151
|
Guo C, Ludvik AE, Arlotto ME, Hayes MG, Armstrong LL, Scholtens DM, Brown CD, Newgard CB, Becker TC, Layden BT, Lowe WL, Reddy TE. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat Commun 2015; 6:6069. [PMID: 25648650 PMCID: PMC4318120 DOI: 10.1038/ncomms7069] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Maternal glucose levels during pregnancy impact the developing fetus, affecting metabolic health early and later in life. Both genetic and environmental factors influence maternal metabolism, but little is known about the genetic mechanisms that alter glucose metabolism during pregnancy. Here we report that haplotypes previously associated with gestational hyperglycemia in the third trimester disrupt regulatory element activity and reduce expression of the nearby HKDC1 gene. We further find that experimentally reducing or increasing HKDC1 expression reduces or increases hexokinase activity, respectively, in multiple cellular models; and that purified HKDC1 protein has hexokinase activity in vitro. Together, these results suggest a novel mechanism of gestational glucose regulation in which the effects of genetic variants in multiple regulatory elements alter glucose homeostasis by coordinately reducing expression of the novel hexokinase HKDC1.
Collapse
Affiliation(s)
- Cong Guo
- 1] Duke University Program in Genetics &Genomics, Durham, North Carolina 27708, USA [2] Center for Genomic &Computational Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Anton E Ludvik
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Michelle E Arlotto
- Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Loren L Armstrong
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher B Newgard
- 1] Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA [2] Department of Pharmacology &Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA [3] Division of Endocrinology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Thomas C Becker
- 1] Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA [2] Division of Endocrinology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Brian T Layden
- 1] Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA [2] Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, USA
| | - William L Lowe
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Timothy E Reddy
- 1] Center for Genomic &Computational Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA [2] Department of Biostatistics &Bioinformatics, Duke University Medical School, Durham, North Carolina 27710, USA
| |
Collapse
|
152
|
Liu JC, Shen WC, Shih TC, Tsai CW, Chang WS, Cho DY, Tsai CH, Bau DT. The current progress and future prospects of personalized radiogenomic cancer study. Biomedicine (Taipei) 2015; 5:2. [PMID: 25705582 PMCID: PMC4328115 DOI: 10.7603/s40681-015-0002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022] Open
Abstract
During the last twenty years, mounting studies have supported the hypothesis that there is a genetic component that plays an important role in clinically observed variability in individual tissue/organ toxicity after radiotherapy. We propose the term “Personalized Radiogenomics” for the translational study of individual genetic variations that may associate with or contribute to the responses of tissues to radiation therapy used in the treatment of all types of cancer. The missions of personalized radiogenomic research are 1) to reveal the related genes, proteins, and biological pathways responsible for non-tumor or tumor tissue toxicity resulting from radiotherapy that could be targeted with radio-sensitizing and/or radio-protective agents, and 2) to identify specific genetic markers that can be used in risk prediction and evaluation models before and after clinical cancer surgery. For the members of the Terry Fox Cancer Research Lab in China Medical University and Hospital, the long-term goal is to develop SNP-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. Worldwide, the field has evolved over the last two decades in parallel with rapid advances in genetic and genomic technology, moving step by step from narrowly focused candidate gene studies to large-scale, collaborative genome-wide association studies. This article will summarize the candidate gene association studies published so far from the Terry Fox Cancer Research Lab as well as worldwide on the risk of radiation-related cancers and highlight some wholegenome association studies showing feasibility in fulfilling the dream of personalized radiogenomic cancer therapy.
Collapse
Affiliation(s)
- Juhn-Cherng Liu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| | - Wu-Chung Shen
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Tzu-Ching Shih
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Der-Yang Cho
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Chang-Hai Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| |
Collapse
|
153
|
Kerns SL, West CML, Andreassen CN, Barnett GC, Bentzen SM, Burnet NG, Dekker A, De Ruysscher D, Dunning A, Parliament M, Talbot C, Vega A, Rosenstein BS. Radiogenomics: the search for genetic predictors of radiotherapy response. Future Oncol 2014; 10:2391-406. [PMID: 25525847 DOI: 10.2217/fon.14.173] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
'Radiogenomics' is the study of genetic variation associated with response to radiotherapy. Radiogenomics aims to uncover the genes and biologic pathways responsible for radiotherapy toxicity that could be targeted with radioprotective agents and; identify genetic markers that can be used in risk prediction models in the clinic. The long-term goal of the field is to develop single nucleotide polymorphism-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. The field has evolved over the last two decades in parallel with advances in genomics, moving from narrowly focused candidate gene studies to large, collaborative genome-wide association studies. Several confirmed genetic variants have been identified and the field is making progress toward clinical translation.
Collapse
Affiliation(s)
- Sarah L Kerns
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S, Nagano T, Andrews S, Wingett S, Kozarewa I, Assiotis I, Fenwick K, Maguire SL, Campbell J, Natrajan R, Lambros M, Perrakis E, Ashworth A, Fraser P, Fletcher O. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res 2014; 24:1854-68. [PMID: 25122612 PMCID: PMC4216926 DOI: 10.1101/gr.175034.114] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/06/2014] [Indexed: 01/17/2023]
Abstract
Genome-wide association studies have identified more than 70 common variants that are associated with breast cancer risk. Most of these variants map to non-protein-coding regions and several map to gene deserts, regions of several hundred kilobases lacking protein-coding genes. We hypothesized that gene deserts harbor long-range regulatory elements that can physically interact with target genes to influence their expression. To test this, we developed Capture Hi-C (CHi-C), which, by incorporating a sequence capture step into a Hi-C protocol, allows high-resolution analysis of targeted regions of the genome. We used CHi-C to investigate long-range interactions at three breast cancer gene deserts mapping to 2q35, 8q24.21, and 9q31.2. We identified interaction peaks between putative regulatory elements ("bait fragments") within the captured regions and "targets" that included both protein-coding genes and long noncoding (lnc) RNAs over distances of 6.6 kb to 2.6 Mb. Target protein-coding genes were IGFBP5, KLF4, NSMCE2, and MYC; and target lncRNAs included DIRC3, PVT1, and CCDC26. For one gene desert, we were able to define two SNPs (rs12613955 and rs4442975) that were highly correlated with the published risk variant and that mapped within the bait end of an interaction peak. In vivo ChIP-qPCR data show that one of these, rs4442975, affects the binding of FOXA1 and implicate this SNP as a putative functional variant.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Chromosome Mapping
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 9/genetics
- Genetic Predisposition to Disease/genetics
- Genome, Human/genetics
- Genome-Wide Association Study/methods
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Kruppel-Like Factor 4
- MCF-7 Cells
- Oligonucleotide Array Sequence Analysis
- Polymorphism, Single Nucleotide
- Protein Binding
- Protein Interaction Mapping
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Real-Time Polymerase Chain Reaction
- Regulatory Sequences, Nucleic Acid/genetics
- Reproducibility of Results
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Nicola H Dryden
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Laura R Broome
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Nick Orr
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Stefan Schoenfelder
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Takashi Nagano
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Simon Andrews
- Babraham Bioinformatics, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Steven Wingett
- Babraham Bioinformatics, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Iwanka Kozarewa
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Ioannis Assiotis
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Kerry Fenwick
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Sarah L Maguire
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - James Campbell
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Rachael Natrajan
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Maryou Lambros
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Eleni Perrakis
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom;
| |
Collapse
|
155
|
Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl) 2014; 92:811-23. [PMID: 24996520 DOI: 10.1007/s00109-014-1181-y] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/27/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022]
Abstract
In this review, we summarize published findings on the involvement of HOX genes in oncogenesis. HOX genes are developmental genes--they code for proteins that function as critical master regulatory transcription factors during embryogenesis. Many reports have shown that the protein products of HOX genes also play key roles in the development of cancers. Based on our review of the literature, we found that the expression of HOX genes is not only up- or downregulated in most solid tumors but also that the expression of specific HOX genes in cancers tends to differ based on tissue type and tumor site. It was also observed that HOXC family gene expression is upregulated in most solid tumor types, including colon, lung, and prostate cancer. The two HOX genes that were reported to be most commonly altered in solid tumors were HOXA9 and HOXB13. HOXA were often reported to have altered expression in breast and ovarian cancers, HOXB genes in colon cancers, HOXC genes in prostate and lung cancers, and HOXD genes in colon and breast cancers. It was found that HOX genes are also regulated at the nuclear-cytoplasmic transport level in carcinomas. Tumors arising from tissue having similar embryonic origin (endodermal), including colon, prostate, and lung, showed relatively similar HOXA and HOXB family gene expression patterns compared to breast tumors arising from mammary tissue, which originates from the ectoderm. The differential expression of HOX genes in various solid tumors thus provides an opportunity to advance our understanding of cancer development and to develop new therapeutic agents.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, University of Delaware, 4701 Ogletown-Stanton Road, Newark, DE, 19713, USA
| | | | | |
Collapse
|
156
|
Fillmore RA, Kojima C, Johnson C, Kolcun G, Dangott LJ, Zimmer WE. New concepts concerning prostate cancer screening. Exp Biol Med (Maywood) 2014; 239:793-804. [PMID: 24928864 DOI: 10.1177/1535370214539091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Prostate Cancer (CaP) is rapidly becoming a worldwide health issue. While CaP mortality has decreased in recent years, coincident with the widespread use of Prostate-Specific Antigen (PSA) screening, it remains the most common solid tumor in men and is the second leading cause of cancer death in the United States. The frequency of CaP is growing not only in western cultures, but also its incidence is dramatically increasing in eastern nations. Recently, examination of data from long-term trials and follow up has cast a shadow on the effectiveness of employing PSA as a primary screening tool for CaP. In this review, we not only summarize opinions from this examination and synthesize recommendations from several groups that suggest strategies for utilizing PSA as a tool, but also call for research into biomarkers for CaP diagnosis and disease progression. We also describe our recent work that identified a smooth muscle contractile protein in prostate epithelia, namely smooth muscle gamma actin, and indicate the potential for this molecule as a new unique footprint and as a CaP marker.
Collapse
Affiliation(s)
- Rebecca A Fillmore
- Department of Biological Sciences, University of Southern Mississippi Gulf Coast, Long Beach MS 39560, USA
| | - Chinatsu Kojima
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843-1114, USA
| | - Chevaun Johnson
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843-1114, USA
| | - Georgina Kolcun
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843-1114, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College of Medicine, TX 77843, USA
| | - Warren E Zimmer
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843-1114, USA Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, 77843 Faculty of Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
157
|
TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli. Sci Rep 2014; 4:4663. [PMID: 24722541 PMCID: PMC3983616 DOI: 10.1038/srep04663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53−/− mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53−/− mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.
Collapse
|
158
|
Abstract
A new study shows that HOXB13 is preferentially recruited to the risk allele of a prostate cancer-associated SNP, enhancing the expression of RFX6, a driver of prostate cancer cell migration and predictor of disease progression. The work illustrates how a single risk locus contributes both to prostate cancer incidence and, through functional follow-up, to disease progression.
Collapse
Affiliation(s)
- Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo and Oslo University Hospitals, Oslo, Norway, and with the Departments of Cancer Prevention and Urology, Institute of Cancer Research and Oslo University Hospitals, Oslo, Norway
| |
Collapse
|
159
|
|