151
|
Endogenous attention signals evoked by threshold contrast detection in human superior colliculus. J Neurosci 2014; 34:892-900. [PMID: 24431447 DOI: 10.1523/jneurosci.3026-13.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human superior colliculus (SC) responds in a retinotopically selective manner when attention is deployed on a high-contrast visual stimulus using a discrimination task. To further elucidate the role of SC in endogenous visual attention, high-resolution fMRI was used to demonstrate that SC also exhibits a retinotopically selective response for covert attention in the absence of significant visual stimulation using a threshold-contrast detection task. SC neurons have a laminar organization according to their function, with visually responsive neurons present in the superficial layers and visuomotor neurons in the intermediate layers. The results show that the response evoked by the threshold-contrast detection task is significantly deeper than the response evoked by the high-contrast speed discrimination task, reflecting a functional dissociation of the attentional enhancement of visuomotor and visual neurons, respectively. Such a functional dissociation of attention within SC laminae provides a subcortical basis for the oculomotor theory of attention.
Collapse
|
152
|
Zénon A, Corneil BD, Alamia A, Filali-Sadouk N, Olivier E. Counterproductive effect of saccadic suppression during attention shifts. PLoS One 2014; 9:e86633. [PMID: 24466181 PMCID: PMC3900577 DOI: 10.1371/journal.pone.0086633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/16/2013] [Indexed: 11/24/2022] Open
Abstract
During saccadic eye movements, the processing of visual information is transiently interrupted by a mechanism known as "saccadic suppression" [1] that is thought to ensure perceptual stability [2]. If, as proposed in the premotor theory of attention [3], covert shifts of attention rely on sub-threshold recruitment of oculomotor circuits, then saccadic suppression should also occur during covert shifts. In order to test this prediction, we designed two experiments in which participants had to orient towards a cued letter, with or without saccades. We analyzed the time course of letter identification score in an "attention" task performed without saccades, using the saccadic latencies measured in the "saccade" task as a marker of covert saccadic preparation. Visual conditions were identical in all tasks. In the "attention" task, we found a drop in perceptual performance around the predicted onset time of saccades that were never performed. Importantly, this decrease in letter identification score cannot be explained by any known mechanism aligned on cue onset such as inhibition of return, masking, or microsaccades. These results show that attentional allocation triggers the same suppression mechanisms as during saccades, which is relevant during eye movements but detrimental in the context of covert orienting.
Collapse
Affiliation(s)
- Alexandre Zénon
- Institute of Neuroscience, University of Louvain, Brussels, Belgium
| | - Brian D. Corneil
- Departments of Physiology & Pharmacology, Psychology, Western University, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
| | - Andrea Alamia
- Institute of Neuroscience, University of Louvain, Brussels, Belgium
| | | | - Etienne Olivier
- Institute of Neuroscience, University of Louvain, Brussels, Belgium
| |
Collapse
|
153
|
Ungerleider LG, Galkin TW, Desimone R, Gattass R. Subcortical projections of area V2 in the macaque. J Cogn Neurosci 2014; 26:1220-33. [PMID: 24456395 DOI: 10.1162/jocn_a_00571] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To investigate the subcortical efferent connections of visual area V2, we injected tritiated amino acids under electrophysiological control into 15 V2 sites in 14 macaques. The injection sites included the fovea representation as well as representations ranging from central to far peripheral eccentricities in both the upper and lower visual fields. The results indicated that V2 projects topographically to different portions of the inferior and lateral pulvinar and to the superficial and intermediate layers of the superior colliculus. Within the pulvinar, the V2 projections terminated in fields P1, P2, and P4, with the strongest projection being in P2. Central visual field injections in V2 labeled projection zones in P1 and P2, whereas peripheral field injections labeled P1, P2, and P4. No projections were found in P3. Both central and peripheral field injections in V2 projected topographically to the superficial and intermediate layers of the superior colliculus. Projections from V2 to the pulvinar and the superior colliculus constituted cortical-subcortical loops through which circuits serving spatial attention are activated.
Collapse
|
154
|
Gattass R, Desimone R. Effect of microstimulation of the superior colliculus on visual space attention. J Cogn Neurosci 2014; 26:1208-19. [PMID: 24456396 DOI: 10.1162/jocn_a_00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We investigated the effect of microstimulation of the superficial layers of the superior colliculus (SC) on the performance of animals in a peripheral detection paradigm while maintaining fixation. In a matching-to-sample paradigm, a sample stimulus was presented at one location followed by a brief test stimulus at that (relevant) location and a distractor at another (irrelevant) location. While maintaining fixation, the monkey indicated whether the sample and the test stimulus matched, ignoring the distractor. The relevant and irrelevant locations were switched from trial to trial. Cells in the superficial layers of SC gave enhanced responses when the attended test stimulus was inside the receptive field compared with when the (physically identical) distractor was inside the field. These effects were found only in an "automatic" attentional cueing paradigm, in which a peripheral stimulus explicitly cued the animal as to the relevant location in the receptive field. No attentional effects were found with block of trials. The transient enhancement to the attended stimulus was observed at the onset and not at the offset of the stimulus. Electrical stimulation at the site corresponding to the irrelevant distractor location in the SC causes it to gain control over attention, causing impaired performance of the task at the relevant location. Stimulation at unattended sites without the presence of a distractor stimulus causes little or no impairment in performance. The effect of stimulation decays with successive stimulations. The animals learn to ignore the stimulation unless the parameters of the task are varied.
Collapse
|
155
|
Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 2013; 503:78-84. [PMID: 24201281 PMCID: PMC4121670 DOI: 10.1038/nature12742] [Citation(s) in RCA: 944] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/08/2013] [Indexed: 11/08/2022]
Abstract
Prefrontal cortex is thought to have a fundamental role in flexible, context-dependent behaviour, but the exact nature of the computations underlying this role remains largely unknown. In particular, individual prefrontal neurons often generate remarkably complex responses that defy deep understanding of their contribution to behaviour. Here we study prefrontal cortex activity in macaque monkeys trained to flexibly select and integrate noisy sensory inputs towards a choice. We find that the observed complexity and functional roles of single neurons are readily understood in the framework of a dynamical process unfolding at the level of the population. The population dynamics can be reproduced by a trained recurrent neural network, which suggests a previously unknown mechanism for selection and integration of task-relevant inputs. This mechanism indicates that selection and integration are two aspects of a single dynamical process unfolding within the same prefrontal circuits, and potentially provides a novel, general framework for understanding context-dependent computations.
Collapse
|
156
|
Jonikaitis D, Theeuwes J. Dissociating oculomotor contributions to spatial and feature-based selection. J Neurophysiol 2013; 110:1525-34. [DOI: 10.1152/jn.00275.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccades not only deliver the high-resolution retinal image requisite for visual perception, but processing stages associated with saccade target selection affect visual perception even before the eye movement starts. These presaccadic effects are thought to arise from two visual selection mechanisms: spatial selection that enhances processing of the saccade target location and feature-based selection that enhances processing of the saccade target features. By measuring oculomotor performance and perceptual discrimination, we determined which selection mechanisms are associated with saccade preparation. We observed both feature-based and space-based selection during saccade preparation but found that feature-based selection was neither related to saccade initiation nor was it affected by simultaneously observed redistribution of spatial selection. We conclude that oculomotor selection biases visual selection only in a spatial, feature-unspecific manner.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians Universität München, Munich, Germany; and
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Theeuwes
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
157
|
White BJ, Marino RA, Boehnke SE, Itti L, Theeuwes J, Munoz DP. Competitive Integration of Visual and Goal-related Signals on Neuronal Accumulation Rate: A Correlate of Oculomotor Capture in the Superior Colliculus. J Cogn Neurosci 2013; 25:1754-68. [DOI: 10.1162/jocn_a_00429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The mechanisms that underlie the integration of visual and goal-related signals for the production of saccades remain poorly understood. Here, we examined how spatial proximity of competing stimuli shapes goal-directed responses in the superior colliculus (SC), a midbrain structure closely associated with the control of visual attention and eye movements. Monkeys were trained to perform an oculomotor-capture task [Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E., & Zelinsky, G. J. Influence of attentional capture on oculomotor control. Journal of Experimental Psychology. Human Perception and Performance, 25, 1595–1608, 1999], in which a target singleton was revealed via an isoluminant color change in all but one item. On a portion of the trials, an additional salient item abruptly appeared near or far from the target. We quantified how spatial proximity between the abrupt-onset and the target shaped the goal-directed response. We found that the appearance of an abrupt-onset near the target induced a transient decrease in goal-directed discharge of SC visuomotor neurons. Although this was indicative of spatial competition, it was immediately followed by a rebound in presaccadic activation, which facilitated the saccadic response (i.e., it induced shorter saccadic RT). A similar suppression also occurred at most nontarget locations even in the absence of the abrupt-onset. This is indicative of a mechanism that enabled monkeys to quickly discount stimuli that shared the common nontarget feature. These results reveal a pattern of excitation/inhibition across the SC visuomotor map that acted to facilitate optimal behavior—the short duration suppression minimized the probability of capture by salient distractors, whereas a subsequent boost in accumulation rate ensured a fast goal-directed response. Such nonlinear dynamics should be incorporated into future biologically plausible models of saccade behavior.
Collapse
|
158
|
Prefrontal neurons of opposite spatial preference display distinct target selection dynamics. J Neurosci 2013; 33:9520-9. [PMID: 23719818 DOI: 10.1523/jneurosci.5156-12.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the primate dorsolateral prefrontal cortex (dlPFC) of one hemisphere are selective for the location of attended targets in both visual hemifields. Whether dlPFC neurons with selectivity for opposite hemifields directly compete with each other for target selection or instead play distinct roles during the allocation of attention remains unclear. We explored this issue by recording neuronal responses in the right dlPFC of two macaques while they allocated attention to a target in one hemifield and ignored a distracter on the opposite side. Forty-nine percent of the recorded neurons were target location selective. Neurons selective for contralateral targets (58%) systematically discriminated targets from distracters faster than neurons selective for ipsilateral targets (42%). Additionally, during trials in which sensory stimulation remained the same but both stimuli were task irrelevant and animals were required to detect a change in the color of a fixation spot, contralateral neurons still reliably discriminated the putative target from the distracter, whereas ipsilateral neurons did not. The latter result indicates that target-distracter discrimination by contralateral neurons could occur independently of discrimination by ipsilateral cells; thus, the two cell types may represent two different components of the prefrontal circuitry underlying the allocation of attention to targets in the presence of distracters. Moreover, the response of both contralateral and ipsilateral neurons to a single target was substantially reduced by the presence of a distracter in the contralateral hemifield. This result suggests that the presence of the distracter triggered inhibitory interactions within the dlPFC circuitry that suppressed responses to the attended target.
Collapse
|
159
|
Zanto TP, Chadick JZ, Gazzaley A. Anticipatory alpha phase influences visual working memory performance. Neuroimage 2013; 85 Pt 2:794-802. [PMID: 23891902 DOI: 10.1016/j.neuroimage.2013.07.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/01/2013] [Accepted: 07/18/2013] [Indexed: 11/27/2022] Open
Abstract
Alpha band (8-12 Hz) phase dynamics in the visual cortex are thought to reflect fluctuations in cortical excitability that influences perceptual processing. As such, visual stimuli are better detected when their onset is concurrent with specific phases of the alpha cycle. However, it is unclear whether alpha phase differentially influences cognitive performance at specific times relative to stimulus onset (i.e., is the influence of phase maximal before, at, or after stimulus onset?). To address this, participants performed a delayed-recognition, working memory (WM) task for visual motion direction during two separate visits. The first visit utilized functional magnetic resonance (fMRI) imaging to identify neural regions associated with task performance. Replicating previous studies, fMRI data showed engagement of visual cortical area V5, as well as a prefrontal cortical region, the inferior frontal junction (IFJ). During the second visit, transcranial magnetic stimulation (TMS) was applied separately to both the right IFJ and right V5 (with the vertex as a control region) while electroencephalography (EEG) was simultaneously recorded. During each trial, a single pulse of TMS (spTMS) was applied at one of six time points (-200, -100, -50, 0, 80, 160 ms) relative to the encoded stimulus onset. Results demonstrated a relationship between the phase of the posterior alpha signal prior to stimulus encoding and subsequent response times to the memory probe two seconds later. Specifically, spTMS to V5, and not the IFJ or vertex, yielded faster response times, indicating improved WM performance, when delivered during the peak, compared to the trough, of the alpha cycle, but only when spTMS was applied 100 ms prior to stimulus onset. These faster responses to the probe correlated with decreased early event related potential (ERP) amplitudes (i.e., P1) to the probe stimuli. Moreover, participants that were least affected by spTMS exhibited greater functional connectivity between V5 and fronto-parietal regions. These results suggest that posterior alpha phase indexes a critical time period for motion processing in the context of WM encoding goals, which occurs in anticipation of stimulus onset.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | | | | |
Collapse
|
160
|
Briggs F, Mangun GR, Usrey WM. Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 2013; 499:476-80. [PMID: 23803766 PMCID: PMC3725204 DOI: 10.1038/nature12276] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/09/2013] [Indexed: 11/23/2022]
Abstract
Attention is a critical component of perception. However, the mechanisms by which attention modulates neuronal communication to guide behavior are poorly understood. To elucidate the synaptic mechanisms of attention, we developed a sensitive assay of attentional modulation of neuronal communication. In alert monkeys performing a visual spatial attention task, we probed thalamocortical communication by electrically stimulating neurons in the lateral geniculate nucleus of the thalamus while simultaneously recording shock-evoked responses from monosynaptically connected neurons in primary visual cortex. We found that attention enhances neuronal communication by (1) increasing the efficacy of presynaptic input in driving postsynaptic responses, (2) increasing synchronous responses among ensembles of postsynaptic neurons receiving independent input, and (3) decreasing redundant signals between postsynaptic neurons receiving common input. These results demonstrate that attention finely tunes neuronal communication at the synaptic level by selectively altering synaptic weights, enabling enhanced detection of salient events in the noisy sensory milieu.
Collapse
Affiliation(s)
- Farran Briggs
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, California 95618, USA
| | | | | |
Collapse
|
161
|
Shifting attentional priorities: control of spatial attention through hemispheric competition. J Neurosci 2013; 33:5411-21. [PMID: 23516306 DOI: 10.1523/jneurosci.4089-12.2013] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Regions of frontal and posterior parietal cortex are known to control the allocation of spatial attention across the visual field. However, the neural mechanisms underlying attentional control in the intact human brain remain unclear, with some studies supporting a hemispatial theory emphasizing a dominant function of the right hemisphere and others supporting an interhemispheric competition theory. We previously found neural evidence to support the latter account, in which topographically organized frontoparietal areas each generate a spatial bias, or "attentional weight," toward the contralateral hemifield, with the sum of the weights constituting the overall bias that can be exerted across visual space. Here, we used a multimodal approach consisting of functional magnetic resonance imaging (fMRI) of spatial attention signals, behavioral measures of spatial bias, and fMRI-guided single-pulse transcranial magnetic stimulation (TMS) to causally test this interhemispheric competition account. Across the group of fMRI subjects, we found substantial individual differences in the strengths of the frontoparietal attentional weights in each hemisphere, which predicted subjects' respective behavioral preferences when allocating spatial attention, as measured by a landmark task. Using TMS to interfere with attentional processing within specific topographic frontoparietal areas, we then demonstrated that the attentional weights of individual subjects, and thus their spatial attention behavior, could be predictably shifted toward one visual field or the other, depending on the site of interference. The results of our multimodal approach, combined with an emphasis on neural and behavioral individual differences, provide compelling evidence that spatial attention is controlled through competitive interactions between hemispheres rather than a dominant right hemisphere in the intact human brain.
Collapse
|
162
|
Abstract
The superior colliculus (SC) has long been known to be part of the network of brain areas involved in spatial attention, but recent findings have dramatically refined our understanding of its functional role. The SC both implements the motor consequences of attention and plays a crucial role in the process of target selection that precedes movement. Moreover, even in the absence of overt orienting movements, SC activity is related to shifts of covert attention and is necessary for the normal control of spatial attention during perceptual judgments. The neuronal circuits that link the SC to spatial attention may include attention-related areas of the cerebral cortex, but recent results show that the SC's contribution involves mechanisms that operate independently of the established signatures of attention in visual cortex. These findings raise new issues and suggest novel possibilities for understanding the brain mechanisms that enable spatial attention.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
163
|
A shared inhibitory circuit for both exogenous and endogenous control of stimulus selection. Nat Neurosci 2013; 16:473-8. [PMID: 23475112 PMCID: PMC3609877 DOI: 10.1038/nn.3352] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/06/2013] [Indexed: 11/08/2022]
Abstract
The mechanisms by which the brain suppresses distracting stimuli to control the locus of attention are unknown. We found that focal, reversible inactivation of a single inhibitory circuit in the barn owl midbrain tegmentum, the nucleus isthmi pars magnocellularis (Imc), abolished both stimulus-driven (exogenous) and internally-driven (endogenous) competitive interactions in the optic tectum (superior colliculus in mammals), which are vital to the selection of a target among distracters in behaving animals. Imc neurons transformed spatially precise multisensory and endogenous input into powerful inhibitory output that suppressed competing representations across the entire tectal space map. We identified a small, but highly potent, circuit that is employed by both exogenous and endogenous signals to exert competitive suppression in the midbrain selection network. Our findings reveal, for the first time, a neural mechanism for the construction of a priority map that is critical for the selection of the most important stimulus for gaze and attention.
Collapse
|
164
|
Damasio A, Carvalho GB. The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci 2013; 14:143-52. [PMID: 23329161 DOI: 10.1038/nrn3403] [Citation(s) in RCA: 522] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Feelings are mental experiences of body states. They signify physiological need (for example, hunger), tissue injury (for example, pain), optimal function (for example, well-being), threats to the organism (for example, fear or anger) or specific social interactions (for example, compassion, gratitude or love). Feelings constitute a crucial component of the mechanisms of life regulation, from simple to complex. Their neural substrates can be found at all levels of the nervous system, from individual neurons to subcortical nuclei and cortical regions.
Collapse
Affiliation(s)
- Antonio Damasio
- Brain and Creativity Institute, University of Southern California, 3620 A McClintock Avenue, Suite 265, Los Angeles, California 90089-2921, USA.
| | | |
Collapse
|
165
|
Hafed ZM, Lovejoy LP, Krauzlis RJ. Superior colliculus inactivation alters the relationship between covert visual attention and microsaccades. Eur J Neurosci 2013; 37:1169-81. [PMID: 23331638 DOI: 10.1111/ejn.12127] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/04/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
Abstract
Microsaccades are tiny saccades that occur during gaze fixation. Whereas these movements have traditionally been viewed as random, it was recently discovered that microsaccade directions can be significantly biased by covertly attended visual stimuli. The detailed mechanisms mediating such a bias are neither known nor immediately obvious, especially because the amplitudes of the movements influenced by attentional cueing could be up to two orders of magnitude smaller than the eccentricity of the attended location. Here, we tested whether activity in the peripheral superior colliculus (SC) is necessary for this correlation between attentional cueing and microsaccades. We reversibly and focally inactivated SC neurons representing peripheral regions of visual space while rhesus monkeys performed a demanding covert visual attention task. The normal bias of microsaccade directions observed in each monkey before SC inactivation was eliminated when a cue was placed in the visual region affected by the inactivation; microsaccades were, instead, biased away from the affected visual space. When the cue was placed at another location unaffected by SC inactivation, the baseline cue-induced bias of microsaccade directions remained mostly intact, because the cue was in unaffected visual space, and any remaining changes were again explained by a repulsion of microsaccades away from the inactivated region. Our results indicate that peripheral SC activity is required for the link between microsaccades and the cueing of covert visual attention, and that it could do so by altering the probability of triggering microsaccades without necessarily affecting the motor generation of these movements.
Collapse
Affiliation(s)
- Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Otfried-Muller Str. 25, Tuebingen, 72076, Germany.
| | | | | |
Collapse
|
166
|
|