151
|
Abstract
We found that hundreds of years of selection by humans have produced sport-hunting breeds of superior speed and athleticism through strong selection on multiple genes relating to cardiovascular, muscle, and neuronal functions. We further substantiated these findings by showing that genes under selection significantly enhanced athleticism, as measured by racing speed and obstacle course success, using standardized measures from dogs competing in national competitions. Overall these results reveal both the evolutionary processes and the genetic pathways putatively involved in athletic success. Modern dogs are distinguished among domesticated species by the vast breadth of phenotypic variation produced by strong and consistent human-driven selective pressure. The resulting breeds reflect the development of closed populations with well-defined physical and behavioral attributes. The sport-hunting dog group has long been employed in assistance to hunters, reflecting strong behavioral pressures to locate and pursue quarry over great distances and variable terrain. Comparison of whole-genome sequence data between sport-hunting and terrier breeds, groups at the ends of a continuum in both form and function, reveals that genes underlying cardiovascular, muscular, and neuronal functions are under strong selection in sport-hunting breeds, including ADRB1, TRPM3, RYR3, UTRN, ASIC3, and ROBO1. We also identified an allele of TRPM3 that was significantly associated with increased racing speed in Whippets, accounting for 11.6% of the total variance in racing performance. Finally, we observed a significant association of ROBO1 with breed-specific accomplishments in competitive obstacle course events. These results provide strong evidence that sport-hunting breeds have been adapted to their occupations by improved endurance, cardiac function, blood flow, and cognitive performance, demonstrating how strong behavioral selection alters physiology to create breeds with distinct capabilities.
Collapse
|
152
|
Pascual-Garrido C, Guilak F, Rai MF, Harris MD, Lopez MJ, Todhunter RJ, Clohisy JC. Canine hip dysplasia: A natural animal model for human developmental dysplasia of the hip. J Orthop Res 2018; 36:1807-1817. [PMID: 29227567 DOI: 10.1002/jor.23828] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/29/2017] [Indexed: 02/04/2023]
Abstract
Developmental dysplasia of the hip (DDH) in humans is a common condition that is associated with hip pain, functional limitations, and secondary osteoarthritis (OA). Surgical treatment of DDH has improved in the last decade, allowing excellent outcomes at short- and mid-term follow-up. Still, the etiology, mechanobiology, and pathology underlying this disease are not well understood. A pre-clinical animal model of DDH could help advance the field with a deeper understanding of specific pathways that initiate hip joint degeneration secondary to abnormal biomechanics. An animal model would also facilitate different interventional treatments that could be tested in a rigorous and controlled environment. The dog model exhibits several important characteristics that make it valuable as a pre-clinical animal model for human DDH. Dogs are naturally prone to develop canine hip dysplasia (CHD), which is treated in a similar manner as in humans. Comparable to human DDH, CHD is considered a pre-OA disease; if left untreated it will progress to OA. However, progression to OA is significantly faster in dogs than humans, with progression to OA within 1-2 years of age, associated with their shorter life span compared to humans. Animal studies could potentially reveal the underlying biochemical pathway(s), which can inform refined treatment modalities and provide opportunities for new treatment and prevention targets. Herein, we review the similarities and differences between the two species and outline the argument supporting CHD as an appropriate pre-clinical model of human DDH. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1807-1817, 2018.
Collapse
Affiliation(s)
- Cecilia Pascual-Garrido
- Department of Orthopaedic Surgery, School of Medicine, Musculoskeletal Research Center, Washington University, 660 S. Euclid, Campus Box 8233, Saint Louis, Missouri, 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, School of Medicine, Musculoskeletal Research Center, Washington University, 660 S. Euclid, Campus Box 8233, Saint Louis, Missouri, 63110.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - M Farooq Rai
- Department of Orthopaedic Surgery, School of Medicine, Musculoskeletal Research Center, Washington University, 660 S. Euclid, Campus Box 8233, Saint Louis, Missouri, 63110.,Department of Cell Biology & Physiology, School of Medicine, Washington University, Saint Louis, Missouri
| | - Michael D Harris
- Program in Physical Therapy, School of Medicine, Washington University, Saint Louis, Missouri
| | - Mandi J Lopez
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rory J Todhunter
- College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - John C Clohisy
- Department of Orthopaedic Surgery, School of Medicine, Musculoskeletal Research Center, Washington University, 660 S. Euclid, Campus Box 8233, Saint Louis, Missouri, 63110
| |
Collapse
|
153
|
Collaborating genomic, transcriptomic and microbiomic alterations lead to canine extreme intestinal polyposis. Oncotarget 2018; 9:29162-29179. [PMID: 30018743 PMCID: PMC6044369 DOI: 10.18632/oncotarget.25646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Extreme intestinal polyposis in pet dogs has not yet been reported in literature. We identified a dog patient who developed numerous intestinal polyps, with the severity resembling human classic familial adenomatous polyposis (FAP), except the jejunum-ileum junction being the most polyp-dense. We investigated this dog, in comparison with 22 other dogs with spontaneous intestinal tumors but no severe polyposis, and with numerous published human cancers. We found, not APC mutation, but three other alteration pathways as likely reasons of this canine extreme polyposis. First, somatic truncation mutation W411X of FBXW7, a component of an E3 ubiquitin ligase, over-activates MYC and cell cycle-promoting network, accelerating crypt cell proliferation. Second, genes of protein trafficking and localization are downregulated, likely associated with germline mutation G406D of STAMBPL1, a K63-deubiquitinase, and MYC network activation. This inhibits epithelial apical-basolateral polarity establishment, preventing crypt cell differentiation. Third, Bacteroides uniformis, a commensal gut anaerobe, thrives and expresses abundantly thioredoxin and nitroreductase. These bacterial products could reduce oxidative stress linked to host germline mutation R51X of CYB5RL, a cytochrome b5 reductase homologue, decreasing cell death. Our work emphasizes the close collaboration of alterations across the genome, transcriptome and microbiome in promoting tumorigenesis.
Collapse
|
154
|
Genetic diversity and population structure of African village dogs based on microsatellite and immunity-related molecular markers. PLoS One 2018; 13:e0199506. [PMID: 29940023 PMCID: PMC6016929 DOI: 10.1371/journal.pone.0199506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/10/2018] [Indexed: 11/19/2022] Open
Abstract
The village and street dogs represent a unique model of canine populations. In the absence of selective breeding and veterinary care, they are subject mostly to natural selection. Their analyses contribute to understanding general mechanisms governing the genetic diversity, evolution and adaptation. In this study, we analyzed the genetic diversity and population structure of African village dogs living in villages in three different geographical areas in Northern Kenya. Data obtained for neutral microsatellite molecular markers were compared with those computed for potentially non-neutral markers of candidate immunity-related genes. The neutral genetic diversity was similar to other comparable village dog populations studied so far. The overall genetic diversity in microsatellites was higher than the diversity of European pure breeds, but it was similar to the range of diversity observed in a group composed of many European breeds, indicating that the African population has maintained a large proportion of the genetic diversity of the canine species as a whole. Microsatellite marker diversity indicated that the entire population is subdivided into three genetically distinct, although closely related subpopulations. This genetical partitioning corresponded to their geographical separation and the observed gene flow well correlated with the communication patterns among the three localities. In contrast to neutral microsatellites, the genetic diversity in immunity-related candidate SNP markers was similar across all three subpopulations and to the European group. It seems that the genetic structure of this particular population of Kenyan village dogs is mostly determined by geographical and anthropogenic factors influencing the gene flow between various subpopulations rather than by biological factors, such as genetic contribution of original migrating populations and/or the pathogen-mediated selection. On the other hand, the study of oldest surviving dogs suggested a biological mechanism, i.e. a possible advantage of the overal heterozygosity marked by the the microsatellite loci analyzed.
Collapse
|
155
|
Kim JM, Santure AW, Barton HJ, Quinn JL, Cole EF, Visser ME, Sheldon BC, Groenen MAM, van Oers K, Slate J. A high-density SNP chip for genotyping great tit (Parus major) populations and its application to studying the genetic architecture of exploration behaviour. Mol Ecol Resour 2018; 18:877-891. [PMID: 29573186 DOI: 10.1111/1755-0998.12778] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
High-density SNP microarrays ("SNP chips") are a rapid, accurate and efficient method for genotyping several hundred thousand polymorphisms in large numbers of individuals. While SNP chips are routinely used in human genetics and in animal and plant breeding, they are less widely used in evolutionary and ecological research. In this article, we describe the development and application of a high-density Affymetrix Axiom chip with around 500,000 SNPs, designed to perform genomics studies of great tit (Parus major) populations. We demonstrate that the per-SNP genotype error rate is well below 1% and that the chip can also be used to identify structural or copy number variation. The chip is used to explore the genetic architecture of exploration behaviour (EB), a personality trait that has been widely studied in great tits and other species. No SNPs reached genomewide significance, including at DRD4, a candidate gene. However, EB is heritable and appears to have a polygenic architecture. Researchers developing similar SNP chips may note: (i) SNPs previously typed on alternative platforms are more likely to be converted to working assays; (ii) detecting SNPs by more than one pipeline, and in independent data sets, ensures a high proportion of working assays; (iii) allele frequency ascertainment bias is minimized by performing SNP discovery in individuals from multiple populations; and (iv) samples with the lowest call rates tend to also have the greatest genotyping error rates.
Collapse
Affiliation(s)
- J-M Kim
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Korea
| | - A W Santure
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - H J Barton
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK
| | - J L Quinn
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland
| | - E F Cole
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | | | - M E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - B C Sheldon
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - M A M Groenen
- Wageningen University and Research - Animal Breeding and Genomics, Wageningen, Netherlands
| | - K van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - J Slate
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
156
|
Edwards SM, Woolliams JA, Hickey JM, Blott SC, Clements DN, Sánchez-Molano E, Todhunter RJ, Wiener P. Joint Genomic Prediction of Canine Hip Dysplasia in UK and US Labrador Retrievers. Front Genet 2018; 9:101. [PMID: 29643866 PMCID: PMC5883867 DOI: 10.3389/fgene.2018.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/13/2018] [Indexed: 01/11/2023] Open
Abstract
Canine hip dysplasia, a debilitating orthopedic disorder that leads to osteoarthritis and cartilage degeneration, is common in several large-sized dog breeds and shows moderate heritability suggesting that selection can reduce prevalence. Estimating genomic breeding values require large reference populations, which are expensive to genotype for development of genomic prediction tools. Combining datasets from different countries could be an option to help build larger reference datasets without incurring extra genotyping costs. Our objective was to evaluate genomic prediction based on a combination of UK and US datasets of genotyped dogs with records of Norberg angle scores, related to canine hip dysplasia. Prediction accuracies using a single population were 0.179 and 0.290 for 1,179 and 242 UK and US Labrador Retrievers, respectively. Prediction accuracies changed to 0.189 and 0.260, with an increased bias of genomic breeding values when using a joint training set (biased upwards for the US population and downwards for the UK population). Our results show that in this study of canine hip dysplasia, little or no benefit was gained from using a joint training set as compared to using a single population as training set. We attribute this to differences in the genetic background of the two populations as well as the small sample size of the US dataset.
Collapse
Affiliation(s)
- Stefan M Edwards
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - John A Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - John M Hickey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Sarah C Blott
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Dylan N Clements
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Enrique Sánchez-Molano
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Rory J Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Pamela Wiener
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
157
|
Cui ZJ, Liu YM, Zhu Q, Xia J, Zhang HY. Exploring the pathogenesis of canine epilepsy using a systems genetics method and implications for anti-epilepsy drug discovery. Oncotarget 2018; 9:13181-13192. [PMID: 29568349 PMCID: PMC5862570 DOI: 10.18632/oncotarget.23719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a common neurological disorder in domestic dogs. However, its complex mechanism involves multiple genetic and environmental factors that make it challenging to identify the real pathogenic factors contributing to epilepsy, particularly for idiopathic epilepsy. Conventional genome-wide association studies (GWASs) can detect various genes associated with epilepsy, although they primarily detect the effects of single-site mutations in epilepsy while ignoring their interactions. In this study, we used a systems genetics method combining both GWAS and gene interactions and obtained 26 significantly mutated subnetworks. Among these subnetworks, seven genes were reported to be involved in neurological disorders. Combined with gene ontology enrichment analysis, we focused on 4 subnetworks that included traditional GWAS-neglected genes. Moreover, we performed a drug enrichment analysis for each subnetwork and identified significantly enriched candidate anti-epilepsy drugs using a hypergeometric test. We discovered 22 potential drug combinations that induced possible synergistic effects for epilepsy treatment, and one of these drug combinations has been confirmed in the Drug Combination database (DCDB) to have beneficial anti-epileptic effects. The method proposed in this study provides deep insight into the pathogenesis of canine epilepsy and implications for anti-epilepsy drug discovery.
Collapse
Affiliation(s)
- Ze-Jia Cui
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Ye-Mao Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Qiang Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Jingbo Xia
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| |
Collapse
|
158
|
Talenti A, Dreger DL, Frattini S, Polli M, Marelli S, Harris AC, Liotta L, Cocco R, Hogan AN, Bigi D, Caniglia R, Parker HG, Pagnacco G, Ostrander EA, Crepaldi P. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution. Ecol Evol 2018; 8:2911-2925. [PMID: 29531705 PMCID: PMC5838073 DOI: 10.1002/ece3.3842] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/27/2017] [Indexed: 01/16/2023] Open
Abstract
Through thousands of years of breeding and strong human selection, the dog (Canis lupus familiaris) exists today within hundreds of closed populations throughout the world, each with defined phenotypes. A singular geographic region with broad diversity in dog breeds presents an interesting opportunity to observe potential mechanisms of breed formation. Italy claims 14 internationally recognized dog breeds, with numerous additional local varieties. To determine the relationship among Italian dog populations, we integrated genetic data from 263 dogs representing 23 closed dog populations from Italy, seven Apennine gray wolves, and an established dataset of 161 globally recognized dog breeds, applying multiple genetic methods to characterize the modes by which breeds are formed within a single geographic region. Our consideration of each of five genetic analyses reveals a series of development events that mirror historical modes of breed formation, but with variations unique to the codevelopment of early dog and human populations. Using 142,840 genome-wide SNPs and a dataset of 1,609 canines, representing 182 breeds and 16 wild canids, we identified breed development routes for the Italian breeds that included divergence from common populations for a specific purpose, admixture of regional stock with that from other regions, and isolated selection of local stock with specific attributes.
Collapse
Affiliation(s)
- Andrea Talenti
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Dayna L. Dreger
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Stefano Frattini
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Michele Polli
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Stefano Marelli
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Alexander C. Harris
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Luigi Liotta
- Dipartimento di Scienze VeterinarieUniversity of MessinaMessinaItaly
| | - Raffaella Cocco
- Dipartimento di Medicina VeterinariaUniversity of SassariSassariItaly
| | - Andrew N. Hogan
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Daniele Bigi
- Dipartimento di Scienza e Tecnologie Agro‐AlimentariAlma Mater Studiorum University of BolognaBolognaItaly
| | - Romolo Caniglia
- Area per la Genetica della ConservazioneIstituto Superiore per la Protezione e la Ricerca AmbientaleOzzano dell'EmiliaBolognaItaly
| | - Heidi G. Parker
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Giulio Pagnacco
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Elaine A. Ostrander
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Paola Crepaldi
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| |
Collapse
|
159
|
Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel FS, Sahana G, Govignon-Gion A, Boitard S, Dolezal M, Pausch H, Brøndum RF, Bowman PJ, Thomsen B, Guldbrandtsen B, Lund MS, Servin B, Garrick DJ, Reecy J, Vilkki J, Bagnato A, Wang M, Hoff JL, Schnabel RD, Taylor JF, Vinkhuyzen AAE, Panitz F, Bendixen C, Holm LE, Gredler B, Hozé C, Boussaha M, Sanchez MP, Rocha D, Capitan A, Tribout T, Barbat A, Croiseau P, Drögemüller C, Jagannathan V, Vander Jagt C, Crowley JJ, Bieber A, Purfield DC, Berry DP, Emmerling R, Götz KU, Frischknecht M, Russ I, Sölkner J, Van Tassell CP, Fries R, Stothard P, Veerkamp RF, Boichard D, Goddard ME, Hayes BJ. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet 2018; 50:362-367. [PMID: 29459679 DOI: 10.1038/s41588-018-0056-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2018] [Indexed: 11/09/2022]
Abstract
Stature is affected by many polymorphisms of small effect in humans 1 . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10-8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP-seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.
Collapse
Affiliation(s)
- Aniek C Bouwman
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, the Netherlands
| | - Hans D Daetwyler
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Amanda J Chamberlain
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Carla Hurtado Ponce
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria, Australia
| | - Mehdi Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.,The Semex Alliance, Guelph, Ontario, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Simon Boitard
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Marlies Dolezal
- Platform of Bioinformatics and Statistics, University of Veterinary Medicine, Vienna, Austria
| | - Hubert Pausch
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan, Germany.,Animal Genomics, ETH Zurich, Zurich, Switzerland
| | - Rasmus F Brøndum
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Phil J Bowman
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Bo Thomsen
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet-Tolosan, France
| | - Dorian J Garrick
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Johanna Vilkki
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | | | - Min Wang
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Jesse L Hoff
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Anna A E Vinkhuyzen
- University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland, Australia.,University of Queensland, Queensland Brain Institute, St Lucia, Queensland, Australia
| | - Frank Panitz
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Christian Bendixen
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Lars-Erik Holm
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | | | - Chris Hozé
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France.,Allice, Paris, France
| | - Mekki Boussaha
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | | | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Aurelien Capitan
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France.,Allice, Paris, France
| | - Thierry Tribout
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Anne Barbat
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Pascal Croiseau
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | | | | | - Christy Vander Jagt
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | | | - Anna Bieber
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Deirdre C Purfield
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Ireland
| | - Reiner Emmerling
- Institute of Animal Breeding, Bavarian State Research Centre for Agriculture, Poing, Germany
| | - Kay-Uwe Götz
- Institute of Animal Breeding, Bavarian State Research Centre for Agriculture, Poing, Germany
| | | | | | - Johann Sölkner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Ruedi Fries
- Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan, Germany
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science/Livestock Gentec, University of Alberta, Edmonton, Alberta, Canada
| | - Roel F Veerkamp
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, the Netherlands
| | - Didier Boichard
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Mike E Goddard
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Hayes
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia. .,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
160
|
Parker HG, Dreger DL, Rimbault M, Davis BW, Mullen AB, Carpintero-Ramirez G, Ostrander EA. Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern Dog Breed Development. Cell Rep 2018; 19:697-708. [PMID: 28445722 DOI: 10.1016/j.celrep.2017.03.079] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 11/30/2022] Open
Abstract
There are nearly 400 modern domestic dog breeds with a unique histories and genetic profiles. To track the genetic signatures of breed development, we have assembled the most diverse dataset of dog breeds, reflecting their extensive phenotypic variation and heritage. Combining genetic distance, migration, and genome-wide haplotype sharing analyses, we uncover geographic patterns of development and independent origins of common traits. Our analyses reveal the hybrid history of breeds and elucidate the effects of immigration, revealing for the first time a suggestion of New World dog within some modern breeds. Finally, we used cladistics and haplotype sharing to show that some common traits have arisen more than once in the history of the dog. These analyses characterize the complexities of breed development, resolving longstanding questions regarding individual breed origination, the effect of migration on geographically distinct breeds, and, by inference, transfer of trait and disease alleles among dog breeds.
Collapse
Affiliation(s)
- Heidi G Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dayna L Dreger
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maud Rimbault
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra B Mullen
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gretchen Carpintero-Ramirez
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
161
|
Gumpinger AC, Roqueiro D, Grimm DG, Borgwardt KM. Methods and Tools in Genome-wide Association Studies. Methods Mol Biol 2018; 1819:93-136. [PMID: 30421401 DOI: 10.1007/978-1-4939-8618-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many traits, such as height, the response to a given drug, or the susceptibility to certain diseases are presumably co-determined by genetics. Especially in the field of medicine, it is of major interest to identify genetic aberrations that alter an individual's risk to develop a certain phenotypic trait. Addressing this question requires the availability of comprehensive, high-quality genetic datasets. The technological advancements and the decreasing cost of genotyping in the last decade led to an increase in such datasets. Parallel to and in line with this technological progress, an analysis framework under the name of genome-wide association studies was developed to properly collect and analyze these data. Genome-wide association studies aim at finding statistical dependencies-or associations-between a trait of interest and point-mutations in the DNA. The statistical models used to detect such associations are diverse, spanning the whole range from the frequentist to the Bayesian setting.Since genetic datasets are inherently high-dimensional, the search for associations poses not only a statistical but also a computational challenge. As a result, a variety of toolboxes and software packages have been developed, each implementing different statistical methods while using various optimizations and mathematical techniques to enhance the computations.This chapter is devoted to the discussion of widely used methods and tools in genome-wide association studies. We present the different statistical models and the assumptions on which they are based, explain peculiarities of the data that have to be accounted for and, most importantly, introduce commonly used tools and software packages for the different tasks in a genome-wide association study, complemented with examples for their application.
Collapse
Affiliation(s)
- Anja C Gumpinger
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Damian Roqueiro
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominik G Grimm
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Karsten M Borgwardt
- Machine Learning and Computational Biology Lab, D-BSSE, ETH Zurich, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
162
|
Parker HG, Harris A, Dreger DL, Davis BW, Ostrander EA. The bald and the beautiful: hairlessness in domestic dog breeds. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0488. [PMID: 27994129 PMCID: PMC5182420 DOI: 10.1098/rstb.2015.0488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2016] [Indexed: 11/12/2022] Open
Abstract
An extraordinary amount of genomic variation is contained within the chromosomes of domestic dogs, manifesting as dramatic differences in morphology, behaviour and disease susceptibility. Morphology, in particular, has been a topic of enormous interest as biologists struggle to understand the small window of dog domestication from wolves, and the division of dogs into pure breeding, closed populations termed breeds. Many traits related to morphology, including body size, leg length and skull shape, have been under selection as part of the standard descriptions for the nearly 400 breeds recognized worldwide. Just as important, however, are the minor traits that have undergone selection by fanciers and breeders to define dogs of a particular appearance, such as tail length, ear position, back arch and variation in fur (pelage) growth patterns. In this paper, we both review and present new data for traits associated with pelage including fur length, curl, growth, shedding and even the presence or absence of fur. Finally, we report the discovery of a new gene associated with the absence of coat in the American Hairless Terrier breed.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dayna L Dreger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian W Davis
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
163
|
Leal RO, Simpson K, Fine M, Husson JC, Hernandez J. Granulomatous colitis: more than a canine disease? A case of Escherichia coli-associated granulomatous colitis in an adult cat. JFMS Open Rep 2017; 3:2055116917731168. [PMID: 28955479 PMCID: PMC5607922 DOI: 10.1177/2055116917731168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Case summary This report describes a 4-year-old cat with chronic intermittent haematochezia and faecal incontinence of 7 months’ duration. Investigation revealed severe colonic multifocal mucosal ulcerations and infiltration of the mucosal lamina propria by large numbers of periodic acid–Schiff-positive macrophages. Fluorescence in situ hybridisation analysis of colonic biopsies revealed multifocal clusters of intracellular Escherichia coli. Treatment with fluoroquinolones for 6 weeks led to a complete resolution of clinical signs. Relevance and novel information The findings reveal that mucosally invasive E coli can also be associated with granulomatous colitis in cats and indicate the need for diagnostic testing of mucosal samples for E coli and other infectious agents.
Collapse
Affiliation(s)
| | - Kenny Simpson
- College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
164
|
Ostrander EA, Wayne RK, Freedman AH, Davis BW. Demographic history, selection and functional diversity of the canine genome. Nat Rev Genet 2017; 18:705-720. [DOI: 10.1038/nrg.2017.67] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
165
|
Mozzi A, Pontremoli C, Sironi M. Genetic susceptibility to infectious diseases: Current status and future perspectives from genome-wide approaches. INFECTION GENETICS AND EVOLUTION 2017; 66:286-307. [PMID: 28951201 PMCID: PMC7106304 DOI: 10.1016/j.meegid.2017.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied to identify genetic factors that affect complex diseases or traits. Presently, the GWAS Catalog includes > 2800 human studies. Of these, only a minority have investigated the susceptibility to infectious diseases or the response to therapies for the treatment or prevention of infections. Despite their limited application in the field, GWASs have provided valuable insights by pinpointing associations to both innate and adaptive immune response loci, as well as novel unexpected risk factors for infection susceptibility. Herein, we discuss some issues and caveats of GWASs for infectious diseases, we review the most recent findings ensuing from these studies, and we provide a brief summary of selected GWASs for infections in non-human mammals. We conclude that, although the general trend in the field of complex traits is to shift from GWAS to next-generation sequencing, important knowledge on infectious disease-related traits can be still gained by GWASs, especially for those conditions that have never been investigated using this approach. We suggest that future studies will benefit from the leveraging of information from the host's and pathogen's genomes, as well as from the exploration of models that incorporate heterogeneity across populations and phenotypes. Interactions within HLA genes or among HLA variants and polymorphisms located outside the major histocompatibility complex may also play an important role in shaping the susceptibility and response to invading pathogens. Relatively few GWASs for infectious diseases were performed. Phenotype heterogeneity and case/control misclassification can affect GWAS power. Adaptive and innate immunity loci were identified in several infectious disease GWASs. Unexpected loci (e.g., lncRNAs) were also associated with infection susceptibility. GWASs should integrate host and pathogen diversity and use complex association models.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy.
| |
Collapse
|
166
|
Martin J, Ponstingl H, Lefranc MP, Archer J, Sargan D, Bradley A. Comprehensive annotation and evolutionary insights into the canine (Canis lupus familiaris) antigen receptor loci. Immunogenetics 2017; 70:223-236. [PMID: 28924718 PMCID: PMC5871656 DOI: 10.1007/s00251-017-1028-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022]
Abstract
Dogs are an excellent model for human disease. For example, the treatment of canine lymphoma has been predictive of the human response to that treatment. However, an incomplete picture of canine (Canis lupus familiaris) immunoglobulin (IG) and T cell receptor (TR)-or antigen receptor (AR)-gene loci has restricted their utility. This work advances the annotation of the canine AR loci and looks into breed-specific features of the loci. Bioinformatic analysis of unbiased RNA sequence data was used to complete the annotation of the canine AR genes. This annotation was used to query 107 whole genome sequences from 19 breeds and identified over 5500 alleles across the 550 genes of the seven AR loci: the IG heavy, kappa, and lambda loci; and the TR alpha, beta, gamma, and delta loci. Of note was the discovery that half of the IGK variable (V) genes were located downstream of, and inverted with respect to, the rest of the locus. Analysis of the germline sequences of all the AR V genes identified greater conservation between dog and human than mouse with either. This work brings our understanding of the genetic diversity and expression of AR in dogs to the same completeness as that of mice and men, making it the third species to have all AR loci comprehensively and accurately annotated. The large number of germline sequences serves as a reference for future studies, and has allowed statistically powerful conclusions to be drawn on the pressures that have shaped these loci.
Collapse
Affiliation(s)
- Jolyon Martin
- Wellcome Trust Sanger Institute, Hinxton, UK.
- University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
167
|
Mukherjee M, Jones JC, Holásková I, Raylman R, Meade J. Phenotyping of lumbosacral stenosis in Labrador retrievers using computed tomography. Vet Radiol Ultrasound 2017; 58:565-580. [PMID: 28691168 DOI: 10.1111/vru.12520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/22/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022] Open
Abstract
Deep phenotyping tools for characterizing preclinical morphological conditions are important for supporting genetic research studies. Objectives of this retrospective, cross-sectional, methods comparison study were to describe and compare qualitative and quantitative deep phenotypic characteristics of lumbosacral stenosis in Labrador retrievers using computed tomography (CT). Lumbosacral CT scans and medical records were retrieved from data archives at three veterinary hospitals. Using previously published qualitative CT diagnostic criteria, a board-certified veterinary radiologist assigned dogs as either lumbosacral stenosis positive or lumbosacral stenosis negative at six vertebral locations. A second observer independently measured vertebral canal area, vertebral fat area, and vertebral body area; and calculated ratios of vertebral canal area/vertebral body area and vertebral fat area/vertebral body area (fat area ratio) at all six locations. Twenty-five dogs were sampled (lumbosacral stenosis negative, 11 dogs; lumbosacral stenosis positive, 14 dogs). Of the six locations, cranial L6 was the most affected by lumbosacral stenosis (33%). Five of six dogs (83%) with clinical signs of lumbosacral pain were lumbosacral stenosis positive at two or more levels. All four quantitative variables were significantly smaller at the cranial aspects of the L6 and L7 vertebral foramina than at the caudal aspects (P < 0.0001). Fat area ratio was a significant predictor of lumbosacral stenosis positive status at all six locations with cranial L6 having the greatest predictive value (R2 = 0.43) and range of predictive probability (25-90%). Findings from the current study supported the use of CT as a deep phenotyping tool for future research studies of lumbosacral stenosis in Labrador retrievers.
Collapse
Affiliation(s)
- Meenakshi Mukherjee
- Department of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV, 26506
| | - Jeryl C Jones
- Department of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV, 26506
| | - Ida Holásková
- Office of Statistics, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, 26506
| | - Raymond Raylman
- Department of Radiology, Center for Advanced Imaging, Health Sciences, West Virginia University, Morgantown, WV, 26506
| | - Jean Meade
- Cheat Lake Animal Hospital, Morgantown, WV, 26508
| |
Collapse
|
168
|
Villarnovo D, McCleary-Wheeler AL, Richards KL. Barking up the right tree: advancing our understanding and treatment of lymphoma with a spontaneous canine model. Curr Opin Hematol 2017; 24:359-366. [PMID: 28426554 PMCID: PMC5553274 DOI: 10.1097/moh.0000000000000357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Spontaneous lymphoma in pet dogs is increasingly recognized as an ideal model for studying the disease in humans and for developing new targeted therapeutics for patients. Increasing interest by funding agencies, the private sector, and multidisciplinary academic collaborations between different disciplines and sectors now enables large knowledge gaps to be addressed and provides additional proof-of-concept examples to showcase the significance of the canine model. RECENT FINDINGS The current review addresses the rationale for a canine lymphoma model including the valuable role it can play in drug development, serving as a link between mouse xenograft models and human clinical trials and the infrastructure that is now in place to facilitate these studies. Research in this field has focused on filling in the gaps to make the canine lymphoma model more robust. These advances have included work on biomarkers, detection of minimal residual disease, expansion of genomic and proteomic data, and immunotherapy. SUMMARY Incorporating pet dogs into the drug development pipeline can improve the efficiency and predictability of preclinical models and decrease the time and cost required for a therapeutic target to be translated into clinical benefit.
Collapse
Affiliation(s)
- Dania Villarnovo
- aDepartment of Biomedical Sciences bDepartment of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca cSandra and Edward Meyer Cancer Center dDivision of Hematology/Oncology, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
169
|
Huang M, Hayward JJ, Corey E, Garrison SJ, Wagner GR, Krotscheck U, Hayashi K, Schweitzer PA, Lust G, Boyko AR, Todhunter RJ. A novel iterative mixed model to remap three complex orthopedic traits in dogs. PLoS One 2017; 12:e0176932. [PMID: 28614352 PMCID: PMC5470659 DOI: 10.1371/journal.pone.0176932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Hip dysplasia (HD), elbow dysplasia (ED), and rupture of the cranial (anterior) cruciate ligament (RCCL) are the most common complex orthopedic traits of dogs and all result in debilitating osteoarthritis. We reanalyzed previously reported data: the Norberg angle (a quantitative measure of HD) in 921 dogs, ED in 113 cases and 633 controls, and RCCL in 271 cases and 399 controls and their genotypes at ~185,000 single nucleotide polymorphisms. A novel fixed and random model with a circulating probability unification (FarmCPU) function, with marker-based principal components and a kinship matrix to correct for population stratification, was used. A Bonferroni correction at p<0.01 resulted in a P< 6.96 ×10-8. Six loci were identified; three for HD and three for RCCL. An associated locus at CFA28:34,369,342 for HD was described previously in the same dogs using a conventional mixed model. No loci were identified for RCCL in the previous report but the two loci for ED in the previous report did not reach genome-wide significance using the FarmCPU model. These results were supported by simulation which demonstrated that the FarmCPU held no power advantage over the linear mixed model for the ED sample but provided additional power for the HD and RCCL samples. Candidate genes for HD and RCCL are discussed. When using FarmCPU software, we recommend a resampling test, that a positive control be used to determine the optimum pseudo quantitative trait nucleotide-based covariate structure of the model, and a negative control be used consisting of permutation testing and the identical resampling test as for the non-permuted phenotypes.
Collapse
Affiliation(s)
- Meng Huang
- Department of Crop and Soil Science, Washington State University, Pullman, Washington, United States of America
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Corey
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susan J. Garrison
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gabriela R. Wagner
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ursula Krotscheck
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kei Hayashi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Peter A. Schweitzer
- Sequencing Core, Biotechnology Resource Center, Cornell University, Ithaca, New York, United States of America
| | - George Lust
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Adam R. Boyko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Chief Scientific Officer of Embark Veterinary Inc., Austin, Texas, United States of America
| | - Rory J. Todhunter
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
170
|
Marchant TW, Johnson EJ, McTeir L, Johnson CI, Gow A, Liuti T, Kuehn D, Svenson K, Bermingham ML, Drögemüller M, Nussbaumer M, Davey MG, Argyle DJ, Powell RM, Guilherme S, Lang J, Ter Haar G, Leeb T, Schwarz T, Mellanby RJ, Clements DN, Schoenebeck JJ. Canine Brachycephaly Is Associated with a Retrotransposon-Mediated Missplicing of SMOC2. Curr Biol 2017; 27:1573-1584.e6. [PMID: 28552356 PMCID: PMC5462623 DOI: 10.1016/j.cub.2017.04.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/14/2017] [Accepted: 04/27/2017] [Indexed: 12/30/2022]
Abstract
In morphological terms, “form” is used to describe an object’s shape and size. In dogs, facial form is stunningly diverse. Facial retrusion, the proximodistal shortening of the snout and widening of the hard palate is common to brachycephalic dogs and is a welfare concern, as the incidence of respiratory distress and ocular trauma observed in this class of dogs is highly correlated with their skull form. Progress to identify the molecular underpinnings of facial retrusion is limited to association of a missense mutation in BMP3 among small brachycephalic dogs. Here, we used morphometrics of skull isosurfaces derived from 374 pedigree and mixed-breed dogs to dissect the genetics of skull form. Through deconvolution of facial forms, we identified quantitative trait loci that are responsible for canine facial shapes and sizes. Our novel insights include recognition that the FGF4 retrogene insertion, previously associated with appendicular chondrodysplasia, also reduces neurocranium size. Focusing on facial shape, we resolved a quantitative trait locus on canine chromosome 1 to a 188-kb critical interval that encompasses SMOC2. An intronic, transposable element within SMOC2 promotes the utilization of cryptic splice sites, causing its incorporation into transcripts, and drastically reduces SMOC2 gene expression in brachycephalic dogs. SMOC2 disruption affects the facial skeleton in a dose-dependent manner. The size effects of the associated SMOC2 haplotype are profound, accounting for 36% of facial length variation in the dogs we tested. Our data bring new focus to SMOC2 by highlighting its clinical implications in both human and veterinary medicine. A population-based genetics study of dogs that required diagnostic imaging Resolution of a QTL associated with face length reduction (brachycephaly) Association of brachycephaly with a retrotransposon that disrupts SMOC2 splicing The SMOC2 locus explains up to 36% of face length variation in dogs
Collapse
Affiliation(s)
- Thomas W Marchant
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Edward J Johnson
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lynn McTeir
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Craig I Johnson
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Adam Gow
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tiziana Liuti
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Dana Kuehn
- Friendship Hospital for Animals, Washington, DC 20016, USA
| | | | - Mairead L Bermingham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Marc Nussbaumer
- Naturhistorisches Museum, Bernastrasse 15, 3005 Bern, Switzerland
| | - Megan G Davey
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Roger M Powell
- Powell Torrance Diagnostic Services, Manor Farm Business Park, Higham Gobion, Hertfordshire SG5 3HR, UK
| | - Sérgio Guilherme
- Davies Veterinary Specialists, Manor Farm Business Park, Higham Gobion, Hertfordshire SG5 3HR, UK
| | - Johann Lang
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, University of Bern, 3001 Bern, Switzerland
| | - Gert Ter Haar
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Tosso Leeb
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland
| | - Tobias Schwarz
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Richard J Mellanby
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Dylan N Clements
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Jeffrey J Schoenebeck
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| |
Collapse
|
171
|
Fealey MJ, Li J, Todhunter RJE, Krotscheck U, Hayashi K, McConkey MJ, Boyko AR, Hayward JJ, Todhunter RJ. Genetic mapping of principal components of canine pelvic morphology. Canine Genet Epidemiol 2017; 4:4. [PMID: 28352471 PMCID: PMC5364603 DOI: 10.1186/s40575-017-0043-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/12/2017] [Indexed: 02/04/2023] Open
Abstract
Background Concentrated breeding effort to produce various body structures and behaviors of dogs to suit human demand has inadvertently produced unwanted traits and diseases that accompany the morphological and behavioral phenotypes. We explored the relationship between pelvic conformation and canine hip dysplasia (HD) because purebred dogs which are predisposed, or not, to HD share common morphologic features, respectively. Thirteen unique bilateral anatomical features of the pelvis were measured on 392 dogs of 51 breeds and 95 mixed breed dogs. Principal components (PCs) were derived to describe pelvic morphology. Dogs were genotyped at ~183,000 single nucleotide polymorphisms and their hip conformation was measured by the Norberg angle and angle of inclination between the femoral neck and diaphysis. Results No associations reached genome wide significance for the Norberg angle when averaged over both hips. PC1 was negatively correlated with the Norberg angle (r = -0.31; P < 0.05) but not the angle of inclination (r = -0.08; P > 0.05). PC1, 2, 4, and 5 differed significantly between male and female dogs confirming pelvic sexual dimorphism. With sex as a covariate, the eigenvector contribution to PC1 reflected the overall size of the pelvis and was significantly associated with the IGF-1 locus, a known contributor to canine body size. PC3, which represented a tradeoff between ilial length and ischial length in which a longer ischium is associated with a shorter ilium, was significantly associated with a marker on canine chromosome 16:5181388 bp. The closest candidate gene is TPK1, a thiamine-dependent enzyme and part of the PKA complex. Associations with the remaining PCs did not reach genome wide significance. Conclusion IGF-1 was associated with the overall size of the pelvis and sex is related to pelvic size. Ilial/ischial proportion is genetically controlled and the closest candidate gene is thiamine-dependent and affects birth weight and development of the nervous system. Dogs with larger pelves tend to have smaller NAs consistent with increased tendency toward HD in large breed dogs. Based on the current study, pelvic shape alone was not strongly associated with canine hip dysplasia. Electronic supplementary material The online version of this article (doi:10.1186/s40575-017-0043-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark J Fealey
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Joy Li
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Rebel J E Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Ursula Krotscheck
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Kei Hayashi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Marina J McConkey
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Adam R Boyko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Jessica J Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Rory J Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
172
|
Plassais J, Rimbault M, Williams FJ, Davis BW, Schoenebeck JJ, Ostrander EA. Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness. PLoS Genet 2017; 13:e1006661. [PMID: 28257443 PMCID: PMC5357063 DOI: 10.1371/journal.pgen.1006661] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022] Open
Abstract
Domestic dog breeds display significant diversity in both body mass and skeletal size, resulting from intensive selective pressure during the formation and maintenance of modern breeds. While previous studies focused on the identification of alleles that contribute to small skeletal size, little is known about the underlying genetics controlling large size. We first performed a genome-wide association study (GWAS) using the Illumina Canine HD 170,000 single nucleotide polymorphism (SNP) array which compared 165 large-breed dogs from 19 breeds (defined as having a Standard Breed Weight (SBW) >41 kg [90 lb]) to 690 dogs from 69 small breeds (SBW ≤41 kg). We identified two loci on the canine X chromosome that were strongly associated with large body size at 82-84 megabases (Mb) and 101-104 Mb. Analyses of whole genome sequencing (WGS) data from 163 dogs revealed two indels in the Insulin Receptor Substrate 4 (IRS4) gene at 82.2 Mb and two additional mutations, one SNP and one deletion of a single codon, in Immunoglobulin Superfamily member 1 gene (IGSF1) at 102.3 Mb. IRS4 and IGSF1 are members of the GH/IGF1 and thyroid pathways whose roles include determination of body size. We also found one highly associated SNP in the 5'UTR of Acyl-CoA Synthetase Long-chain family member 4 (ACSL4) at 82.9 Mb, a gene which controls the traits of muscling and back fat thickness. We show by analysis of sequencing data from 26 wolves and 959 dogs representing 102 domestic dog breeds that skeletal size and body mass in large dog breeds are strongly associated with variants within IRS4, ACSL4 and IGSF1.
Collapse
Affiliation(s)
- Jocelyn Plassais
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maud Rimbault
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Falina J. Williams
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian W. Davis
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey J. Schoenebeck
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
173
|
Monir MM, Zhu J. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture. Sci Rep 2017; 7:38600. [PMID: 28079101 PMCID: PMC5227710 DOI: 10.1038/srep38600] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits.
Collapse
Affiliation(s)
- Md Mamun Monir
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jun Zhu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
174
|
Worley KC, Richards S, Rogers J. The value of new genome references. Exp Cell Res 2016; 358:433-438. [PMID: 28017728 DOI: 10.1016/j.yexcr.2016.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/22/2016] [Indexed: 12/24/2022]
Abstract
Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology.
Collapse
Affiliation(s)
- Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
175
|
Abstract
Understanding the timing and geographic context of dog origins is a crucial component for understanding human history, as well as the evolutionary context in which the morphological and behavioral divergence of dogs from wolves occurred. A substantial challenge to understanding domestication is that dogs have experienced a complicated demographic history. An initial severe bottleneck was associated with domestication followed by postdivergence gene flow between dogs and wolves, as well as population expansions, contractions, and replacements. In addition, because the domestication of dogs occurred in the relatively recent past, much of the observed polymorphism may be shared between dogs and wolves, limiting the power to distinguish between alternative models of dog history. Greater insight into the domestication process will require explicit tests of alternative models of domestication through the joint analysis of whole genomes from modern lineages and ancient wolves and dogs from across Eurasia.
Collapse
Affiliation(s)
- Adam H Freedman
- Informatics Group, Faculty of Arts & Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095;
| |
Collapse
|
176
|
Jin K, Hoffman JM, Creevy KE, O'Neill DG, Promislow DEL. Multiple morbidities in companion dogs: a novel model for investigating age-related disease. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:33276. [PMID: 27876455 PMCID: PMC5120387 DOI: 10.3402/pba.v6.33276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 01/13/2023]
Abstract
The proportion of men and women surviving over 65 years has been steadily increasing over the last century. In their later years, many of these individuals are afflicted with multiple chronic conditions, placing increasing pressure on healthcare systems. The accumulation of multiple health problems with advanced age is well documented, yet the causes are poorly understood. Animal models have long been employed in attempts to elucidate these complex mechanisms with limited success. Recently, the domestic dog has been proposed as a promising model of human aging for several reasons. Mean lifespan shows twofold variation across dog breeds. In addition, dogs closely share the environments of their owners, and substantial veterinary resources are dedicated to comprehensive diagnosis of conditions in dogs. However, while dogs are therefore useful for studying multimorbidity, little is known about how aging influences the accumulation of multiple concurrent disease conditions across dog breeds. The current study examines how age, body weight, and breed contribute to variation in multimorbidity in over 2,000 companion dogs visiting private veterinary clinics in England. In common with humans, we find that the number of diagnoses increases significantly with age in dogs. However, we find no significant weight or breed effects on morbidity number. This surprising result reveals that while breeds may vary in their average longevity and causes of death, their age-related trajectories of morbidities differ little, suggesting that age of onset of disease may be the source of variation in lifespan across breeds. Future studies with increased sample sizes and longitudinal monitoring may help us discern more breed-specific patterns in morbidity. Overall, the large increase in multimorbidity seen with age in dogs mirrors that seen in humans and lends even more credence to the value of companion dogs as models for human morbidity and mortality.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kate E Creevy
- College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Dan G O'Neill
- Veterinary Epidemiology, Economics and Public Health, The Royal Veterinary College, Hatfield, UK
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA;
| |
Collapse
|
177
|
Evaluation of the genetic basis of primary hypoadrenocorticism in Standard Poodles using SNP array genotyping and whole-genome sequencing. Mamm Genome 2016; 28:56-65. [PMID: 27864587 DOI: 10.1007/s00335-016-9671-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
Primary hypoadrenocorticism, also known as Addison's disease, is an autoimmune disorder leading to the destruction of the adrenal cortex and subsequent loss of glucocorticoid and mineralocorticoid hormones. The disease is prevalent in Standard Poodles and is believed to be highly heritable in the breed. Using genotypes derived from the Illumina Canine HD SNP array, we performed a genome-wide association study of 133 carefully phenotyped Standard Poodles (61 affected, 72 unaffected) and found no markers significantly associated with the disease. We also sequenced the entire genomes of 20 Standard Poodles (13 affected, 7 unaffected) and analyzed the data to identify common variants (including SNPs, indels, structural variants, and copy number variants) across affected dogs and variants segregating within a single pedigree of highly affected dogs. We identified several candidate genes that may be fixed in both Standard Poodles and a small population of dogs of related breeds. Further studies are required to confirm these findings more broadly, as well as additional gene-mapping efforts aimed at fully understanding the genetic basis of what is likely a complex inherited disorder.
Collapse
|
178
|
Dreger DL, Rimbault M, Davis BW, Bhatnagar A, Parker HG, Ostrander EA. Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping. Dis Model Mech 2016; 9:1445-1460. [PMID: 27874836 PMCID: PMC5200897 DOI: 10.1242/dmm.027037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022] Open
Abstract
In the decade following publication of the draft genome sequence of the domestic dog, extraordinary advances with application to several fields have been credited to the canine genetic system. Taking advantage of closed breeding populations and the subsequent selection for aesthetic and behavioral characteristics, researchers have leveraged the dog as an effective natural model for the study of complex traits, such as disease susceptibility, behavior and morphology, generating unique contributions to human health and biology. When designing genetic studies using purebred dogs, it is essential to consider the unique demography of each population, including estimation of effective population size and timing of population bottlenecks. The analytical design approach for genome-wide association studies (GWAS) and analysis of whole-genome sequence (WGS) experiments are inextricable from demographic data. We have performed a comprehensive study of genomic homozygosity, using high-depth WGS data for 90 individuals, and Illumina HD SNP data from 800 individuals representing 80 breeds. These data were coupled with extensive pedigree data analyses for 11 breeds that, together, allowed us to compute breed structure, demography, and molecular measures of genome diversity. Our comparative analyses characterize the extent, formation and implication of breed-specific diversity as it relates to population structure. These data demonstrate the relationship between breed-specific genome dynamics and population architecture, and provide important considerations influencing the technological and cohort design of association and other genomic studies. Summary: Successful application of whole-genome sequencing and genome-wide association studies for identifying both loci and mutations in canines is influenced by breed structure and demography, motivating researchers to generate breed-specific strategies for canine genetic studies.
Collapse
Affiliation(s)
- Dayna L Dreger
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maud Rimbault
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrienne Bhatnagar
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.,PIC North America, Hendersonville, TN 37075, USA
| | - Heidi G Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
179
|
Abstract
Meiotic recombination in mammals has been shown to largely cluster into hotspots, which are targeted by the chromatin modifier PRDM9. The canid family, including wolves and dogs, has undergone a series of disrupting mutations in this gene, rendering PRDM9 inactive. Given the importance of PRDM9, it is of great interest to learn how its absence in the dog genome affects patterns of recombination placement. We have used genotypes from domestic dog pedigrees to generate sex-specific genetic maps of recombination in this species. On a broad scale, we find that placement of recombination events in dogs is consistent with that in mice and apes, in that the majority of recombination occurs toward the telomeres in males, while female crossing over is more frequent and evenly spread along chromosomes. It has been previously suggested that dog recombination is more uniform in distribution than that of humans; however, we found that recombination in dogs is less uniform than in humans. We examined the distribution of recombination within the genome, and found that recombination is elevated immediately upstream of the transcription start site and around CpG islands, in agreement with previous studies, but that this effect is stronger in male dogs. We also found evidence for positive crossover interference influencing the spacing between recombination events in dogs, as has been observed in other species including humans and mice. Overall our data suggests that dogs have similar broad scale properties of recombination to humans, while fine scale recombination is similar to other species lacking PRDM9.
Collapse
|
180
|
Cattin RP, Hardcastle MR, Simpson KW. Successful treatment of vaginal malakoplakia in a young cat. JFMS Open Rep 2016; 2:2055116916674871. [PMID: 28491441 PMCID: PMC5362923 DOI: 10.1177/2055116916674871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Case summary A 3-year-old, female, spayed, domestic shorthair cat presented for dysuria and haematuria, unresponsive to antibiotic treatment. A small, fleshy, erythematous mass protruded from the vaginal vault. Ultrasound identified a vaginal mass effect with mixed echogenicity measuring in excess of 3 cm. Vaginoscopy confirmed an extensive, fleshy, irregular mass that was characterised histologically as pyogranulomatous vaginitis, with periodic acid–Schiff-positive macrophages containing gram-negative bacteria. Fluorescence in situ hybridisation analysis demonstrated invasive intracellular Escherichia coli. Vaginal malakoplakia was diagnosed. Tissue culture and antimicrobial susceptibility of E coli was used to guide treatment. A 6 week course of enrofloxacin 5 mg/kg q24h resulted in complete resolution of the mass and clinical signs. Relevance and novel information Malakoplakia is a rare chronic inflammatory condition that has been previously reported in the bladder of two cats. The pathogenesis of malakoplakia is thought to involve ineffective killing of bacteria (eg. E coli), similar to granulomatous colitis in Boxers and French Bulldogs. The literature on malakoplakia in cats is sparse. This is the first reported feline case with vaginal involvement, intracellular E coli and successful treatment with a fluoroquinolone. Malakoplakia is an important, non-neoplastic differential diagnosis when a mass is identified in the urogenital system of a young cat.
Collapse
|
181
|
Freedman AH, Lohmueller KE, Wayne RK. Evolutionary History, Selective Sweeps, and Deleterious Variation in the Dog. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dog is our oldest domesticate and has experienced a wide variety of demographic histories, including a bottleneck associated with domestication and individual bottlenecks associated with the formation of modern breeds. Admixture with gray wolves, and among dog breeds and populations, has also occurred throughout its history. Likewise, the intensity and focus of selection have varied, from an initial focus on traits enhancing cohabitation with humans, to more directed selection on specific phenotypic characteristics and behaviors. In this review, we summarize and synthesize genetic findings from genome-wide and complete genome studies that document the genomic consequences of demography and selection, including the effects on adaptive and deleterious variation. Consistent with the evolutionary history of the dog, signals of natural and artificial selection are evident in the dog genome. However, conclusions from studies of positive selection are fraught with the problem of false positives given that demographic history is often not taken into account.
Collapse
Affiliation(s)
- Adam H. Freedman
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
182
|
|
183
|
Vázquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol 2016; 1:16177. [DOI: 10.1038/nmicrobiol.2016.177] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023]
|
184
|
Stokol T. Veterinary Pathology - A Path Forward with New Directions and Opportunities. Front Vet Sci 2016; 3:76. [PMID: 27630996 PMCID: PMC5005974 DOI: 10.3389/fvets.2016.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/23/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University , Ithaca, NY , USA
| |
Collapse
|
185
|
Commonalities in Development of Pure Breeds and Population Isolates Revealed in the Genome of the Sardinian Fonni's Dog. Genetics 2016; 204:737-755. [PMID: 27519604 PMCID: PMC5068859 DOI: 10.1534/genetics.116.192427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022] Open
Abstract
The island inhabitants of Sardinia have long been a focus for studies of complex human traits due to their unique ancestral background and population isolation reflecting geographic and cultural restriction. Population isolates share decreased genomic diversity, increased linkage disequilibrium, and increased inbreeding coefficients. In many regions, dogs and humans have been exposed to the same natural and artificial forces of environment, growth, and migration. Distinct dog breeds have arisen through human-driven selection of characteristics to meet an ideal standard of appearance and function. The Fonni's Dog, an endemic dog population on Sardinia, has not been subjected to an intensive system of artificial selection, but rather has developed alongside the human population of Sardinia, influenced by geographic isolation and unregulated selection based on its environmental adaptation and aptitude for owner-desired behaviors. Through analysis of 28 dog breeds, represented with whole-genome sequences from 13 dogs and ∼170,000 genome-wide single nucleotide variants from 155 dogs, we have produced a genomic illustration of the Fonni's Dog. Genomic patterns confirm within-breed similarity, while population and demographic analyses provide spatial identity of Fonni's Dog to other Mediterranean breeds. Investigation of admixture and fixation indices reveals insights into the involvement of Fonni's Dogs in breed development throughout the Mediterranean. We describe how characteristics of population isolates are reflected in dog breeds that have undergone artificial selection, and are mirrored in the Fonni's Dog through traditional isolating factors that affect human populations. Lastly, we show that the genetic history of Fonni's Dog parallels demographic events in local human populations.
Collapse
|
186
|
van Steenbeek FG, Hytönen MK, Leegwater PAJ, Lohi H. The canine era: the rise of a biomedical model. Anim Genet 2016; 47:519-27. [PMID: 27324307 DOI: 10.1111/age.12460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/29/2022]
Abstract
Since the annotation of its genome a decade ago, the dog has proven to be an excellent model for the study of inherited diseases. A large variety of spontaneous simple and complex phenotypes occur in dogs, providing physiologically relevant models to corresponding human conditions. In addition, gene discovery is facilitated in clinically less heterogeneous purebred dogs with closed population structures because smaller study cohorts and fewer markers are often sufficient to expose causal variants. Here, we review the development of genomic resources from microsatellites to whole-genome sequencing and give examples of successful findings that have followed the technological progress. The increasing amount of whole-genome sequence data warrants better functional annotation of the canine genome to more effectively utilise this unique model to understand genetic contributions in morphological, behavioural and other complex traits.
Collapse
Affiliation(s)
- F G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3508 TD, Utrecht, the Netherlands.
| | - M K Hytönen
- Research Programs Unit, Molecular Neurology, Department of Veterinary Biosciences 00014, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | - P A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3508 TD, Utrecht, the Netherlands
| | - H Lohi
- Research Programs Unit, Molecular Neurology, Department of Veterinary Biosciences 00014, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
187
|
Staiger EA, Al Abri MA, Pflug KM, Kalla SE, Ainsworth DM, Miller D, Raudsepp T, Sutter NB, Brooks SA. Skeletal variation in Tennessee Walking Horses maps to the LCORL/NCAPG gene region. Physiol Genomics 2016; 48:325-35. [PMID: 26931356 DOI: 10.1152/physiolgenomics.00100.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/19/2016] [Indexed: 11/22/2022] Open
Abstract
Conformation has long been a driving force in horse selection and breed creation as a predictor for performance. The Tennessee Walking Horse (TWH) ranges in size from 1.5 to 1.7 m and is often used as a trail, show, and pleasure horse. To investigate the contribution of genetics to body conformation in the TWH, we collected DNA samples, body measurements, and gait/training information from 282 individuals. We analyzed the 32 body measures with a principal component analysis. Principal component (PC)1 captured 28.5% of the trait variance, while PC2 comprised just 9.5% and PC3 6.4% of trait variance. All 32 measures correlated positively with PC1, indicating that PC1 describes overall body size. We genotyped 109 horses using the EquineSNP70 bead chip and marker association assessed the data using PC1 scores as a phenotype. Mixed-model linear analysis (EMMAX) revealed a well-documented candidate locus on ECA3 (raw P = 3.86 × 10(-9)) near the LCORL gene. A custom genotyping panel enabled fine-mapping of the PC1 body-size trait to the 3'-end of the LCORL gene (P = 7.09 × 10(-10)). This position differs from other reports suggesting single nucleotide polymorphisms (SNPs) upstream of the LCORL coding sequence regulate expression of the gene and, therefore, body size in horses. Fluorescent in situ hybridization analysis defined the position of a highly homologous 5 kb retrogene copy of LCORL (assigned to unplaced contigs of the EquCab 2.0 assembly) at ECA9 q12-q13. This is the first study to identify putative causative SNPs within the LCORL transcript itself, which are associated with skeletal size variation in horses.
Collapse
Affiliation(s)
- E A Staiger
- Department of Animal Science, Cornell University, Ithaca, New York
| | - M A Al Abri
- Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - K M Pflug
- Department of Animal Science, University of Florida, Gainesville, Florida
| | - S E Kalla
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - D M Ainsworth
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - D Miller
- Baker Institute for Animal Health, Cornell University, Ithaca, New York
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and
| | - N B Sutter
- Department of Biology, La Sierra University, Riverside, California
| | - S A Brooks
- Department of Animal Science, University of Florida, Gainesville, Florida;
| |
Collapse
|
188
|
Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes. PLoS One 2015; 10:e0145199. [PMID: 26683458 PMCID: PMC4690602 DOI: 10.1371/journal.pone.0145199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022] Open
Abstract
Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS) at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests). After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10−13) was evident between a region of canine chromosome 13 (CFA13) and alanine aminotransferase (ALT), explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.
Collapse
|