research CenterGraduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
182
|
A neuroendocrine role for chemerin in hypothalamic remodelling and photoperiodic control of energy balance. Sci Rep 2016; 6:26830. [PMID: 27225311 PMCID: PMC4880918 DOI: 10.1038/srep26830] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Long-term and reversible changes in body weight are typical of seasonal animals. Thyroid hormone (TH) and retinoic acid (RA) within the tanycytes and ependymal cells of the hypothalamus have been implicated in the photoperiodic response. We investigated signalling downstream of RA and how this links to the control of body weight and food intake in photoperiodic F344 rats. Chemerin, an inflammatory chemokine, with a known role in energy metabolism, was identified as a target of RA. Gene expression of chemerin (Rarres2) and its receptors were localised within the tanycytes and ependymal cells, with higher expression under long (LD) versus short (SD) photoperiod, pointing to a physiological role. The SD to LD transition (increased food intake) was mimicked by 2 weeks of ICV infusion of chemerin into rats. Chemerin also increased expression of the cytoskeletal protein vimentin, implicating hypothalamic remodelling in this response. By contrast, acute ICV bolus injection of chemerin on a 12 h:12 h photoperiod inhibited food intake and decreased body weight with associated changes in hypothalamic neuropeptides involved in growth and feeding after 24 hr. We describe the hypothalamic ventricular zone as a key site of neuroendocrine regulation, where the inflammatory signal, chemerin, links TH and RA signaling to hypothalamic remodeling.
Collapse
|
183
|
Martinez Barrio A, Lamichhaney S, Fan G, Rafati N, Pettersson M, Zhang H, Dainat J, Ekman D, Höppner M, Jern P, Martin M, Nystedt B, Liu X, Chen W, Liang X, Shi C, Fu Y, Ma K, Zhan X, Feng C, Gustafson U, Rubin CJ, Sällman Almén M, Blass M, Casini M, Folkvord A, Laikre L, Ryman N, Ming-Yuen Lee S, Xu X, Andersson L. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. eLife 2016; 5:e12081. [PMID: 27138043 PMCID: PMC4854517 DOI: 10.7554/elife.12081] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/06/2016] [Indexed: 01/04/2023] Open
Abstract
Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation.
Collapse
Affiliation(s)
- Alvaro Martinez Barrio
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sangeet Lamichhaney
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Guangyi Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- BGI-Shenzhen, Shenzen, China
| | - Nima Rafati
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - He Zhang
- BGI-Shenzhen, Shenzen, China
- College of Physics, Qingdao University, Qingdao, China
| | - Jacques Dainat
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Bioinformatics Infrastructure for Life Sciences, Uppsala University, Uppsala, Sweden
| | - Diana Ekman
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Marc Höppner
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Bioinformatics Infrastructure for Life Sciences, Uppsala University, Uppsala, Sweden
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marcel Martin
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Björn Nystedt
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Xin Liu
- BGI-Shenzhen, Shenzen, China
| | | | | | | | - Yuanyuan Fu
- BGI-Shenzhen, Shenzen, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | | | | | - Chungang Feng
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulla Gustafson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carl-Johan Rubin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Sällman Almén
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Martina Blass
- Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, Öregrund, Sweden
| | - Michele Casini
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - Arild Folkvord
- Department of Biology, University of Bergen, Bergen, Norway
- Hjort Center of Marine Ecosystem Dynamics, Bergen, Norway
- Institute of Marine Research, Bergen, Norway
| | - Linda Laikre
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Nils Ryman
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xun Xu
- BGI-Shenzhen, Shenzen, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, Texas, United States
| |
Collapse
|
184
|
Chen CC, Plikus MV, Tang PC, Widelitz RB, Chuong CM. The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration. J Mol Biol 2016; 428:1423-40. [PMID: 26196442 PMCID: PMC4716892 DOI: 10.1016/j.jmb.2015.07.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/27/2022]
Abstract
Hair and feathers are unique because (1) their stem cells are contained within a follicle structure, (2) they undergo cyclic regeneration repetitively throughout life, (3) regeneration occurs physiologically in healthy individuals and (4) regeneration is also induced in response to injury. Precise control of this cyclic regeneration process is essential for maintaining the homeostasis of living organisms. While stem cells are regulated by the intra-follicle-adjacent micro-environmental niche, this niche is also modulated dynamically by extra-follicular macro-environmental signals, allowing stem cells to adapt to a larger changing environment and physiological needs. Here we review several examples of macro-environments that communicate with the follicles: intradermal adipose tissue, innate immune system, sex hormones, aging, circadian rhythm and seasonal rhythms. Related diseases are also discussed. Unveiling the mechanisms of how stem cell niches are modulated provides clues for regenerative medicine. Given that stem cells are hard to manipulate, focusing translational therapeutic applications at the environments appears to be a more practical approach.
Collapse
Affiliation(s)
- Chih-Chiang Chen
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA; Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan 112; Institute of Clinical Medicine and Department of Dermatology, National Yang-Ming University, Taipei, Taiwan 112
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Pin-Chi Tang
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA; Department of Animal Science and Center for the Integrative and Evolutionary, National Chung Hsing University, Taichung, Taiwan 402
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA; International Laboratory of Wound Repair and Regeneration, Graduated Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan 701; Integrative Stem Cell Center, China Medical University, Taichung, Taiwan 404.
| |
Collapse
|
185
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
186
|
Karlsson AC, Fallahshahroudi A, Johnsen H, Hagenblad J, Wright D, Andersson L, Jensen P. A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens. Gen Comp Endocrinol 2016; 228:69-78. [PMID: 26873630 DOI: 10.1016/j.ygcen.2016.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
The thyroid stimulating hormone receptor gene (TSHR) has been suggested to be a "domestication locus" in the chicken. A strong selective sweep over TSHR in domestic breeds together with significant effects of a mutation in the gene on several domestication related traits, indicate that the gene has been important for chicken domestication. TSHR plays a key role in the signal transduction of seasonal reproduction, which is characteristically less strict in domestic animals. We used birds from an advanced intercross line between ancestral Red Junglefowl (RJF) and domesticated White Leghorn (WL) to investigate effects of the mutation on reproductive traits as well as on TSHB, TSHR, DIO2 and DIO3 gene expression during altered day length (photoperiod). We bred chickens homozygous for either the mutation (d/d) or wild type allele (w/w), allowing assessment of the effect of genotype at this locus while also controlling for background variation in the rest of the genome. TSHR gene expression in brain was significantly lower in both d/d females and males and d/d females showed a faster onset of egg laying at sexual maturity than w/w. Furthermore, d/d males showed a reduced testicular size response to decreased day length, and lower levels of TSHB and DIO3 expression. Additionally, purebred White Leghorn females kept under natural short day length in Sweden during December had active ovaries and lower levels of TSHR and DIO3 expression compared to Red Junglefowl females kept under similar conditions. Our study indicates that the TSHR mutation affects photoperiodic response in chicken by reducing dependence of seasonal reproduction, a typical domestication feature, and may therefore have been important for chicken domestication.
Collapse
Affiliation(s)
- Anna-Carin Karlsson
- IFM Biology, AVIAN Behavioural Physiology and Genomics Group, Linköping University, SE-581 83 Linköping, Sweden
| | - Amir Fallahshahroudi
- IFM Biology, AVIAN Behavioural Physiology and Genomics Group, Linköping University, SE-581 83 Linköping, Sweden
| | - Hanna Johnsen
- IFM Biology, AVIAN Behavioural Physiology and Genomics Group, Linköping University, SE-581 83 Linköping, Sweden
| | - Jenny Hagenblad
- IFM Biology, AVIAN Behavioural Physiology and Genomics Group, Linköping University, SE-581 83 Linköping, Sweden
| | - Dominic Wright
- IFM Biology, AVIAN Behavioural Physiology and Genomics Group, Linköping University, SE-581 83 Linköping, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Physiology and Genomics Group, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
187
|
Ikegami K, Yoshimura T. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction. Gen Comp Endocrinol 2016; 227:64-8. [PMID: 26050562 DOI: 10.1016/j.ygcen.2015.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 11/30/2022]
Abstract
Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Division of Seasonal Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan.
| |
Collapse
|
188
|
Dufourny L, Gennetay D, Martinet S, Lomet D, Caraty A. The Content of Thyroid Hormone Receptor α in Ewe Kisspeptin Neurones is not Season-Dependent. J Neuroendocrinol 2016; 28:12344. [PMID: 26644229 DOI: 10.1111/jne.12344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 01/16/2023]
Abstract
Seasonal reproduction is grounded in several mechanisms, among which are plasticity in both hormone synthesis and neuronal networks. Increased daylength on long days (LD) translates into local tri-iodothyronin (T3) production in the mediobasal hypothalamus that will enable the transition to the anoestrus season in sheep. The photoperiod also strongly affects the content of kisspeptin (Kiss), a hypothalamic neuropeptide exerting a potent stimulatory effect on gonadotrophin-releasing hormone release. Our hypothesis was that T3 directly inhibits Kiss release during LD. Using double immunocytochemistry, we first searched for coexpression of thyroid hormone receptor (THR)α in Kiss neurones in ewes with an active or inactive gonadotrophic axis. In both the preoptic area and the arcuate nucleus, most Kiss neurones were labelled by THR antibody under both physiological/photoperiodic conditions. These results suggest thyroid hormones may affect Kiss synthesis and release all through the year. We then attempted to assess the influence of T3 on Kiss content in hypothalamic explants sampled from ewes with an active gonadotrophic axis. Kiss produced by hypothalamic explants cultured with different doses of T3 (300 or 600 pg) and subjected to different times of incubation (2 or 24 h) was measured. No significant effects of T3 on Kiss tissular content were observed for the two doses of T3 and for the two incubation times. In light of these findings, potential reasons for the divergent effects of thyroid hormones on Kiss content are discussed. Our data emphasise that the effects of thyroid hormone on Kiss synthesis are not one-sided and may affect a wide range of functions.
Collapse
Affiliation(s)
- L Dufourny
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, F-37380, Nouzilly, France
- UMR 7247, CNRS, Nouzilly, France
- Université de Tours, Tours, France
- IFCE, Nouzilly, France
| | - D Gennetay
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, F-37380, Nouzilly, France
- UMR 7247, CNRS, Nouzilly, France
- Université de Tours, Tours, France
- IFCE, Nouzilly, France
| | - S Martinet
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, F-37380, Nouzilly, France
- UMR 7247, CNRS, Nouzilly, France
- Université de Tours, Tours, France
- IFCE, Nouzilly, France
| | - D Lomet
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, F-37380, Nouzilly, France
- UMR 7247, CNRS, Nouzilly, France
- Université de Tours, Tours, France
- IFCE, Nouzilly, France
| | - A Caraty
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, F-37380, Nouzilly, France
- UMR 7247, CNRS, Nouzilly, France
- Université de Tours, Tours, France
- IFCE, Nouzilly, France
| |
Collapse
|
189
|
Different Photoperiodic Responses in Four Lines of Japanese Quail. J Poult Sci 2016; 53:63-66. [PMID: 32908366 PMCID: PMC7477246 DOI: 10.2141/jpsa.0150097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organisms measure day length to better adapt to seasonal changes in the environment; this phenomenon is called photoperiodism. The Japanese quail has a highly sophisticated photoperiodic mechanism and is an excellent model for the study of photoperiodism. Various lines of quail have been established during the domestication process. In the present study, we examined the effect of long day (LD) followed by short day (SD) on testicular weight in four lines of quail (L, AMRP, NIES-Br, and WE). When the quail were raised under SD conditions, testicular development was suppressed in all examined lines. The speed of the LD-induced testicular development of NIES-Br line was faster than that of AMRP line, while the speed of the SD-induced testicular regression of L line was significantly faster than that of WE line. These quail lines provide excellent model to uncover the underlying mechanism of seasonal testicular regression.
Collapse
|
190
|
Henningsen JB, Gauer F, Simonneaux V. RFRP Neurons - The Doorway to Understanding Seasonal Reproduction in Mammals. Front Endocrinol (Lausanne) 2016; 7:36. [PMID: 27199893 PMCID: PMC4853402 DOI: 10.3389/fendo.2016.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023] Open
Abstract
Seasonal control of reproduction is critical for the perpetuation of species living in temperate zones that display major changes in climatic environment and availability of food resources. In mammals, seasonal cues are mainly provided by the annual change in the 24-h light/dark ratio (i.e., photoperiod), which is translated into the nocturnal production of the pineal hormone melatonin. The annual rhythm in this melatonin signal acts as a synchronizer ensuring that breeding occurs when environmental conditions favor survival of the offspring. Although specific mechanisms might vary among seasonal species, the hypothalamic RF (Arg-Phe) amide-related peptides (RFRP-1 and -3) are believed to play a critical role in the central control of seasonal reproduction and in all seasonal species investigated, the RFRP system is persistently inhibited in short photoperiod. Central chronic administration of RFRP-3 in short day-adapted male Syrian hamsters fully reactivates the reproductive axis despite photoinhibitory conditions, which highlights the importance of the seasonal changes in RFRP expression for proper regulation of the reproductive axis. The acute effects of RFRP peptides, however, depend on species and photoperiod, and recent studies point toward a different role of RFRP in regulating female reproductive activity. In this review, we summarize the recent advances made to understand the role and underlying mechanisms of RFRP in the seasonal control of reproduction, primarily focusing on mammalian species.
Collapse
Affiliation(s)
- Jo B. Henningsen
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - François Gauer
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
- *Correspondence: Valérie Simonneaux,
| |
Collapse
|
191
|
Ernst DK, Bentley GE. Neural and neuroendocrine processing of a non-photic cue in an opportunistically-breeding songbird. J Exp Biol 2016; 219:783-9. [DOI: 10.1242/jeb.126987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022]
Abstract
Recent studies of the onset of breeding in long-day photoperiodic breeders have focused on the roles of type 2 and 3 iodothyronine deiodinases (DIO2 and DIO3) in the conversion of thyroxine (T4) to triiodothyronine (T3) and subsequent activation of the reproductive axis. It has been hypothesized that an increase in DIO2 and reciprocal decrease in DIO3 causes the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus, setting off a reproductive cascade, and that this DIO mechanism for GnRH release is conserved across vertebrate taxa. We sought to test whether social cues that are known to stimulate reproductive behaviors can activate the DIO system to initiate reproduction in a non-photoperiodic bird, the zebra finch (Taeniopygia guttata). Isolation of males and subsequent presentation of females did not increase DIO2 or GnRH expression in the hypothalamus, nor did it decrease gonadotropin-inhibitory hormone (GnIH) or DIO3. Males receiving a female stimulus showed significantly higher mRNA expression and immunoreactive cell count of the immediate early gene early growth response protein 1 (EGR-1) than isolated males, indicating hypothalamic activation in response to a female. Cells immunoreactive for EGR-1 were not co-localized with those immunoreactive for GnRH. Reproductive behaviors (singing, copulation attempts, and overall activity) were significantly higher in males receiving a female stimulus. This study presents a social effect on behavior and EGR-1 expression in the hypothalamus of males in response to females, but more research is needed to determine if the DIO2 system and the GnRH system are responsive to social stimulation in this species.
Collapse
Affiliation(s)
- Darcy K. Ernst
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - George E. Bentley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
192
|
Basheer A, Haley CS, Law A, Windsor D, Morrice D, Talbot R, Wilson PW, Sharp PJ, Dunn IC. Genetic loci inherited from hens lacking maternal behaviour both inhibit and paradoxically promote this behaviour. Genet Sel Evol 2015; 47:100. [PMID: 26718134 PMCID: PMC4697313 DOI: 10.1186/s12711-015-0180-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 12/17/2015] [Indexed: 01/18/2023] Open
Abstract
Background A major step towards the success of chickens as a domesticated species was the separation between maternal care and reproduction. Artificial incubation replaced the natural maternal behaviour of incubation and, thus, in certain breeds, it became possible to breed chickens with persistent egg production and no incubation behaviour; a typical example is the White Leghorn strain. Conversely, some strains, such as the Silkie breed, are prized for their maternal behaviour and their willingness to incubate eggs. This is often colloquially known as broodiness. Results Using an F2 linkage mapping approach and a cross between White Leghorn and Silkie chicken breeds, we have mapped, for the first time, genetic loci that affect maternal behaviour on chromosomes 1, 5, 8, 13, 18 and 19 and linkage group E22C19W28. Paradoxically, heterozygous and White Leghorn homozygous genotypes were associated with an increased incidence of incubation behaviour, which exceeded that of the Silkie homozygotes for most loci. In such cases, it is likely that the loci involved are associated with increased egg production. Increased egg production increases the probability of incubation behaviour occurring because egg laying must precede incubation. For the loci on chromosomes 8 and 1, alleles from the Silkie breed promote incubation behaviour and influence maternal behaviour (these explain 12 and 26 % of the phenotypic difference between the two founder breeds, respectively). Conclusions The over-dominant locus on chromosome 5 coincides with the strongest selective sweep reported in chickens and together with the loci on chromosomes 1 and 8, they include genes of the thyrotrophic axis. This suggests that thyroid hormones may play a critical role in the loss of incubation behaviour and the improved egg laying behaviour of the White Leghorn breed. Our findings support the view that loss of maternal incubation behaviour in the White Leghorn breed is the result of selection for fertility and egg laying persistency and against maternal incubation behaviour.
Collapse
Affiliation(s)
- Atia Basheer
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK. .,Animal Breeding and Genetics Section, Department of Livestock Production, University of Veterinary and Animal Sciences, Ravi campus, Lahore, Pakistan.
| | - Chris S Haley
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Andy Law
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Dawn Windsor
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - David Morrice
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK. .,Edinburgh Genomics, Ashworth Laboratories, The University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Richard Talbot
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK. .,Edinburgh Genomics, Ashworth Laboratories, The University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Peter W Wilson
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Peter J Sharp
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Ian C Dunn
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| |
Collapse
|
193
|
Maeda R, Shimo T, Nakane Y, Nakao N, Yoshimura T. Ontogeny of the Saccus Vasculosus, a Seasonal Sensor in Fish. Endocrinology 2015; 156:4238-43. [PMID: 26270731 DOI: 10.1210/en.2015-1415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
TSH secreted from the pars distalis (PD) of the pituitary gland stimulates the thyroid gland. In contrast, TSH secreted from the pars tuberalis (PT) of the pituitary gland regulates seasonal reproduction. The ontogeny of thyrotrophs and the regulatory mechanisms of TSH are apparently different between the PD and the PT. Interestingly, fish do not have an anatomically distinct PT, and the saccus vasculosus (SV) of fish is suggested to act as a seasonal sensor. Thus, it is possible that the SV is analogous to the PT. Here we examined the ontogeny of the pituitary gland and SV using rainbow trout. A histological analysis demonstrated the development of the pituitary anlage followed by that of the SV. Lhx3 and Pit-1, which are required for the development of PD thyrotrophs, clearly labeled the pituitary anlage. The common glycoprotein α-subunit (CGA) and TSH β-subunit (TSHB) genes were also detected in the pituitary anlage. In contrast, none of these genes were detected in the SV anlage. We then performed a microarray analysis and identified parvalbumin (Pvalb) as a marker for SV development. Because Pvalb expression was not detected in the pituitary anlage, no relationship was observed between the development of the SV and the pituitary gland. In contrast to embryos, Lhx3, Pit-1, CGA, and TSHB were all expressed in the adult SV. These results suggest that the morphological differentiation of SV occurs during the embryonic stage but that the functional differentiation into a seasonal sensor occurs in a later developmental stage.
Collapse
Affiliation(s)
- Ryosuke Maeda
- Laboratory of Animal Physiology (R.M., T.S., Y.N., T.Y.), Avian Bioscience Research Center (T.Y.), Graduate School of Bioagricultural Sciences, and Institute of Transformative Bio-Molecules (WPI-ITbM) (T.Y.), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Nippon Veterinary and Life Science University (N.N.), Kyonancho, Musashino, Tokyo 180-8602, Japan; and Division of Seasonal Biology (T.S.. T.Y.), National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Takayuki Shimo
- Laboratory of Animal Physiology (R.M., T.S., Y.N., T.Y.), Avian Bioscience Research Center (T.Y.), Graduate School of Bioagricultural Sciences, and Institute of Transformative Bio-Molecules (WPI-ITbM) (T.Y.), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Nippon Veterinary and Life Science University (N.N.), Kyonancho, Musashino, Tokyo 180-8602, Japan; and Division of Seasonal Biology (T.S.. T.Y.), National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yusuke Nakane
- Laboratory of Animal Physiology (R.M., T.S., Y.N., T.Y.), Avian Bioscience Research Center (T.Y.), Graduate School of Bioagricultural Sciences, and Institute of Transformative Bio-Molecules (WPI-ITbM) (T.Y.), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Nippon Veterinary and Life Science University (N.N.), Kyonancho, Musashino, Tokyo 180-8602, Japan; and Division of Seasonal Biology (T.S.. T.Y.), National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Nobuhiro Nakao
- Laboratory of Animal Physiology (R.M., T.S., Y.N., T.Y.), Avian Bioscience Research Center (T.Y.), Graduate School of Bioagricultural Sciences, and Institute of Transformative Bio-Molecules (WPI-ITbM) (T.Y.), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Nippon Veterinary and Life Science University (N.N.), Kyonancho, Musashino, Tokyo 180-8602, Japan; and Division of Seasonal Biology (T.S.. T.Y.), National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Physiology (R.M., T.S., Y.N., T.Y.), Avian Bioscience Research Center (T.Y.), Graduate School of Bioagricultural Sciences, and Institute of Transformative Bio-Molecules (WPI-ITbM) (T.Y.), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Nippon Veterinary and Life Science University (N.N.), Kyonancho, Musashino, Tokyo 180-8602, Japan; and Division of Seasonal Biology (T.S.. T.Y.), National Institute for Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
194
|
Wood SH, Christian HC, Miedzinska K, Saer BRC, Johnson M, Paton B, Yu L, McNeilly J, Davis JRE, McNeilly AS, Burt DW, Loudon ASI. Binary Switching of Calendar Cells in the Pituitary Defines the Phase of the Circannual Cycle in Mammals. Curr Biol 2015; 25:2651-62. [PMID: 26412130 PMCID: PMC4612467 DOI: 10.1016/j.cub.2015.09.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022]
Abstract
Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3(+)) or short (CHGA(+)) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation.
Collapse
Affiliation(s)
- Shona H Wood
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Helen C Christian
- Department of Physiology, Anatomy, and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Ben R C Saer
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Mark Johnson
- Department of Physiology, Anatomy, and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Bob Paton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Le Yu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Judith McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Julian R E Davis
- Faculty of Medical and Human Science, University of Manchester, Manchester, M13 9PT, UK
| | - Alan S McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK.
| | - Andrew S I Loudon
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
195
|
Wingfield JC, Krause JS, Perez JH, Chmura HE, Németh Z, Word KR, Calisi RM, Meddle SL. A mechanistic approach to understanding range shifts in a changing world: What makes a pioneer? Gen Comp Endocrinol 2015; 222:44-53. [PMID: 26341964 PMCID: PMC4678115 DOI: 10.1016/j.ygcen.2015.08.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 01/09/2023]
Abstract
A species' range can be thought of as a manifestation of the ecological niche in space. Within a niche, evolution has resulted in traits that maximize fitness. Across millennia, natural oscillations in temperature have caused shifts in the geographic location of appropriate habitat and with corresponding changes in species' ranges. Contemporary climate change and human disturbance may lead to rapid range expansion or contractions with largely unknown consequences. Birds provide an excellent case study of this phenomenon with some taxa expanding range and others contracting even to the point of extinction. What leads some populations to expand while others contract? Are there physiological and behavioral attributes of "pioneers" at the forefront of a range shift/expansion? The concept of allostasis provides a framework with which to begin to evaluate when a species will be able to successfully expand into new habitat. This tool allows the integration of normal energetic demands (e.g. wear and tear of daily and seasonal routines) with novel challenges posed by unfamiliar and human altered environments. Allostasis is particularly attractive because it allows assessment of how individual phenotypes may respond differentially to changing environments. Here, we use allostasis to evaluate what characteristics of individuals and their environment permit successful range expansion. Understanding variation in the regulatory mechanisms that influence response to a novel environment will be fundamental for understanding the phenotypes of pioneers.
Collapse
Affiliation(s)
- J C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA.
| | - J S Krause
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - J H Perez
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - H E Chmura
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Z Németh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA; MTA-DE "Lendület" Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Egyetem tér 1., 4032, Hungary
| | - K R Word
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - R M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA; Barnard College at Columbia University, New York, NY, USA
| | - S L Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK
| |
Collapse
|
196
|
Kumar V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen Comp Endocrinol 2015; 220:13-22. [PMID: 24929229 DOI: 10.1016/j.ygcen.2014.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Birds time their activities in synchronization with daily and seasonal periodicities in the environment, which is mainly provided by changes in day length (=photoperiod). Photoperiod appears to act at different levels than simply entraining the hypothalamic clock via eyes in birds. Photoreceptor cells that transmit light information to an avian brain are localized in three independent structures, the retina of eyes, pineal gland and hypothalamus, particularly in the paraventricular organ and lateral septal area. These hypothalamic photoreceptors are commonly referred to as encephalic or deep brain photoreceptors, DBPs. Eyes and pineal are known to contribute to the circadian regulation of behavior and physiology via rhythmic melatonin secretion in several birds. DBPs have been implicated in the regulation of seasonal physiology, particularly in photoperiod induced gonadal growth and development. Here, we briefly review limited evidence that is available on the roles of these photoreceptors in the regulation of circadian and seasonal physiology, with particular emphasis placed on the DBPs.
Collapse
Affiliation(s)
- Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo US Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
197
|
Srivastava A, Trivedi N, Malik S, Rani S, Kumar V. Molecular basis of photoperiodic control of reproductive cycle in a subtropical songbird, the Indian weaver bird (Ploceus philippinus). Gen Comp Endocrinol 2015; 220:41-5. [PMID: 25172152 DOI: 10.1016/j.ygcen.2014.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/17/2014] [Indexed: 11/28/2022]
Abstract
Less is known about genetic basis of photoperiodic regulation of reproductive cycle in subtropical birds. This study measured the expression levels of DIO2, DIO3, GnRH, and GnIH genes in Indian weaver birds subjected to short days (8h light:16h darkness, 8L:16D) and long days (16L:8D) for 48weeks. Whereas small, reproductively inactive testes were maintained under short days, weaver birds underwent testis recrudescence - regression cycle under long days. Relative expression levels of DIO2, DIO3, GnRH and GnIH genes were quantified by the real-time PCR (qPCR) in hypothalamus of birds (n=4) sampled at the beginning of the experiments, and after 10 and 48weeks of short and long day exposures. These sample times represented photosensitive unstimulated (day 0), and under long days the recrudescence (photostimulated, after 10weeks) and regression (photorefractory, after 48weeks) testicular phases. Birds under short days served as controls. The expression pattern of these genes corresponded with testicular phases. High and low GnRH and DIO2 levels were found in birds with large and small testes, respectively. By-and-large the converse was true for GnIH and DIO3 expression levels. Thus, after 10weeks of exposure, there was a significant difference in the mRNA levels between short and long day birds, with small and large testes, respectively. The results also suggest for a possible rapid switching between DIO2 and DIO3 and GnRH and GnIH expressions during testis maturation - regression cycle in Indian weaver birds.
Collapse
Affiliation(s)
| | - Neerja Trivedi
- Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
198
|
Majumdar G, Trivedi AK, Gupta NJ, Kumar V. Circadian synchronization determines critical day length for seasonal responses. Physiol Behav 2015; 147:282-90. [DOI: 10.1016/j.physbeh.2015.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
199
|
Majumdar G, Yadav G, Rani S, Kumar V. Bird eyes distinguish summer from winter: Retinal response to acute photoperiod change in the night-migratory redheaded bunting. J Chem Neuroanat 2015. [PMID: 26219493 DOI: 10.1016/j.jchemneu.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Eyes are the part of the circadian timekeeping system but not involved in the photoperiod regulated seasonal physiology in songbirds. Here, two experiments tested whether eyes detect and respond to seasonal change in the photoperiod environment, by examining gene and protein expressions in the retinas of redheaded buntings exposed to a single long day (LD, 16L:8D), with controls on short days (SD, 8L:16D). In the first experiment, mRNA expression of genes implicated in the light perception (opsins, rhodopsin, neuropsin, melanopsin, peropsin) and photoperiod induction (eya3, tsh-β, dio2, dio3) was measured at hours 15 and 19 (hour 0 = light on) on the first long day. There was a significant increase in the eya3, tsh-β and dio2 mRNA expression, albeit with a temporal difference, and decrease in the neuropsin mRNA expression in buntings on the first long day. There was no change in the dio3, rhodopsin, melanopsin and peropsin mRNA expressions on exposure to long days. The second experiment immunohistochemically examined the eya3, tsh-β and rhodopsin peptide expressions. eya3 was expressed in both light conditions, but with a significant higher levels in the retinal photoreceptor layer (PRL) under LD, as compared to SD. Similarly, tsh-β was expressed in the PRL of LD retinas only. Rhodopsin levels were not significantly different between SD and LD conditions, however. These results for the first time show photoperiod-dependent molecular switches in the bunting retina, similar to the well documented thyroid hormone response genes based molecular cascades in the avian hypothalamus.
Collapse
Affiliation(s)
- Gaurav Majumdar
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Garima Yadav
- Department of Zoology, University of Lucknow, Lucknow, 226 007, India
| | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Lucknow, 226 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
200
|
Bolborea M, Helfer G, Ebling FJP, Barrett P. Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures. J Mol Endocrinol 2015; 54:241-50. [PMID: 25878058 DOI: 10.1530/jme-14-0298] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tanycytes play multiple roles in hypothalamic functions, including sensing peripheral nutrients and metabolic hormones, regulating neurosecretion and mediating seasonal cycles of reproduction and metabolic physiology. This last function reflects the expression of TSH receptors in tanycytes, which detect photoperiod-regulated changes in TSH secretion from the neighbouring pars tuberalis. The present overall aim was to determine the signal transduction pathway by which TSH signals in tanycytes. Expression of the TSH receptor in tanycytes of 10-day-old Sprague Dawley rats was observed by in situ hybridisation. Primary ependymal cell cultures prepared from 10-day-old rats were found by immunohistochemistry to express vimentin but not GFAP and by PCR to express mRNA for Dio2, Gpr50, Darpp-32 and Tsh receptors that are characteristic of tanycytes. Treatment of primary tanycyte/ependymal cultures with TSH (100 IU/l) increased cAMP as assessed by ELISA and induced a cAMP-independent increase in the phosphorylation of ERK1/2 as assessed by western blot analysis. Furthermore, TSH (100 IU/l) stimulated a 2.17-fold increase in Dio2 mRNA expression. We conclude that TSH signal transduction in cultured tanycytes signals via Gαs to increase cAMP and via an alternative G protein to increase phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Matei Bolborea
- Rowett Institute of Nutrition and Health University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK School of Life Sciences University of Nottingham Medical School, Nottingham NG7 2UH, UK Rowett Institute of Nutrition and Health University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK School of Life Sciences University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK School of Life Sciences University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Francis J P Ebling
- Rowett Institute of Nutrition and Health University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK School of Life Sciences University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Perry Barrett
- Rowett Institute of Nutrition and Health University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK School of Life Sciences University of Nottingham Medical School, Nottingham NG7 2UH, UK
| |
Collapse
|