151
|
Lee BCH, Lin Z, Yuen KWY. RbAp46/48(LIN-53) Is Required for Holocentromere Assembly in Caenorhabditis elegans. Cell Rep 2016; 14:1819-28. [PMID: 26904949 DOI: 10.1016/j.celrep.2016.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
Centromeres, the specialized chromosomal regions for recruiting kinetochores and directing chromosome segregation, are epigenetically marked by a centromeric histone H3 variant, CENP-A. To maintain centromere identity through cell cycles, CENP-A diluted during DNA replication is replenished. The licensing factor M18BP1(KNL-2) is known to recruit CENP-A to holocentromeres. Here, we show that RbAp46/48(LIN-53), a conserved histone chaperone, is required for CENP-A(HCP-3) localization in holocentric Caenorhabditis elegans. Indeed, RbAp46/48(LIN-53) and CENP-A(HCP-3) localizations are interdependent. RbAp46/48(LIN-53) localizes to the centromere during metaphase in a CENP-A(HCP-3)- and M18BP1(KNL-2)-dependent manner, suggesting CENP-A(HCP-3) loading may occur before anaphase. RbAp46/48(LIN-53) does not function at the centromere through histone acetylation, H3K27 trimethylation, or its known chromatin-modifying complexes. RbAp46/48(LIN-53) may function independently to escort CENP-A(HCP-3) for holocentromere assembly but is dispensable for other kinetochore protein recruitment. Nonetheless, depletion of RbAp46/48(LIN-53) leads to anaphase bridges and chromosome missegregation. This study unravels the holocentromere assembly hierarchy and its conservation with monocentromeres.
Collapse
Affiliation(s)
- Bernard Chi Hang Lee
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
152
|
Chatterjee G, Sankaranarayanan SR, Guin K, Thattikota Y, Padmanabhan S, Siddharthan R, Sanyal K. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis. PLoS Genet 2016; 12:e1005839. [PMID: 26845548 PMCID: PMC4741521 DOI: 10.1371/journal.pgen.1005839] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species--Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast.
Collapse
Affiliation(s)
- Gautam Chatterjee
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Yogitha Thattikota
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sreedevi Padmanabhan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Rahul Siddharthan
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| |
Collapse
|
153
|
Samejima I, Spanos C, Alves FDL, Hori T, Perpelescu M, Zou J, Rappsilber J, Fukagawa T, Earnshaw WC. Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore. J Cell Biol 2015; 211:1141-56. [PMID: 26668330 PMCID: PMC4687880 DOI: 10.1083/jcb.201508072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/11/2015] [Indexed: 12/26/2022] Open
Abstract
Whole-proteome analysis of isolated mitotic chromosomes from 11 kinetochore structural and assembly mutants is used to develop dependency and correlation maps for protein subcomplexes that confirm many published interactions and also reveal novel dependencies between kinetochore components. Kinetochores orchestrate mitotic chromosome segregation. Here, we use quantitative mass spectrometry of mitotic chromosomes isolated from a comprehensive set of chicken DT40 mutants to examine the dependencies of 93 confirmed and putative kinetochore proteins for stable association with chromosomes. Clustering and network analysis reveal both known and unexpected aspects of coordinated behavior for members of kinetochore protein complexes. Surprisingly, CENP-T depends on CENP-N for chromosome localization. The Ndc80 complex exhibits robust correlations with all other complexes in a “core” kinetochore network. Ndc80 associated with CENP-T interacts with a cohort of Rod, zw10, and zwilch (RZZ)–interacting proteins that includes Spindly, Mad1, and CENP-E. This complex may coordinate microtubule binding with checkpoint signaling. Ndc80 associated with CENP-C forms the KMN (Knl1, Mis12, Ndc80) network and may be the microtubule-binding “workhorse” of the kinetochore. Our data also suggest that CENP-O and CENP-R may regulate the size of the inner kinetochore without influencing the assembly of the outer kinetochore.
Collapse
Affiliation(s)
- Itaru Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Tetsuya Hori
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Marinela Perpelescu
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
154
|
Ohzeki JI, Larionov V, Earnshaw WC, Masumoto H. Genetic and epigenetic regulation of centromeres: a look at HAC formation. Chromosome Res 2015; 23:87-103. [PMID: 25682171 DOI: 10.1007/s10577-015-9470-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The centromere is a specialized chromosomal locus required for accurate chromosome segregation. A specific histone H3 variant, CENP-A, assembles at centromeres. CENP-A is required for kinetochore protein assembly and is an epigenetic marker for the maintenance of a functional centromere. Human CENP-A chromatin normally assembles on α-satellite DNA (alphoid DNA), a centromeric repetitive sequence. Using alphoid DNA arrays, human artificial chromosomes (HACs) have been constructed in human HT1080 cells and used to dissect the requirements for CENP-A assembly on DNA sequence. However, centromere formation is not a simple genetic event. In other commonly used human cell lines, such as HeLa and U2OS cells, no functional de novo centromere formation occurs efficiently with the same centromeric alphoid DNA sequences. Recent studies using protein tethering combined with the HAC system and/or genetic manipulation have revealed that epigenetic chromatin regulation mechanisms are also involved in the CENP-A chromatin assembly pathway and subsequent centromere/kinetochore formation. We summarize the DNA sequence requirements for CENP-A assembly and discuss the epigenetic regulation of human centromeres.
Collapse
Affiliation(s)
- Jun-ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | | | | | | |
Collapse
|
155
|
McKinley KL, Cheeseman IM. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 2015; 17:16-29. [PMID: 26601620 DOI: 10.1038/nrm.2015.5] [Citation(s) in RCA: 409] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The centromere is the region of the chromosome that directs its segregation in mitosis and meiosis. Although the functional importance of the centromere has been appreciated for more than 130 years, elucidating the molecular features and properties that enable centromeres to orchestrate chromosome segregation is an ongoing challenge. Most eukaryotic centromeres are defined epigenetically and require the presence of nucleosomes containing the histone H3 variant centromere protein A (CENP-A; also known as CENH3). Ongoing work is providing important molecular insights into the central requirements for centromere identity and propagation, and the mechanisms by which centromeres recruit kinetochores to connect to spindle microtubules.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute and Department of Biology, MIT, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute and Department of Biology, MIT, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
156
|
McKinley KL, Sekulic N, Guo LY, Tsinman T, Black BE, Cheeseman IM. The CENP-L-N Complex Forms a Critical Node in an Integrated Meshwork of Interactions at the Centromere-Kinetochore Interface. Mol Cell 2015; 60:886-98. [PMID: 26698661 DOI: 10.1016/j.molcel.2015.10.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/10/2015] [Accepted: 10/14/2015] [Indexed: 11/30/2022]
Abstract
During mitosis, the macromolecular kinetochore complex assembles on the centromere to orchestrate chromosome segregation. The properties and architecture of the 16-subunit Constitutive Centromere-Associated Network (CCAN) that allow it to build a robust platform for kinetochore assembly are poorly understood. Here, we use inducible CRISPR knockouts and biochemical reconstitutions to define the interactions between the human CCAN proteins. We find that the CCAN does not assemble as a linear hierarchy, and instead, each sub-complex requires multiple non-redundant interactions for its localization to centromeres and the structural integrity of the overall assembly. We demonstrate that the CENP-L-N complex plays a crucial role at the core of this assembly through interactions with CENP-C and CENP-H-I-K-M. Finally, we show that the CCAN is remodeled over the cell cycle such that sub-complexes depend on their interactions differentially. Thus, an interdependent meshwork within the CCAN underlies the centromere specificity and stability of the kinetochore.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nikolina Sekulic
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Lucie Y Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Tonia Tsinman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
157
|
Mattiroli F, D'Arcy S, Luger K. The right place at the right time: chaperoning core histone variants. EMBO Rep 2015; 16:1454-66. [PMID: 26459557 DOI: 10.15252/embr.201540840] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Sheena D'Arcy
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Karolin Luger
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
158
|
Mohibi S, Srivastava S, Wang-France J, Mirza S, Zhao X, Band H, Band V. Alteration/Deficiency in Activation 3 (ADA3) Protein, a Cell Cycle Regulator, Associates with the Centromere through CENP-B and Regulates Chromosome Segregation. J Biol Chem 2015; 290:28299-28310. [PMID: 26429915 DOI: 10.1074/jbc.m115.685511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 02/01/2023] Open
Abstract
ADA3 (alteration/deficiency in activation 3) is a conserved component of several transcriptional co-activator and histone acetyltransferase (HAT) complexes. Recently, we generated Ada3 knock-out mice and demonstrated that deletion of Ada3 leads to early embryonic lethality. The use of Ada3(FL/FL) mouse embryonic fibroblasts with deletion of Ada3 using adenovirus Cre showed a critical role of ADA3 in cell cycle progression through mitosis. Here, we demonstrate an association of ADA3 with the higher order repeat region of the α-satellite region on human X chromosome centromeres that is consistent with its role in mitosis. Given the role of centromere proteins (CENPs) in mitosis, we next analyzed whether ADA3 associates with the centromere through CENPs. Both an in vivo proximity ligation assay and immunofluorescence studies confirmed the association of ADA3 with CENP-B protein, a highly conserved centromeric protein that binds to the 17-bp DNA sequences on α-satellite DNA. Deletional analysis showed that ADA3 directly associates with CENP-B through its N terminus, and a CENP-B binding-deficient mutant of ADA3 was incompetent in cell proliferation rescue. Notably, knockdown of ADA3 decreased binding of CENP-B onto the centromeres, suggesting that ADA3 is required for the loading of CENP-B onto the centromeres. Finally, we show that deletion of Ada3 from Ada3(FL/FL) mouse embryonic fibroblasts exhibited various chromosome segregation defects. Taken together, we demonstrate a novel ADA3 interaction with CENP-B-centromere that may account for its previously known function in mitosis. This study, together with its known function in maintaining genomic stability and its mislocalization in cancers, suggests an important role of ADA3 in mitosis.
Collapse
Affiliation(s)
| | | | | | - Sameer Mirza
- Department of Genetics, Cell Biology, and Anatomy
| | | | - Hamid Band
- Department of Genetics, Cell Biology, and Anatomy; Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, and Pharmacology and Experimental Neuroscience, College of Medicine; Eppley Institute for Cancer and Allied Diseases; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, Nebraska 68198.
| | - Vimla Band
- Department of Genetics, Cell Biology, and Anatomy; Eppley Institute for Cancer and Allied Diseases; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
159
|
Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A, Wong AJ, Cleveland DW. DNA Sequence-Specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. Dev Cell 2015; 33:314-27. [PMID: 25942623 DOI: 10.1016/j.devcel.2015.03.020] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
Abstract
Human centromeres are specified by a stably inherited epigenetic mark that maintains centromere position and function through a two-step mechanism relying on self-templating centromeric chromatin assembled with the histone H3 variant CENP-A, followed by CENP-A-dependent nucleation of kinetochore assembly. Nevertheless, natural human centromeres are positioned within specific megabase chromosomal regions containing α-satellite DNA repeats, which contain binding sites for the DNA sequence-specific binding protein CENP-B. We now demonstrate that CENP-B directly binds both CENP-A's amino-terminal tail and CENP-C, a key nucleator of kinetochore assembly. DNA sequence-dependent binding of CENP-B within α-satellite repeats is required to stabilize optimal centromeric levels of CENP-C. Chromosomes bearing centromeres without bound CENP-B, including the human Y chromosome, are shown to mis-segregate in cells at rates several-fold higher than chromosomes with CENP-B-containing centromeres. These data demonstrate a DNA sequence-specific enhancement by CENP-B of the fidelity of epigenetically defined human centromere function.
Collapse
Affiliation(s)
- Daniele Fachinetti
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Joo Seok Han
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Moira A McMahon
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Peter Ly
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Amira Abdullah
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alex J Wong
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
160
|
Garavís M, Méndez-Lago M, Gabelica V, Whitehead SL, González C, Villasante A. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs. Sci Rep 2015; 5:13307. [PMID: 26289671 PMCID: PMC4542561 DOI: 10.1038/srep13307] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Centromeres are the chromosomal loci at which spindle microtubules attach to mediate chromosome segregation during mitosis and meiosis. In most eukaryotes, centromeres are made up of highly repetitive DNA sequences (satellite DNA) interspersed with middle repetitive DNA sequences (transposable elements). Despite the efforts to establish complete genomic sequences of eukaryotic organisms, the so-called 'finished' genomes are not actually complete because the centromeres have not been assembled due to the intrinsic difficulties in constructing both physical maps and complete sequence assemblies of long stretches of tandemly repetitive DNA. Here we show the first molecular structure of an endogenous Drosophila centromere and the ability of the C-rich dodeca satellite strand to form dimeric i-motifs. The finding of i-motif structures in simple and complex centromeric satellite DNAs leads us to suggest that these centromeric sequences may have been selected not by their primary sequence but by their ability to form noncanonical secondary structures.
Collapse
Affiliation(s)
- Miguel Garavís
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - María Méndez-Lago
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Valérie Gabelica
- Univ. Bordeaux, ARNA Laboratory, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France.,Inserm ARNA Laboratory, 146 rue Leo Saignat, F-33000 Bordeaux, France
| | - Siobhan L Whitehead
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Alfredo Villasante
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
161
|
Scott KC, Bloom KS. Lessons learned from counting molecules: how to lure CENP-A into the kinetochore. Open Biol 2015; 4:rsob.140191. [PMID: 25500356 PMCID: PMC4281711 DOI: 10.1098/rsob.140191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Kristin C Scott
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Kerry S Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
162
|
Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, Herzog F, Musacchio A. CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol 2015; 210:11-22. [PMID: 26124289 PMCID: PMC4494010 DOI: 10.1083/jcb.201412028] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
CENP-C promotes kinetochore targeting of other constitutive centromere–associated network (CCAN) subunits by directly interacting with the four-subunit CCAN subcomplex CENP-HIKM and spatially organizing the localization of all other CCAN subunits downstream of CENP-A. Kinetochores are multisubunit complexes that assemble on centromeres to bind spindle microtubules and promote faithful chromosome segregation during cell division. A 16-subunit complex named the constitutive centromere–associated network (CCAN) creates the centromere–kinetochore interface. CENP-C, a CCAN subunit, is crucial for kinetochore assembly because it links centromeres with the microtubule-binding interface of kinetochores. The role of CENP-C in CCAN organization, on the other hand, had been incompletely understood. In this paper, we combined biochemical reconstitution and cellular investigations to unveil how CENP-C promotes kinetochore targeting of other CCAN subunits. The so-called PEST domain in the N-terminal half of CENP-C interacted directly with the four-subunit CCAN subcomplex CENP-HIKM. We identified crucial determinants of this interaction whose mutation prevented kinetochore localization of CENP-HIKM and of CENP-TW, another CCAN subcomplex. When considered together with previous observations, our data point to CENP-C as a blueprint for kinetochore assembly.
Collapse
Affiliation(s)
- Kerstin Klare
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - John R Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Federica Basilico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Tomasz Zimniak
- Gene Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Lucia Massimiliano
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Nina Ludwigs
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Franz Herzog
- Gene Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
163
|
Westhorpe FG, Fuller CJ, Straight AF. A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J Cell Biol 2015; 209:789-801. [PMID: 26076692 PMCID: PMC4477859 DOI: 10.1083/jcb.201503132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
Studying CENP-A nucleosome assembly in a cell-free system defines the role of existing CENP-A nucleosomes in centromere maintenance. Centromeres are defined by the presence of CENP-A nucleosomes in chromatin and are essential for accurate chromosome segregation. Centromeric chromatin epigenetically seeds new CENP-A nucleosome formation, thereby maintaining functional centromeres as cells divide. The features within centromeric chromatin that direct new CENP-A assembly remain unclear. Here, we developed a cell-free CENP-A assembly system that enabled the study of chromatin-bound CENP-A and soluble CENP-A separately. We show that two distinct domains of CENP-A within existing CENP-A nucleosomes are required for new CENP-A assembly and that CENP-A nucleosomes recruit the CENP-A assembly factors CENP-C and M18BP1 independently. Furthermore, we demonstrate that the mechanism of CENP-C recruitment to centromeres is dependent on the density of underlying CENP-A nucleosomes.
Collapse
Affiliation(s)
| | - Colin J Fuller
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305
| |
Collapse
|
164
|
Perpelescu M, Hori T, Toyoda A, Misu S, Monma N, Ikeo K, Obuse C, Fujiyama A, Fukagawa T. HJURP is involved in the expansion of centromeric chromatin. Mol Biol Cell 2015; 26:2742-54. [PMID: 26063729 PMCID: PMC4571335 DOI: 10.1091/mbc.e15-02-0094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/02/2015] [Indexed: 11/11/2022] Open
Abstract
The CENP-A-specific chaperone HJURP mediates CENP-A deposition at centromeres. The N-terminal region of HJURP is responsible for binding to soluble CENP-A. However, it is unclear whether other regions of HJURP have additional functions for centromere formation and maintenance. In this study, we generated chicken DT40 knockout cell lines and gene replacement constructs for HJURP to assess the additional functions of HJURP in vivo. Our analysis revealed that the middle region of HJURP associates with the Mis18 complex protein M18BP1/KNL2 and that the HJURP-M18BP1 association is required for HJURP function. In addition, on the basis of the analysis of artificial centromeres induced by ectopic HJURP localization, we demonstrate that HJURP exhibits a centromere expansion activity that is separable from its CENP-A-binding activity. We also observed centromere expansion surrounding natural centromeres after HJURP overexpression. We propose that this centromere expansion activity reflects the functional properties of HJURP, which uses this activity to contribute to the plastic establishment of a centromeric chromatin structure.
Collapse
Affiliation(s)
- Marinela Perpelescu
- Department of Molecular Genetics, National Institute of Genetics, and Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Tetsuya Hori
- Department of Molecular Genetics, National Institute of Genetics, and Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Sadahiko Misu
- Cell Innovation Project, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Norikazu Monma
- Cell Innovation Project, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kazuho Ikeo
- Cell Innovation Project, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo. 001-0021, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics, and Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
165
|
Stable Patterns of CENH3 Occupancy Through Maize Lineages Containing Genetically Similar Centromeres. Genetics 2015; 200:1105-16. [PMID: 26063660 PMCID: PMC4574241 DOI: 10.1534/genetics.115.177360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/08/2015] [Indexed: 01/08/2023] Open
Abstract
While the approximate chromosomal position of centromeres has been identified in many species, little is known about the dynamics and diversity of centromere positions within species. Multiple lines of evidence indicate that DNA sequence has little or no impact in specifying centromeres in maize and in most multicellular organisms. Given that epigenetically defined boundaries are expected to be dynamic, we hypothesized that centromere positions would change rapidly over time, which would result in a diversity of centromere positions in isolated populations. To test this hypothesis, we used CENP-A/cenH3 (CENH3 in maize) chromatin immunoprecipitation to define centromeres in breeding pedigrees that included the B73 inbred as a common parent. While we found a diversity of CENH3 profiles for centromeres with divergent sequences that were not inherited from B73, the CENH3 profiles from centromeres that were inherited from B73 were indistinguishable from each other. We propose that specific genetic elements in centromeric regions favor or inhibit CENH3 accumulation, leading to reproducible patterns of CENH3 occupancy. These data also indicate that dramatic shifts in centromere position normally originate from accumulated or large-scale genetic changes rather than from epigenetic positional drift.
Collapse
|
166
|
Garavís M, Escaja N, Gabelica V, Villasante A, González C. Centromeric Alpha-Satellite DNA Adopts Dimeric i-Motif Structures Capped by AT Hoogsteen Base Pairs. Chemistry 2015; 21:9816-24. [PMID: 26013031 DOI: 10.1002/chem.201500448] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 11/11/2022]
Abstract
Human centromeric alpha-satellite DNA is composed of tandem arrays of two types of 171 bp monomers; type A and type B. The differences between these types are concentrated in a 17 bp region of the monomer called the A/B box. Here, we have determined the solution structure of the C-rich strand of the two main variants of the human alpha-satellite A box. We show that, under acidic conditions, the C-rich strands of two A boxes self-recognize and form a head-to-tail dimeric i-motif stabilized by four intercalated hemi-protonated C:C(+) base pairs. Interestingly, the stack of C:C(+) base pairs is capped by T:T and Hoogsteen A:T base pairs. The two main variants of the A box adopt a similar three-dimensional structure, although the residues involved in the formation of the i-motif core are different in each case. Together with previous studies showing that the B box (known as the CENP-B box) also forms dimeric i-motif structures, our finding of this non-canonical structure in the A box shows that centromeric alpha satellites in all human chromosomes are able to form i-motifs, which consequently raises the possibility that these structures may play a role in the structural organization of the centromere.
Collapse
Affiliation(s)
- Miguel Garavís
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain).,Centro de Biología Molecular, "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid (Spain)
| | - Núria Escaja
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain)
| | - Valérie Gabelica
- Univ. Bordeaux, ARNA Laboratory, IECB, 2 rue Robert Escarpit 33600 Pessac (France).,Inserm, ARNA Laboratory, 146 Rue Leo Saignat, 33000 Bordeaux (France)
| | - Alfredo Villasante
- Centro de Biología Molecular, "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid (Spain)
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain).
| |
Collapse
|
167
|
Discovering centromere proteins: from cold white hands to the A, B, C of CENPs. Nat Rev Mol Cell Biol 2015; 16:443-9. [PMID: 25991376 DOI: 10.1038/nrm4001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kinetochore is a complex molecular machine that directs chromosome segregation during mitosis. It is one of the most elaborate subcellular protein structures in eukaryotes, comprising more than 100 different proteins. Inner kinetochore proteins associate with specialized centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) in place of H3. Outer kinetochore proteins bind to microtubules and signal to delay anaphase onset when microtubules are absent. Since the first kinetochore proteins were discovered and cloned 30 years ago using autoimmune sera from patients with scleroderma-spectrum disease, much has been learnt about the composition, functions and regulation of this remarkable structure.
Collapse
|
168
|
Fang J, Liu Y, Wei Y, Deng W, Yu Z, Huang L, Teng Y, Yao T, You Q, Ruan H, Chen P, Xu RM, Li G. Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N. Genes Dev 2015; 29:1058-73. [PMID: 25943375 PMCID: PMC4441053 DOI: 10.1101/gad.259432.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
Specific recognition of centromere-specific histone variant CENP-A-containing chromatin by CENP-N is an essential process in the assembly of the kinetochore complex at centromeres prior to mammalian cell division. However, the mechanisms of CENP-N recruitment to centromeres/kinetochores remain unknown. Here, we show that a CENP-A-specific RG loop (Arg80/Gly81) plays an essential and dual regulatory role in this process. The RG loop assists the formation of a compact "ladder-like" structure of CENP-A chromatin, concealing the loop and thus impairing its role in recruiting CENP-N. Upon G1/S-phase transition, however, centromeric chromatin switches from the compact to an open state, enabling the now exposed RG loop to recruit CENP-N prior to cell division. Our results provide the first insights into the mechanisms by which the recruitment of CENP-N is regulated by the structural transitions between compaction and relaxation of centromeric chromatin during the cell cycle.
Collapse
Affiliation(s)
- Junnan Fang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqiang Deng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouliang Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Teng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Yao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglong You
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haihe Ruan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
169
|
Fujita R, Otake K, Arimura Y, Horikoshi N, Miya Y, Shiga T, Osakabe A, Tachiwana H, Ohzeki JI, Larionov V, Masumoto H, Kurumizaka H. Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Res 2015; 43:4909-22. [PMID: 25916850 PMCID: PMC4446444 DOI: 10.1093/nar/gkv405] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/15/2015] [Indexed: 01/16/2023] Open
Abstract
CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.
Collapse
Affiliation(s)
- Risa Fujita
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Koichiro Otake
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuta Miya
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tatsuya Shiga
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun-ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Vladimir Larionov
- Development Therapeutic Branch, National Cancer Institute, National Institutes of Health, Building 37, Room 5040, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
170
|
HJURP Involvement in De Novo CenH3CENP-A and CENP-C Recruitment. Cell Rep 2015; 11:22-32. [DOI: 10.1016/j.celrep.2015.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
|
171
|
Mouysset J, Gilberto S, Meier MG, Lampert F, Belwal M, Meraldi P, Peter M. CRL4(RBBP7) is required for efficient CENP-A deposition at centromeres. J Cell Sci 2015; 128:1732-45. [PMID: 25795299 DOI: 10.1242/jcs.162305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/13/2015] [Indexed: 12/15/2022] Open
Abstract
The mitotic spindle drives chromosome movement during mitosis and attaches to chromosomes at dedicated genomic loci named centromeres. Centromeres are epigenetically specified by their histone composition, namely the presence of the histone H3 variant CENP-A, which is regulated during the cell cycle by its dynamic expression and localization. Here, we combined biochemical methods and quantitative imaging approaches to investigate a new function of CUL4-RING E3 ubiquitin ligases (CRL4) in regulating CENP-A dynamics. We found that the core components CUL4 and DDB1 are required for centromeric loading of CENP-A, but do not influence CENP-A maintenance or pre-nucleosomal CENP-A levels. Interestingly, we identified RBBP7 as a substrate-specific CRL4 adaptor required for this process, in addition to its role in binding and stabilizing soluble CENP-A. Our data thus suggest that the CRL4 complex containing RBBP7 (CRL4(RBBP7)) might regulate mitosis by promoting ubiquitin-dependent loading of newly synthesized CENP-A during the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Julien Mouysset
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Samuel Gilberto
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Michelle G Meier
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Fabienne Lampert
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Mukta Belwal
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Patrick Meraldi
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
172
|
Abendroth C, Hofmeister A, Hake SB, Kamweru PK, Miess E, Dornblut C, Küffner I, Deng W, Leonhardt H, Orthaus S, Hoischen C, Diekmann S. The CENP-T C-terminus is exclusively proximal to H3.1 and not to H3.2 or H3.3. Int J Mol Sci 2015; 16:5839-63. [PMID: 25775162 PMCID: PMC4394509 DOI: 10.3390/ijms16035839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/17/2022] Open
Abstract
The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere-kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN) bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1(C96A) and H3.1(C110A) nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2.
Collapse
Affiliation(s)
- Christian Abendroth
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Antje Hofmeister
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Sandra B Hake
- Department of Molecular Biology, Center for Integrated Protein Science Munich (CIPSM), Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität Munich, Schillerstr. 44, D-80336 Munich, Germany.
| | - Paul K Kamweru
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Elke Miess
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Carsten Dornblut
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Isabell Küffner
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Wen Deng
- Department of Biology II, Center for Integrated Protein Science, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, D-82152 Munich, Germany.
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, D-82152 Munich, Germany.
| | | | - Christian Hoischen
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Stephan Diekmann
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| |
Collapse
|
173
|
Niikura Y, Kitagawa R, Ogi H, Abdulle R, Pagala V, Kitagawa K. CENP-A K124 Ubiquitylation Is Required for CENP-A Deposition at the Centromere. Dev Cell 2015; 32:589-603. [PMID: 25727006 PMCID: PMC4374629 DOI: 10.1016/j.devcel.2015.01.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022]
Abstract
CENP-A is a centromere-specific histone H3 variant that epigenetically determines centromere identity to ensure kinetochore assembly and proper chromosome segregation, but the precise mechanism of its specific localization within centromeric heterochromatin remains obscure. We have discovered that CUL4A-RBX1-COPS8 E3 ligase activity is required for CENP-A ubiquitylation on lysine 124 (K124) and CENP-A centromere localization. A mutation of CENP-A, K124R, reduces interaction with HJURP (a CENP-A-specific histone chaperone) and abrogates localization of CENP-A to the centromere. Addition of monoubiquitin is sufficient to restore CENP-A K124R to centromeres and the interaction with HJURP, indicating that "signaling" ubiquitylation is required for CENP-A loading at centromeres. The CUL4A-RBX1 complex is required for loading newly synthesized CENP-A and maintaining preassembled CENP-A at centromeres. Thus, CENP-A K124R ubiquitylation, mediated by the CUL4A-RBX1-COPS8 complex, is essential for CENP-A deposition at the centromere.
Collapse
Affiliation(s)
- Yohei Niikura
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Risa Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Hiroo Ogi
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rashid Abdulle
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Vishwajeeth Pagala
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Katsumi Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
174
|
Catania S, Pidoux AL, Allshire RC. Sequence features and transcriptional stalling within centromere DNA promote establishment of CENP-A chromatin. PLoS Genet 2015; 11:e1004986. [PMID: 25738810 PMCID: PMC4349457 DOI: 10.1371/journal.pgen.1004986] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
Centromere sequences are not conserved between species, and there is compelling evidence for epigenetic regulation of centromere identity, with location being dictated by the presence of chromatin containing the histone H3 variant CENP-A. Paradoxically, in most organisms CENP-A chromatin generally occurs on particular sequences. To investigate the contribution of primary DNA sequence to establishment of CENP-A chromatin in vivo, we utilised the fission yeast Schizosaccharomyces pombe. CENP-ACnp1 chromatin is normally assembled on ∼10 kb of central domain DNA within these regional centromeres. We demonstrate that overproduction of S. pombe CENP-ACnp1 bypasses the usual requirement for adjacent heterochromatin in establishing CENP-ACnp1 chromatin, and show that central domain DNA is a preferred substrate for de novo establishment of CENP-ACnp1 chromatin. When multimerised, a 2 kb sub-region can establish CENP-ACnp1 chromatin and form functional centromeres. Randomization of the 2 kb sequence to generate a sequence that maintains AT content and predicted nucleosome positioning is unable to establish CENP-ACnp1 chromatin. These analyses indicate that central domain DNA from fission yeast centromeres contains specific information that promotes CENP-ACnp1 incorporation into chromatin. Numerous transcriptional start sites were detected on the forward and reverse strands within the functional 2 kb sub-region and active promoters were identified. RNAPII is enriched on central domain DNA in wild-type cells, but only low levels of transcripts are detected, consistent with RNAPII stalling during transcription of centromeric DNA. Cells lacking factors involved in restarting transcription-TFIIS and Ubp3-assemble CENP-ACnp1 on central domain DNA when CENP-ACnp1 is at wild-type levels, suggesting that persistent stalling of RNAPII on centromere DNA triggers chromatin remodelling events that deposit CENP-ACnp1. Thus, sequence-encoded features of centromeric DNA create an environment of pervasive low quality RNAPII transcription that is an important determinant of CENP-ACnp1 assembly. These observations emphasise roles for both genetic and epigenetic processes in centromere establishment.
Collapse
Affiliation(s)
- Sandra Catania
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alison L. Pidoux
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
175
|
Logsdon GA, Barrey EJ, Bassett EA, DeNizio JE, Guo LY, Panchenko T, Dawicki-McKenna JM, Heun P, Black BE. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. ACTA ACUST UNITED AC 2015; 208:521-31. [PMID: 25713413 PMCID: PMC4347640 DOI: 10.1083/jcb.201412011] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
New roles for the N-terminal histone tail and folded core of CENP-A are revealed by monitoring early steps in centromere establishment. The centromere—defined by the presence of nucleosomes containing the histone H3 variant, CENP-A—is the chromosomal locus required for the accurate segregation of chromosomes during cell division. Although the sequence determinants of human CENP-A required to maintain a centromere were reported, those that are required for early steps in establishing a new centromere are unknown. In this paper, we used gain-of-function histone H3 chimeras containing various regions unique to CENP-A to investigate early events in centromere establishment. We targeted histone H3 chimeras to chromosomally integrated Lac operator sequences by fusing each of the chimeras to the Lac repressor. Using this approach, we found surprising contributions from a small portion of the N-terminal tail and the CENP-A targeting domain in the initial recruitment of two essential constitutive centromere proteins, CENP-C and CENP-T. Our results indicate that the regions of CENP-A required for early events in centromere establishment differ from those that are required for maintaining centromere identity.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Evelyne J Barrey
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3QR, UK Faculty of Biology, Albert Ludwigs Universität Freiburg, 79104 Freiburg, Germany
| | - Emily A Bassett
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jamie E DeNizio
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lucie Y Guo
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tanya Panchenko
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - Ben E Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
176
|
Folco HD, Campbell CS, May KM, Espinoza CA, Oegema K, Hardwick KG, Grewal SIS, Desai A. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast. Curr Biol 2015; 25:348-356. [PMID: 25619765 PMCID: PMC4318777 DOI: 10.1016/j.cub.2014.11.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
Abstract
In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant CENP-A [1-3]. CENP-A-containing chromatin recruits the constitutive centromere-associated network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form microtubule attachments and ensure chromosome segregation fidelity [4-6]. Whereas the mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent N-terminal tail remain enigmatic [7-12]. Here, we employ the well-studied fission yeast centromere [13-16] to investigate the function of the CENP-A (Cnp1) N-tail. We show that alteration of the N-tail does not affect Cnp1 loading at centromeres, outer kinetochore formation, or spindle checkpoint signaling but nevertheless elevates chromosome loss. N-tail mutants exhibited synthetic lethality with an altered centromeric DNA sequence, with rare survivors harboring chromosomal fusions in which the altered centromere was epigenetically inactivated. Elevated centromere inactivation was also observed for N-tail mutants with unaltered centromeric DNA sequences. N-tail mutants specifically reduced localization of the CCAN proteins Cnp20/CENP-T and Mis6/CENP-I, but not Cnp3/CENP-C. Overexpression of Cnp20/CENP-T suppressed defects in an N-tail mutant, suggesting a link between reduced CENP-T recruitment and the observed centromere inactivation phenotype. Thus, the Cnp1 N-tail promotes epigenetic stability of centromeres in fission yeast, at least in part via recruitment of the CENP-T branch of the CCAN.
Collapse
Affiliation(s)
- H Diego Folco
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher S Campbell
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen M May
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Celso A Espinoza
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
177
|
Cdk1: conductor of CENP-A symphony orchestra. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
178
|
Krizaic I, Williams SJ, Sánchez P, Rodríguez-Corsino M, Stukenberg PT, Losada A. The distinct functions of CENP-C and CENP-T/W in centromere propagation and function in Xenopus egg extracts. Nucleus 2015; 6:133-43. [PMID: 25569378 PMCID: PMC4615894 DOI: 10.1080/19491034.2014.1003509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The centromere is the chromosomal region in which the kinetochore is assembled to orchestrate chromosome segregation. It is defined by the presence of a histone H3 variant called Centromere Protein A (CENP-A) or CenH3. Propagation of centromere identity entails deposition of new CENP-A upon exit from mitosis in vertebrate cells. A group of 16 proteins that co-immunoprecipitate with CENP-A, the Constitutive Centromere Associated Network or CCAN, contribute to kinetochore assembly and function. For most of them it is still unclear how and when they are recruited to centromeres and whether they have a role in CENP-A deposition. Taking advantage of the Xenopus egg cell-free system, we have addressed these issues for CCAN proteins CENP-C, CENP-T and CENP-W. CENP-C recruitment occurs as soon as sperm DNA, containing CENP-A, is added to the egg extract, and continues after de novo incorporation of CENP-A in early interphase. In contrast, centromeric recruitment of CENP-T occurs in late interphase and precedes that of CENP-W, which occurs in mitosis. Unlike CENP-C, CENP-T and CENP-W do not participate in CENP-A deposition. However, like CENP-C, they play a major role in kinetochore assembly. Depletion of CENP-C results in reduced amount of CENP-T at centromeres, an effect more prominent in mitosis than in interphase. In spite of this, kinetochores can still be assembled under this condition although the recruitment of Ndc80 and Mis12 is decreased. Our results support the existence of 2 pathways for kinetochore assembly directed by CENP-C and CENP-T/W, which can be reconstituted in Xenopus egg extracts.
Collapse
Affiliation(s)
- Iva Krizaic
- a Chromosome Dynamics Group ; Molecular Oncology Program ; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | | | | | | | | | | |
Collapse
|
179
|
Verma G, Surolia N. The dimerization domain of PfCENP-C is required for its functions as a centromere protein in human malaria parasite Plasmodium falciparum. Malar J 2014; 13:475. [PMID: 25476240 PMCID: PMC4295259 DOI: 10.1186/1475-2875-13-475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/30/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The conserved centromere-associated proteins, CENH3 (or CENP-A) and CENP-C are indispensable for the functional centromere-kinetochore assembly, chromosome segregation, cell cycle progression, and viability. The presence and functions of centromere proteins in Plasmodium falciparum are not well studied. Identification of PfCENP-C, an inner kinetochore protein (the homologue of human CENP-C) and its co-localization with PfCENH3 was recently reported. This study aims to decipher the functions of inner kinetochore protein, PfCENP-C as a centromere protein in P. falciparum. METHODS Bio-informatic tools were employed to demarcate the two conserved domains of PfCENP-C, and the functions of PfCENP-C domains were demonstrated by functional complementation assays in the temperature sensitive (TS) mutant strains (mif2-3 and mif2-2) of Saccharomyces cerevisiae with MIF2p (the yeast homologue of CENP-C) loss-of-function. By site-directed mutagenesis, the key residues essential for PfCENP-C functions were determined. The chromatin immunoprecipitation was carried out to determine the in vivo binding of PfCENP-C to the Plasmodium centromeres and the in vivo interactions of PfCENP-C with PfCENH3, and mitotic spindles were shown by co-immunopreciptation experiments. RESULTS The studies demonstrate that the motif and the dimerization domain of PfCENP-C is able to functionally complement MIF2p functions. The essential role of some of the key residues: F1993, F1996 and Y2069 within the PfCENP-C dimerization domain in mediating its functions and maintenance of mitotic spindle integrity is evident from this study. The pull-down assays show the association of PfCENP-C with PfCENH3 and mitotic spindles. The ChIP-PCR experiments confirm PfCENP-C-enriched Plasmodium centromeres. These studies thus provide an insight into the roles of this inner kinetochore protein and establish that the centromere proteins are evolutionary conserved in the parasite. CONCLUSIONS PfCENP-C is a true CENP-C homologue in P. falciparum which binds to the centromeric DNA and its dimerization domain is essential for its in vivo functions as a centromere protein. The identification and functional characterization of the P. falciparum centromeric proteins will provide mechanistic insights into some of the mitotic events that occur during the chromosome segregation in human malaria parasite, P. falciparum.
Collapse
Affiliation(s)
- Garima Verma
- Molecular Parasitology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, 560064 India
| | - Namita Surolia
- Molecular Parasitology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, 560064 India
| |
Collapse
|
180
|
Westhorpe FG, Straight AF. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 2014; 7:a015818. [PMID: 25414369 DOI: 10.1101/cshperspect.a015818] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fundamental challenge for the survival of all organisms is maintaining the integrity of the genome in all cells. Cells must therefore segregate their replicated genome equally during each cell division. Eukaryotic organisms package their genome into a number of physically distinct chromosomes, which replicate during S phase and condense during prophase of mitosis to form paired sister chromatids. During mitosis, cells form a physical connection between each sister chromatid and microtubules of the mitotic spindle, which segregate one copy of each chromatid to each new daughter cell. The centromere is the DNA locus on each chromosome that creates the site of this connection. In this review, we present a brief history of centromere research and discuss our current knowledge of centromere establishment, maintenance, composition, structure, and function in mitosis.
Collapse
Affiliation(s)
- Frederick G Westhorpe
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
181
|
Cazaux B, Catalan J, Claude J, Britton-Davidian J. Non-random occurrence of Robertsonian translocations in the house mouse (Mus musculus domesticus): is it related to quantitative variation in the minor satellite? Cytogenet Genome Res 2014; 144:124-30. [PMID: 25401386 DOI: 10.1159/000368861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
The house mouse, Mus musculus domesticus, shows extraordinary chromosomal diversity driven by fixation of Robertsonian (Rb) translocations. The high frequency of this rearrangement, which involves the centromeric regions, has been ascribed to the architecture of the satellite sequence (high quantity and homogeneity). This promotes centromere-related translocations through unequal recombination and gene conversion. A characteristic feature of Rb variation in this subspecies is the non-random contribution of different chromosomes to the translocation frequency, which, in turn, depends on the chromosome size. Here, the association between satellite quantity and Rb frequency was tested by PRINS of the minor satellite which is the sequence involved in the translocation breakpoints. Five chromosomes with different translocation frequencies were selected and analyzed among wild house mice from 8 European localities. Using a relative quantitative measurement per chromosome, the analysis detected a large variability in signal size most of which was observed between individuals and/or localities. The chromosomes differed significantly in the quantity of the minor satellite, but these differences were not correlated with their translocation frequency. However, the data uncovered a marginally significant correlation between the quantity of the minor satellite and chromosome size. The implications of these results on the evolution of the chromosomal architecture in the house mouse are discussed.
Collapse
Affiliation(s)
- Benoîte Cazaux
- Institut des Sciences de l'Evolution, Université Montpellier 2, Montpellier, France
| | | | | | | |
Collapse
|
182
|
Filipescu D, Müller S, Almouzni G. Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annu Rev Cell Dev Biol 2014; 30:615-46. [DOI: 10.1146/annurev-cellbio-100913-013311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris, F-75248 France; , ,
| | | | | |
Collapse
|
183
|
Abstract
The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-A(Cnp1) in fission yeast results in the assembly of CENP-A(Cnp1) at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-A(Cnp1) exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-A(Cnp1) overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-A(cnp1) is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-A(cnp1) results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.
Collapse
|
184
|
Lee S, Bolanos-Garcia VM. The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation. Front Physiol 2014; 5:368. [PMID: 25324779 PMCID: PMC4179342 DOI: 10.3389/fphys.2014.00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/07/2014] [Indexed: 11/13/2022] Open
Abstract
The control of chromosome segregation relies on the spindle assembly checkpoint (SAC), a complex regulatory system that ensures the high fidelity of chromosome segregation in higher organisms by delaying the onset of anaphase until each chromosome is properly bi-oriented on the mitotic spindle. Central to this process is the establishment of multiple yet specific protein-protein interactions in a narrow time-space window. Here we discuss the highly dynamic nature of multi-protein complexes that control chromosome segregation in which an intricate network of weak but cooperative interactions modulate signal amplification to ensure a proper SAC response. We also discuss the current structural understanding of the communication between the SAC and the kinetochore; how transient interactions can regulate the assembly and disassembly of the SAC as well as the challenges and opportunities for the definition and the manipulation of the flow of information in SAC signaling.
Collapse
Affiliation(s)
- Semin Lee
- Center for Biomedical Informatics, Harvard Medical School, Harvard University Boston, MA, USA
| | - Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University Oxford, UK
| |
Collapse
|
185
|
Mateo L, González J. Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins. Genome Biol Evol 2014; 6:2008-16. [PMID: 25062917 PMCID: PMC4231638 DOI: 10.1093/gbe/evu153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 01/03/2023] Open
Abstract
The centromere is a chromatin region that is required for accurate inheritance of eukaryotic chromosomes during cell divisions. Among the different centromere-associated proteins (CENP) identified, CENP-B has been independently domesticated from a pogo-like transposase twice: Once in mammals and once in fission yeast. Recently, a third independent domestication restricted to holocentric lepidoptera has been described. In this work, we take advantage of the high-quality genome sequence and the wealth of functional information available for Drosophila melanogaster to further investigate the possibility of additional independent domestications of pogo-like transposases into host CENP-B related proteins. Our results showed that CENP-B related genes are not restricted to holocentric insects. Furthermore, we showed that at least three independent domestications of pogo-like transposases have occurred in metazoans. Our results highlight the importance of transposable elements as raw material for the recurrent evolution of important cellular functions.
Collapse
Affiliation(s)
- Lidia Mateo
- Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
186
|
The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 2014; 123:529-44. [PMID: 25053180 DOI: 10.1007/s00412-014-0477-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/01/2023]
Abstract
Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.
Collapse
|
187
|
McKinley KL, Cheeseman IM. Polo-like kinase 1 licenses CENP-A deposition at centromeres. Cell 2014; 158:397-411. [PMID: 25036634 PMCID: PMC4192726 DOI: 10.1016/j.cell.2014.06.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/28/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
Abstract
To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proven elusive. Here, we identify polo-like kinase 1 (Plk1) as a centromere-localized regulator required to initiate CENP-A deposition in human cells. We demonstrate that faithful CENP-A deposition requires integrated signals from Plk1 and cyclin-dependent kinase (CDK), with Plk1 promoting the localization of the key CENP-A deposition factor, the Mis18 complex, and CDK inhibiting Mis18 complex assembly. By bypassing these regulated steps, we uncoupled CENP-A deposition from cell-cycle progression, resulting in mitotic defects. Thus, CENP-A deposition is controlled by a two-step regulatory paradigm comprised of Plk1 and CDK that is crucial for genomic integrity.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
188
|
Bodor DL, Mata JF, Sergeev M, David AF, Salimian KJ, Panchenko T, Cleveland DW, Black BE, Shah JV, Jansen LE. The quantitative architecture of centromeric chromatin. eLife 2014; 3:e02137. [PMID: 25027692 PMCID: PMC4091408 DOI: 10.7554/elife.02137] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The centromere, responsible for chromosome segregation during mitosis, is epigenetically defined by CENP-A containing chromatin. The amount of centromeric CENP-A has direct implications for both the architecture and epigenetic inheritance of centromeres. Using complementary strategies, we determined that typical human centromeres contain ∼400 molecules of CENP-A, which is controlled by a mass-action mechanism. This number, despite representing only ∼4% of all centromeric nucleosomes, forms a ∼50-fold enrichment to the overall genome. In addition, although pre-assembled CENP-A is randomly segregated during cell division, this amount of CENP-A is sufficient to prevent stochastic loss of centromere function and identity. Finally, we produced a statistical map of CENP-A occupancy at a human neocentromere and identified nucleosome positions that feature CENP-A in a majority of cells. In summary, we present a quantitative view of the centromere that provides a mechanistic framework for both robust epigenetic inheritance of centromeres and the paucity of neocentromere formation. DOI:http://dx.doi.org/10.7554/eLife.02137.001 The genetic information in a cell is packed into structures called chromosomes. These contain strands of DNA wrapped around proteins called histones, which helps the long DNA chains to fit inside the relatively small nucleus of the cell. When a cell divides, it is important that both of the new cells contain all of the genetic information found in the parent cell. Therefore, the chromosomes duplicate during cell division, with the two copies held together at a single region of the chromosome called the centromere. The centromere then recruits and coordinates the molecular machinery that separates the two copies into different cells. Centromeres are inherited in an epigenetic manner. This means that there is no specific DNA sequence that defines the location of this structure on the chromosomes. Rather, a special type of histone, called CENP-A, is involved in defining its location. Bodor et al. use multiple techniques to show that human centromeres normally contain around 400 molecules of CENP-A, and that this number is crucial for ensuring that centromeres form in the right place. Interestingly, only a minority of the CENP-A molecules are located at centromeres; yet this is more than at any other region of the chromosome. This explains why centromeres are only formed at a single position on each chromosome. When the chromosomes separate, the CENP-A molecules at the centromere are randomly divided between the two copies. In this way memory of the centromere location is maintained. If the number of copies of CENP-A inherited by one of the chromosomes drops below a threshold value, a centromere will not form. However, Bodor et al. found that the number of CENP-A molecules in a centromere is large enough, not only to support the formation of the centromere structure, but also to keep it above the threshold value in nearly all cases. This threshold is also high enough to make it unlikely that a centromere will form in the wrong place because of a random fluctuation in the number of CENP-A molecules. Therefore, the number of CENP-A molecules is crucial for controlling both the formation and the inheritance of the centromere. DOI:http://dx.doi.org/10.7554/eLife.02137.002
Collapse
Affiliation(s)
- Dani L Bodor
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - João F Mata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Mikhail Sergeev
- Department of Systems Biology, Harvard Medical School, Boston, United States Renal Division, Brigham and Women's Hospital, Boston, United States
| | | | - Kevan J Salimian
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Tanya Panchenko
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, United States Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School, Boston, United States Renal Division, Brigham and Women's Hospital, Boston, United States
| | | |
Collapse
|
189
|
Müller S, Montes de Oca R, Lacoste N, Dingli F, Loew D, Almouzni G. Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading. Cell Rep 2014; 8:190-203. [PMID: 25001279 DOI: 10.1016/j.celrep.2014.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 06/01/2014] [Indexed: 01/20/2023] Open
Abstract
Centromeres, epigenetically defined by the presence of the histone H3 variant CenH3, are essential for ensuring proper chromosome segregation. In mammals, centromeric CenH3(CENP-A) deposition requires its dedicated chaperone HJURP and occurs during telophase/early G1. We find that the cell-cycle-dependent recruitment of HJURP to centromeres depends on its timely phosphorylation controlled via cyclin-dependent kinases. A nonphosphorylatable HJURP mutant localizes prematurely to centromeres in S and G2 phase. This unregulated targeting causes a premature loading of CenH3(CENP-A) at centromeres, and cell-cycle delays ensue. Once recruited to centromeres, HJURP functions to promote CenH3(CENP-A) deposition by a mechanism involving a unique DNA-binding domain. With our findings, we propose a model wherein (1) the phosphorylation state of HJURP controls its centromeric recruitment in a cell-cycle-dependent manner, and (2) HJURP binding to DNA is a mechanistic determinant in CenH3(CENP-A) loading.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Rocio Montes de Oca
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Nicolas Lacoste
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Paris 75248, France; Laboratory of Proteomic Mass Spectrometry, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Paris 75248, France; Laboratory of Proteomic Mass Spectrometry, 75248 Paris Cedex 05, France
| | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France.
| |
Collapse
|
190
|
Corrêa IR. Live-cell reporters for fluorescence imaging. Curr Opin Chem Biol 2014; 20:36-45. [PMID: 24835389 DOI: 10.1016/j.cbpa.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/14/2023]
Abstract
Advances in the development of new fluorescent reporters and imaging techniques have revolutionized our ability to directly visualize biological processes in living systems. Real-time analysis of protein localization, dynamics, and interactions has been made possible by site-specific protein labeling with custom designed probes. This review outlines some of the most recent advances in the design and application of live-cell imaging probes, with a particular focus on SNAP-tag technology. Specific examples illustrating applications in superresolution and single-molecule imaging, protein trafficking and recycling, and protein-protein interactions are presented.
Collapse
Affiliation(s)
- Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
191
|
Subramanian L, Toda NRT, Rappsilber J, Allshire RC. Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly. Open Biol 2014; 4:140043. [PMID: 24789708 PMCID: PMC4043117 DOI: 10.1098/rsob.140043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CENP-A chromatin forms the foundation for kinetochore assembly. Replication-independent incorporation of CENP-A at centromeres depends on its chaperone HJURPScm3, and Mis18 in vertebrates and fission yeast. The recruitment of Mis18 and HJURPScm3 to centromeres is cell cycle regulated. Vertebrate Mis18 associates with Mis18BP1KNL2, which is critical for the recruitment of Mis18 and HJURPScm3. We identify two novel fission yeast Mis18-interacting proteins (Eic1 and Eic2), components of the Mis18 complex. Eic1 is essential to maintain Cnp1CENP-A at centromeres and is crucial for kinetochore integrity; Eic2 is dispensable. Eic1 also associates with Fta7CENP-Q/Okp1, Cnl2Nkp2 and Mal2CENP-O/Mcm21, components of the constitutive CCAN/Mis6/Ctf19 complex. No Mis18BP1KNL2 orthologue has been identified in fission yeast, consequently it remains unknown how the key Cnp1CENP-A loading factor Mis18 is recruited. Our findings suggest that Eic1 serves a function analogous to that of Mis18BP1KNL2, thus representing the functional counterpart of Mis18BP1KNL2 in fission yeast that connects with a module within the CCAN/Mis6/Ctf19 complex to allow the temporally regulated recruitment of the Mis18/Scm3HJURP Cnp1CENP-A loading factors. The novel interactions identified between CENP-A loading factors and the CCAN/Mis6/Ctf19 complex are likely to also contribute to CENP-A maintenance in other organisms.
Collapse
Affiliation(s)
- Lakxmi Subramanian
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
192
|
A network of players in H3 histone variant deposition and maintenance at centromeres. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:241-50. [DOI: 10.1016/j.bbagrm.2013.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
|
193
|
Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nat Struct Mol Biol 2014; 21:236-43. [PMID: 24531659 DOI: 10.1038/nsmb.2776] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/22/2014] [Indexed: 01/06/2023]
Abstract
Functional centromeres are essential for proper cell division. Centromeres are established largely by epigenetic processes resulting in incorporation of the histone H3 variant CENP-A. Here, we demonstrate the direct involvement of H2B monoubiquitination, mediated by RNF20 in humans or Brl1 in Schizosaccharomyces pombe, in centromeric chromatin maintenance. Monoubiquinated H2B (H2Bub1) is needed for this maintenance, promoting noncoding transcription, centromere integrity and accurate chromosomal segregation. A transient pulse of centromeric H2Bub1 leads to RNA polymerase II-mediated transcription of the centromere's central domain, coupled to decreased H3 stability. H2Bub1-deficient cells have centromere cores that, despite their intact centromeric heterochromatin barriers, exhibit characteristics of heterochromatin, such as silencing histone modifications, reduced nucleosome turnover and reduced levels of transcription. In the H2Bub1-deficient cells, centromere functionality is hampered, thus resulting in unequal chromosome segregation. Therefore, centromeric H2Bub1 is essential for maintaining active centromeric chromatin.
Collapse
|
194
|
Dornblut C, Quinn N, Monajambashi S, Prendergast L, van Vuuren C, Münch S, Deng W, Leonhardt H, Cardoso MC, Hoischen C, Diekmann S, Sullivan KF. A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle. Open Biol 2014; 4:130229. [PMID: 24522885 PMCID: PMC3938055 DOI: 10.1098/rsob.130229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional identity of centromeres arises from a set of specific nucleoprotein particle subunits of the centromeric chromatin fibre. These include CENP-A and histone H3 nucleosomes and a novel nucleosome-like complex of CENPs -T, -W, -S and -X. Fluorescence cross-correlation spectroscopy and Förster resonance energy transfer (FRET) revealed that human CENP-S and -X exist principally in complex in soluble form and retain proximity when assembled at centromeres. Conditional labelling experiments show that they both assemble de novo during S phase and G2, increasing approximately three- to fourfold in abundance at centromeres. Fluorescence recovery after photobleaching (FRAP) measurements documented steady-state exchange between soluble and assembled pools, with CENP-X exchanging approximately 10 times faster than CENP-S (t1/2 ∼ 10 min versus 120 min). CENP-S binding to sites of DNA damage was quite distinct, with a FRAP half-time of approximately 160 s. Fluorescent two-hybrid analysis identified CENP-T as a uniquely strong CENP-S binding protein and this association was confirmed by FRET, revealing a centromere-bound complex containing CENP-S, CENP-X and CENP-T in proximity to histone H3 but not CENP-A. We propose that deposition of the CENP-T/W/S/X particle reveals a kinetochore-specific chromatin assembly pathway that functions to switch centromeric chromatin to a mitosis-competent state after DNA replication. Centromeres shuttle between CENP-A-rich, replication-competent and H3-CENP-T/W/S/X-rich mitosis-competent compositions in the cell cycle.
Collapse
Affiliation(s)
- Carsten Dornblut
- Molecular Biology, FLI, Beutenbergstrasse 11, Jena 07745, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Wang J, Liu X, Dou Z, Chen L, Jiang H, Fu C, Fu G, Liu D, Zhang J, Zhu T, Fang J, Zang J, Cheng J, Teng M, Ding X, Yao X. Mitotic regulator Mis18β interacts with and specifies the centromeric assembly of molecular chaperone holliday junction recognition protein (HJURP). J Biol Chem 2014; 289:8326-36. [PMID: 24519934 DOI: 10.1074/jbc.m113.529958] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18β, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18β binding was mapped to residues 437-460. Depletion of Mis18β by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18β in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18β, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18β-HJURP interaction.
Collapse
Affiliation(s)
- Jianyu Wang
- From the Hefei National Laboratory of Physical Sciences at Microscale, University of Science and Technology of China School of Life Science, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Graham AN, Kalitsis P. Chromosome Y centromere array deletion leads to impaired centromere function. PLoS One 2014; 9:e86875. [PMID: 24466276 PMCID: PMC3899357 DOI: 10.1371/journal.pone.0086875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
The centromere is an essential chromosomal structure that is required for the faithful distribution of replicated chromosomes to daughter cells. Defects in the centromere can compromise the stability of chromosomes resulting in segregation errors. We have characterised the centromeric structure of the spontaneous mutant mouse strain, BALB/cWt, which exhibits a high rate of Y chromosome instability. The Y centromere DNA array shows a de novo interstitial deletion and a reduction in the level of the foundation centromere protein, CENP-A, when compared to the non-deleted centromere array in the progenitor strain. These results suggest there is a lower threshold limit of centromere size that ensures full kinetochore function during cell division.
Collapse
Affiliation(s)
- Alison N. Graham
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Paul Kalitsis
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
197
|
Walkiewicz MP, Dimitriadis EK, Dalal Y. CENP-A octamers do not confer a reduction in nucleosome height by AFM. Nat Struct Mol Biol 2014; 21:2-3. [PMID: 24389541 PMCID: PMC6756849 DOI: 10.1038/nsmb.2742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Marcin P Walkiewicz
- National Cancer Institute, National Institutes of Health,
Bethesda Maryland, USA
| | - Emilios K Dimitriadis
- National Institute for BioImaging and BioEngineering,
National Institutes of Health, Bethesda, Maryland, USA
| | - Yamini Dalal
- National Cancer Institute, National Institutes of Health,
Bethesda Maryland, USA
| |
Collapse
|
198
|
Scott KC, Sullivan BA. Neocentromeres: a place for everything and everything in its place. Trends Genet 2013; 30:66-74. [PMID: 24342629 DOI: 10.1016/j.tig.2013.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 01/07/2023]
Abstract
Centromeres are essential for chromosome inheritance and genome stability. Centromeric proteins, including the centromeric histone centromere protein A (CENP-A), define the site of centromeric chromatin and kinetochore assembly. In many organisms, centromeres are located in or near regions of repetitive DNA. However, some atypical centromeres spontaneously form on unique sequences. These neocentromeres, or new centromeres, were first identified in humans, but have since been described in other organisms. Neocentromeres are functionally and structurally similar to endogenous centromeres, but lack the added complication of underlying repetitive sequences. Here, we discuss recent studies in chicken and fungal systems where genomic engineering can promote neocentromere formation. These studies reveal key genomic and epigenetic factors that support de novo centromere formation in eukaryotes.
Collapse
Affiliation(s)
- Kristin C Scott
- Institute for Genome Sciences & Policy, Duke University, DUMC 3382, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Division of Human Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Division of Human Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
199
|
Abstract
Faithful genome segregation depends on the functions of the eukaryotic centromere, which is characterized by the histone variant CENP-A. Gene replacement in human cells and fission yeast has now been used to show how CENP-A biochemically encodes centromere identity, as well as reveal an unexpected role for CENP-B in centromere function.
Collapse
Affiliation(s)
- Bradley T French
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305-5307, USA
| | | |
Collapse
|
200
|
Catania S, Allshire RC. Anarchic centromeres: deciphering order from apparent chaos. Curr Opin Cell Biol 2013; 26:41-50. [PMID: 24529245 PMCID: PMC3978670 DOI: 10.1016/j.ceb.2013.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 12/16/2022]
Abstract
Specialised chromatin in which canonical histone H3 is replaced by CENP-A, an H3 related protein, is a signature of active centromeres and provides the foundation for kinetochore assembly. The location of centromeres is not fixed since centromeres can be inactivated and new centromeres can arise at novel locations independently of specific DNA sequence elements. Therefore, the establishment and maintenance of CENP-A chromatin and kinetochores provide an exquisite example of genuine epigenetic regulation. The composition of CENP-A nucleosomes is contentious but several studies suggest that, like regular H3 particles, they are octamers. Recent analyses have provided insight into how CENP-A is recognised and propagated, identified roles for post-translational modifications and dissected how CENP-A recruits other centromere proteins to mediate kinetochore assembly.
Collapse
Affiliation(s)
- Sandra Catania
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, 6.34 Swann Building, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, 6.34 Swann Building, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|