151
|
Torabi Dalivandan S, Plummer J, Gayther SA. Risks and Function of Breast Cancer Susceptibility Alleles. Cancers (Basel) 2021; 13:3953. [PMID: 34439109 PMCID: PMC8393346 DOI: 10.3390/cancers13163953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/22/2022] Open
Abstract
Family history remains one of the strongest risk factors for breast cancer. It is well established that women with a first-degree relative affected by breast cancer are twice as likely to develop the disease themselves. Twins studies indicate that this is most likely due to shared genetics rather than shared epidemiological/lifestyle risk factors. Linkage and targeted sequencing studies have shown that rare high- and moderate-penetrance germline variants in genes involved in the DNA damage response (DDR) including BRCA1, BRCA2, PALB2, ATM, and TP53 are responsible for a proportion of breast cancer cases. However, breast cancer is a heterogeneous disease, and there is now strong evidence that different risk alleles can predispose to different subtypes of breast cancer. Here, we review the associations between the different genes and subtype-specificity of breast cancer based on the most comprehensive genetic studies published. Genome-wide association studies (GWAS) have also been used to identify an additional hereditary component of breast cancer, and have identified hundreds of common, low-penetrance susceptibility alleles. The combination of these low penetrance risk variants, summed as a polygenic risk score (PRS), can identify individuals across the spectrum of disease risk. However, there remains a substantial bottleneck between the discovery of GWAS-risk variants and their contribution to tumorigenesis mainly because the majority of these variants map to the non-protein coding genome. A range of functional genomic approaches are needed to identify the causal risk variants and target susceptibility genes and establish their underlying role in disease biology. We discuss how the application of these multidisciplinary approaches to understand genetic risk for breast cancer can be used to identify individuals in the population that may benefit from clinical interventions including screening for early detection and prevention, and treatment strategies to reduce breast cancer-related mortalities.
Collapse
Affiliation(s)
| | | | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.D.); (J.P.)
| |
Collapse
|
152
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
153
|
Ho PJ, Dorajoo R, Ivanković I, Ong SS, Khng AJ, Tan BKT, Tan VKM, Lim SH, Tan EY, Tan SM, Tan QT, Yan Z, Ngeow J, Sim Y, Chan P, Chuan JCJ, Chan CW, Tang SW, Hartman M, Li J. DNA methylation and breast cancer-associated variants. Breast Cancer Res Treat 2021; 188:713-727. [PMID: 33768416 DOI: 10.1007/s10549-021-06185-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND A breast cancer polygenic risk score (PRS) comprising 313 common variants reliably predicts disease risk. We examined possible relationships between genetic variation, regulation, and expression to clarify the molecular alterations associated with these variants. METHODS Genome-wide methylomic variation was quantified (MethylationEPIC) in Asian breast cancer patients (1152 buffy coats from peripheral whole blood). DNA methylation (DNAm) quantitative trait loci (mQTL) mapping was performed for 235 of the 313 variants with minor allele frequencies > 5%. Stability of identified mQTLs (p < 5e-8) across lifetime was examined using a public mQTL database. Identified mQTLs were also mapped to expression quantitative trait loci (eQTLs) in the Genotype-Tissue Expression Project and the eQTLGen Consortium. RESULTS Breast cancer PRS was not associated with DNAm. A higher proportion of significant cis-mQTLs were observed. Of 822 significant cis-mQTLs (179 unique variants) identified in our dataset, 141 (59 unique variants) were significant (p < 5e-8) in a public mQTL database. Eighty-six percent (121/141) of the matched mQTLs were consistent at multiple time points (birth, childhood, adolescence, pregnancy, middle age, post-diagnosis, or treatment). Ninety-three variants associated with DNAm were also cis-eQTLs (35 variants not genome-wide significant). Multiple loci in the breast cancer PRS are associated with DNAm, contributing to the polygenic nature of the disease. These mQTLs are mostly stable over time. CONCLUSIONS Consistent results from DNAm and expression data may reveal new candidate genes not previously associated with breast cancer.
Collapse
Affiliation(s)
- Peh Joo Ho
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore
- Health Systems and Services Research, Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Ivna Ivanković
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Biomedical Informatics, University Hospital of Zurich, Zurich, Switzerland
| | - Seeu Si Ong
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Benita Kiat-Tee Tan
- Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Veronique Kiak Mien Tan
- Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Swee Ho Lim
- KK Breast Department, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Su-Ming Tan
- Division of Breast Surgery, Changi General Hospital, Singapore, Singapore
| | - Qing Ting Tan
- KK Breast Department, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Zhiyan Yan
- KK Breast Department, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
- Cancer Genetics Service, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Clinical Program, Duke NUS, Singapore, Singapore
| | - Yirong Sim
- Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Patrick Chan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | | | - Ching Wan Chan
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Siau Wei Tang
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Jingmei Li
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.
| |
Collapse
|
154
|
Fu Y, Xu F, Jiang L, Miao Z, Liang X, Yang J, Larsson SC, Zheng JS. Circulating vitamin C concentration and risk of cancers: a Mendelian randomization study. BMC Med 2021; 19:171. [PMID: 34325683 PMCID: PMC8323227 DOI: 10.1186/s12916-021-02041-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/21/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Circulating vitamin C concentrations have been associated with several cancers in observational studies, but little is known about the causal direction of the associations. This study aims to explore the potential causal relationship between circulating vitamin C and risk of five most common cancers in Europe. METHODS We used summary-level data for genetic variants associated with plasma vitamin C in a large vitamin C genome-wide association study (GWAS) meta-analysis on 52,018 Europeans, and the corresponding associations with lung, breast, prostate, colon, and rectal cancer from GWAS consortia including up to 870,984 participants of European ancestry. We performed two-sample, bi-directional Mendelian randomization (MR) analyses using inverse-variance-weighted method as the primary approach, while using 6 additional methods (e.g., MR-Egger, weighted median-based, and mode-based methods) as sensitivity analysis to detect and adjust for pleiotropy. We also conducted a meta-analysis of prospective cohort studies and randomized controlled trials to examine the association of vitamin C intakes with cancer outcomes. RESULTS The MR analysis showed no evidence of a causal association of circulating vitamin C concentration with any examined cancer. Although the odds ratio (OR) per one standard deviation increase in genetically predicted circulating vitamin C concentration was 1.34 (95% confidence interval 1.14 to 1.57) for breast cancer in the UK Biobank, this association could not be replicated in the Breast Cancer Association Consortium with an OR of 1.05 (0.94 to 1.17). Smoking initiation, as a positive control for our reverse MR analysis, showed a negative association with circulating vitamin C concentration. However, there was no strong evidence of a causal association of any examined cancer with circulating vitamin C. Sensitivity analysis using 6 different analytical approaches yielded similar results. Moreover, our MR results were consistent with the null findings from the meta-analysis exploring prospective associations of dietary or supplemental vitamin C intakes with cancer risk, except that higher dietary vitamin C intake, but not vitamin C supplement, was associated with a lower risk of lung cancer (risk ratio: 0.84, 95% confidence interval 0.71 to 0.99). CONCLUSIONS These findings provide no evidence to support that physiological-level circulating vitamin C has a large effect on risk of the five most common cancers in European populations, but we cannot rule out very small effect sizes.
Collapse
Affiliation(s)
- Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Longda Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Xinxiu Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jian Yang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China.
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
155
|
Xu J, Li G, Chen M, Li W, Wu Y, Zhang X, Cui Y, Zhang B. rs12537 Is a Novel Susceptibility SNP Associated With Estrogen Receptor Positive Breast Cancer in Chinese Han Population. Front Med (Lausanne) 2021; 8:708644. [PMID: 34395483 PMCID: PMC8355624 DOI: 10.3389/fmed.2021.708644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Genetic testing is widely used in breast cancer and has identified a lot of susceptibility genes and single nucleotide polymorphisms (SNPs). However, for many SNPs, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are not in place. A recent genome-wide long non-coding RNA (lncRNA) association study in Chinese Han has verified a genetic association between rs12537 and breast cancer. This study is aimed at investigating the association between rs12537 and the phenotype. We collected the clinical information of 5,634 breast cancer patients and 6,308 healthy controls in the early study. And χ2 test was used for the comparison between different groups in genotype. The frequency of genotypic distribution among SNP rs12537 has no statistically significant correlation with family history (p = 0.8945), menopausal status (p = 0.3245) or HER-2 (p = 0.2987), but it is statistically and significantly correlated with ER (p = 0.004006) and PR (p = 0.01379). Most importantly, compared to the healthy control, rs12537 variant is significantly correlated with ER positive patients and the p-value has reached the level of the whole genome (p = 1.66E-08 <5.00E-08). Furthermore, we found rs12537 associated gene MTMR3 was lower expressed in breast cancer tissues but highly methylated. In conclusion, our findings indicate that rs12537 is a novel susceptibility gene in ER positive breast cancer in Chinese Han population and it may influence the methylation of MTMR3.
Collapse
Affiliation(s)
- Jingkai Xu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guozheng Li
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Mengyun Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjing Li
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Yaxing Wu
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Bo Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
156
|
Ma S, Ren N, Huang Q. rs10514231 Leads to Breast Cancer Predisposition by Altering ATP6AP1L Gene Expression. Cancers (Basel) 2021; 13:3752. [PMID: 34359652 PMCID: PMC8345087 DOI: 10.3390/cancers13153752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous genetic variants located in autophagy-related genes have been identified for association with various cancer risks, but the biological mechanisms underlying these associations remain largely unknown. Here we investigated their regulatory activity with a parallel reporter gene assay system in breast cancer cells and identified multiple regulatory SNP sites, including rs10514231. It was located in the second intron of ATG10 and showed gene regulatory activity in most breast cancer cells we used. Mechanistically, the T allele of rs10514231 led to ATP6AP1L downregulation by decreasing the binding affinity of TCF7L2. Overexpression of the ATP6AP1L gene in cancer cells diminished cell proliferation, migration, and invasion. Notably, ATP6AP1L downregulation correlated with breast cancer risk and with poor prognosis in patients. These results provide a plausible mechanism behind the association of rs10514231 with breast cancer risk and will be important for more effective therapeutic target identification for precision medicine.
Collapse
Affiliation(s)
| | | | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; (S.M.); (N.R.)
| |
Collapse
|
157
|
Sequencing for germline mutations in Swedish breast cancer families reveals novel breast cancer risk genes. Sci Rep 2021; 11:14737. [PMID: 34282249 PMCID: PMC8289997 DOI: 10.1038/s41598-021-94316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/23/2021] [Indexed: 12/09/2022] Open
Abstract
Identifying genetic cancer risk factors will lead to improved genetic counseling, cancer prevention and cancer care. Analyzing families with a strong history of breast cancer (BC) has been a successful method to identify genes that contribute to the disease. This has led to discoveries of high-risk genes like the BRCA-genes. Nevertheless, many BC incidences are of unknown causes. In this study, exome sequencing on 59 BC patients from 24 Swedish families with a strong history of BC was performed to identify variants in known and novel BC predisposing genes. First, we screened known BC genes and identified two pathogenic variants in the BRIP1 and PALB2 genes. Secondly, to identify novel BC genes, rare and high impact variants and segregating in families were analyzed to identify 544 variants in novel BC candidate genes. Of those, 22 variants were defined as high-risk variants. Several interesting genes, either previously linked with BC or in pathways that when flawed could contribute to BC, were among the detected genes. The strongest candidates identified are the FANCM gene, involved in DNA double-strand break repair, and the RAD54L gene, involved in DNA recombination. Our study shows identifying pathogenic variants is challenging despite a strong family history of BC. Several interesting candidates were observed here that need to be further studied.
Collapse
|
158
|
Smit AK, Sharman AR, Espinoza D, Wallingford C, Young MA, Dunlop K, Tiller J, Newson AJ, Meiser B, Cust AE, Yanes T. Knowledge, views and expectations for cancer polygenic risk testing in clinical practice: A cross-sectional survey of health professionals. Clin Genet 2021; 100:430-439. [PMID: 34216141 DOI: 10.1111/cge.14025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022]
Abstract
Polygenic risk scores (PRS) are becoming increasingly available in clinical practice to evaluate cancer risk. However, little is known about health professionals' knowledge, attitudes, and expectations of PRS. An online questionnaire was distributed by relevant health professional organisations predominately in Australia, Canada and the US to evaluate health professionals' knowledge, views and expectations of PRS. Eligible participants were health professionals who provide cancer risk assessments. Results from the questionnaire were analysed descriptively and content analysis was undertaken of free-text responses. In total, 105 health professionals completed the questionnaire (genetic counsellors 84%; oncologists 6%; clinical geneticists 4%; other 7%). Although responses differed between countries, most participants (61%) had discussed PRS with patients, 20% had ordered a test and 14% had returned test results to a patient. Confidence and knowledge around interpreting PRS were low. Although 69% reported that polygenic testing will certainly or likely influence patient care in the future, most felt unprepared for this. If scaled up to the population, 49% expect that general practitioners would have a primary role in the provision of PRS, supported by genetic health professionals. These findings will inform the development of resources to support health professionals offering polygenic testing, currently and in the future.
Collapse
Affiliation(s)
- Amelia K Smit
- The Daffodil Centre, The University of Sydney, Cancer Council NSW, Sydney, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Ashleigh R Sharman
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David Espinoza
- NHMRC Clinical Trials Centre, The University of Sydney, Australia
| | - Courtney Wallingford
- Dermatology Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Mary-Anne Young
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | - Kate Dunlop
- The Daffodil Centre, The University of Sydney, Cancer Council NSW, Sydney, Australia
| | - Jane Tiller
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Ainsley J Newson
- Faculty of Medicine and Health, Sydney School of Public Health, Sydney Health Ethics, The University of Sydney, Sydney, Australia
| | - Bettina Meiser
- Psychosocial Research Group, Prince of Wales Clinical School, University of NSW, Sydney, Australia
| | - Anne E Cust
- The Daffodil Centre, The University of Sydney, Cancer Council NSW, Sydney, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Tatiane Yanes
- Dermatology Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
159
|
Mancini F, Giorgini L, Teveroni E, Pontecorvi A, Moretti F. Role of Sex in the Therapeutic Targeting of p53 Circuitry. Front Oncol 2021; 11:698946. [PMID: 34307167 PMCID: PMC8298065 DOI: 10.3389/fonc.2021.698946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
Sex profoundly affects cancer incidence and susceptibility to therapy, with sex hormones highly contributing to this disparity. Various studies and omics data suggest a relationship between sex and the oncosuppressor p53 circuitry, including its regulators MDM2 and MDM4. Association of this network with genetic variation underlies sex-related altered cancer risk, age of onset, and cancer sensitivity to therapy. Moreover, sex-related factors, mainly estrogenic hormones, can affect the levels and/or function of the p53 network both in hormone-dependent and independent cancer. Despite this evidence, preclinical and clinical studies aimed to evaluate p53 targeted therapy rarely consider sex and related factors. This review summarizes the studies reporting the relationship between sex and the p53 circuitry, including its associated regulators, MDM2 and MDM4, with particular emphasis on estrogenic hormones. Moreover, we reviewed the evaluation of sex/hormone in preclinical studies and clinical trials employing p53-target therapies, and discuss how patients’ sex and hormonal status could impact these therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Mancini
- Research Unit on Human Reproduction, International Scientific Institute Paul VI, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Ludovica Giorgini
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy.,Catholic University of the Sacred Heart of Rome, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Emanuela Teveroni
- Research Unit on Human Reproduction, International Scientific Institute Paul VI, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Catholic University of the Sacred Heart of Rome, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy
| |
Collapse
|
160
|
Adedokun B, Du Z, Gao G, Ahearn TU, Lunetta KL, Zirpoli G, Figueroa J, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF, Deming-Halverson SL, Rodriguez-Gil JL, Yao S, Ogundiran TO, Ojengbede O, Blot W, Troester MA, Nathanson KL, Hennis A, Nemesure B, Ambs S, Fiorica PN, Sucheston-Campbell LE, Bensen JT, Kushi LH, Torres-Mejia G, Hu D, Fejerman L, Bolla MK, Dennis J, Dunning AM, Easton DF, Michailidou K, Pharoah PDP, Wang Q, Sandler DP, Taylor JA, O'Brien KM, Kitahara CM, Falusi AG, Babalola C, Yarney J, Awuah B, Addai-Wiafe B, Chanock SJ, Olshan AF, Ambrosone CB, Conti DV, Ziv E, Olopade OI, Garcia-Closas M, Palmer JR, Haiman CA, Huo D. Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women. Nat Commun 2021; 12:4198. [PMID: 34234117 PMCID: PMC8263739 DOI: 10.1038/s41467-021-24327-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants.
Collapse
Affiliation(s)
- Babatunde Adedokun
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zhaohui Du
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Jonine Figueroa
- Usher Institute and CRUK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Esther M John
- Departments of Epidemiology & Population Health and of Medicine (Oncology) and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Leslie Bernstein
- Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sarah Nyante
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Sue A Ingles
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandra L Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine L Nathanson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anselm Hennis
- University of the West Indies, Bridgetown, Barbados
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Peter N Fiorica
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lara E Sucheston-Campbell
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Gabriela Torres-Mejia
- Center for Population Health Research, Instituto Nacional de Salud Publica, Cuernavaca, Mexico
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura Fejerman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Adeyinka G Falusi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Chinedum Babalola
- Department of Pharmaceutical Chemistry, University of Ibadan, Ibadan, Oyo, Nigeria
| | | | | | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - David V Conti
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Christopher A Haiman
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Dezheng Huo
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
161
|
Hou C, Hou Q, Xie X, Wang H, Chen Y, Lu T, Wu Q, Liang Y, Hu Y, Mao Y. Serum iron status and the risk of breast cancer in the European population: a two-sample Mendelian randomisation study. GENES & NUTRITION 2021; 16:9. [PMID: 34229617 PMCID: PMC8259019 DOI: 10.1186/s12263-021-00691-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previous observational studies have provided conflicting results on the association between serum iron status and the risk of breast cancer. Considering the relevance of this relationship to breast cancer prevention, its elucidation is warranted. OBJECT We used a two-sample Mendelian randomisation (MR) study to explore the causal relationship between serum iron status and the risk of breast cancer. METHOD To select single nucleotide polymorphisms (SNPs) that could be used as instrumental variables for iron status, we used the Genetics of Iron Status consortium, which includes 11 discovery and 8 replication cohorts, encompassing 48,972 individuals of European descent. Moreover, we used the OncoArray network to select SNPs that could be considered instrumental variables for the outcome of interest (breast cancer); this dataset included 122,977 individuals of European descent with breast cancer and 105,974 peers without breast cancer. Both conservative (SNPs associated with overall iron status markers) and liberal (SNPs associated with the levels of at least one iron status marker) approaches were used as part of the MR analysis. For the former, we used an inverse-variance weighted (IVW) method, whereas for the latter, we used the IVW, MR-Egger regression, weighted median and simple mode methods. RESULTS When the conservative approach was used, iron status showed no significant association with the risk of breast cancer or any of its subtypes. However, when the liberal approach was used, transferrin levels were found to be positively associated with the risk of ER-negative breast cancer based on the simple mode method (OR for MR, 1.225; 95% CI, 1.064, 1.410; P = 0.030). Nevertheless, the levels of the other iron status markers showed no association with the risk of breast cancer or its subtypes (P > 0.05). CONCLUSION In our MR study, the liberal approach suggested that changes in the concentration of transferrin could increase the risk of ER-negative breast cancer, although the levels of other iron status markers had no effect on the risk of breast cancer or its subtypes. This should be verified in future studies.
Collapse
Affiliation(s)
- Chenyang Hou
- Department of Information and Management, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Qingzhi Hou
- Department of Occupational Health and Environmental Health, School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, 271000, Shandong, China
| | - Xing Xie
- Life Sciences Institute, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Huifeng Wang
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yueliang Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Tingxi Lu
- Department of Information and Management, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Qunying Wu
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yongcong Liang
- Life Sciences Institute, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yanling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, 530000, Guangxi, China.
| | - Yuang Mao
- Department of Information and Management, Guangxi Medical University, Nanning, 530000, Guangxi, China.
| |
Collapse
|
162
|
Genome-wide association studies: assessing trait characteristics in model and crop plants. Cell Mol Life Sci 2021; 78:5743-5754. [PMID: 34196733 PMCID: PMC8316211 DOI: 10.1007/s00018-021-03868-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.
Collapse
|
163
|
Baxter JS, Johnson N, Tomczyk K, Gillespie A, Maguire S, Brough R, Fachal L, Michailidou K, Bolla MK, Wang Q, Dennis J, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Becher H, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Brenner H, Brucker SY, Cai Q, Campa D, Canzian F, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Choi JY, Clarke CL, Colonna S, Conroy DM, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Fasching PA, Figueroa J, Flyger H, Gago-Dominguez M, Gao C, García-Closas M, García-Sáenz JA, Ghoussaini M, Giles GG, Goldberg MS, González-Neira A, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Hall P, Hamann U, Hartman M, Hatse S, Hauke J, Hollestelle A, Hoppe R, Hopper JL, Hou MF, Ito H, Iwasaki M, Jager A, Jakubowska A, Janni W, John EM, Joseph V, Jung A, Kaaks R, Kang D, Keeman R, Khusnutdinova E, Kim SW, Kosma VM, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Larson NL, Larsson SC, et alBaxter JS, Johnson N, Tomczyk K, Gillespie A, Maguire S, Brough R, Fachal L, Michailidou K, Bolla MK, Wang Q, Dennis J, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Becher H, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Brenner H, Brucker SY, Cai Q, Campa D, Canzian F, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Choi JY, Clarke CL, Colonna S, Conroy DM, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Fasching PA, Figueroa J, Flyger H, Gago-Dominguez M, Gao C, García-Closas M, García-Sáenz JA, Ghoussaini M, Giles GG, Goldberg MS, González-Neira A, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Hall P, Hamann U, Hartman M, Hatse S, Hauke J, Hollestelle A, Hoppe R, Hopper JL, Hou MF, Ito H, Iwasaki M, Jager A, Jakubowska A, Janni W, John EM, Joseph V, Jung A, Kaaks R, Kang D, Keeman R, Khusnutdinova E, Kim SW, Kosma VM, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Larson NL, Larsson SC, Le Marchand L, Lejbkowicz F, Li J, Long J, Lophatananon A, Lubiński J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Matsuo K, Mavroudis D, Mayes R, Menon U, Milne RL, Mohd Taib NA, Muir K, Muranen TA, Murphy RA, Nevanlinna H, O'Brien KM, Offit K, Olson JE, Olsson H, Park SK, Park-Simon TW, Patel AV, Peterlongo P, Peto J, Plaseska-Karanfilska D, Presneau N, Pylkäs K, Rack B, Rennert G, Romero A, Ruebner M, Rüdiger T, Saloustros E, Sandler DP, Sawyer EJ, Schmidt MK, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Shah M, Shen CY, Shu XO, Simard J, Southey MC, Stone J, Surowy H, Swerdlow AJ, Tamimi RM, Tapper WJ, Taylor JA, Teo SH, Teras LR, Terry MB, Toland AE, Tomlinson I, Truong T, Tseng CC, Untch M, Vachon CM, van den Ouweland AMW, Wang SS, Weinberg CR, Wendt C, Winham SJ, Winqvist R, Wolk A, Wu AH, Yamaji T, Zheng W, Ziogas A, Pharoah PDP, Dunning AM, Easton DF, Pettitt SJ, Lord CJ, Haider S, Orr N, Fletcher O. Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. Am J Hum Genet 2021; 108:1190-1203. [PMID: 34146516 PMCID: PMC8322933 DOI: 10.1016/j.ajhg.2021.05.013] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31).
Collapse
Affiliation(s)
- Joseph S Baxter
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK.
| | - Nichola Johnson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Katarzyna Tomczyk
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Andrea Gillespie
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Sarah Maguire
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland BT7 1NN, UK
| | - Rachel Brough
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA 92617, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund 222 42, Sweden
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Javier Benitez
- Biomedical Network on Rare Diseases (CIBERER), Madrid 28029, Spain; Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus; Department of Radiation Oncology, Hannover Medical School, Hannover 30625, Germany; Gynaecology Research Unit, Hannover Medical School, Hannover 30625, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev 2730, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev 2730, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen 72076, Germany
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo 36312, Spain
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Sarah Colonna
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Don M Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TN, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover 30625, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon 69372, France
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London W1B 2HW, UK
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen 91054, Germany
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig 04107, Germany; LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig 04103, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany; David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK; Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela 15706, Spain; Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Chi Gao
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28040, Spain
| | - Maya Ghoussaini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Open Targets, Core Genetics Team, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC H4A 3J1, Canada
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif 94805, France
| | - Melanie Gündert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg 69120, Germany; Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 65, Sweden; Department of Oncology, Södersjukhuset, Stockholm 118 83, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore; Department of Surgery, National University Hospital, Singapore 119228, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven Cancer Institute, Leuven 3000, Belgium
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart 70376, Germany; University of Tübingen, Tübingen 72074, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Hidemi Ito
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin 71-252, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin 71-252, Poland
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm 89075, Germany
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Vijai Joseph
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Renske Keeman
- Division of Molecular Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450000, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul 07442, Korea
| | - Veli-Matti Kosma
- Translational Cancer Research Area, University of Eastern Finland, Kuopio 70210, Finland; Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio 70210, Finland; Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0450, Norway; Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0379, Norway
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje 1000, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong; Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven 3001, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Nicole L Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala 751 05, Sweden
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Flavio Lejbkowicz
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa 35254, Israel
| | - Jingmei Li
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; Human Genetics Division, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin 71-252, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio 70210, Finland; Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio 70210, Finland; Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan 20133, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm 118 83, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm 118 83, Sweden
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion 711 10, Greece
| | - Rebecca Mayes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Usha Menon
- Institute of Clinical Trials & Methodology, University College London, London WC1V 6LJ, UK
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki 00290, Finland
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Cancer Control Research, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki 00290, Finland
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund 222 42, Sweden
| | - Sue K Park
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; Convergence Graduate Program in Innovative Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | | | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje 1000, Republic of North Macedonia
| | - Nadege Presneau
- School of Life Sciences, University of Westminster, London W1B 2HW, UK
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu 90570, Finland; Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu 90570, Finland
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm 89075, Germany
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa 35254, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid 28222, Spain
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Thomas Rüdiger
- Institute of Pathology, Staedtisches Klinikum Karlsruhe, Karlsruhe 76133, Germany
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands; Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam 1066 CX, the Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Andreas Schneeweiss
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg 69120, Germany; National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg 69120, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC G1V 4G2, Canada
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, WA 6000, Australia
| | - Harald Surowy
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg 69120, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK; Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, UK
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - William J Tapper
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA; Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif 94805, France
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael Untch
- Department of Gynecology and Obstetrics, Helios Clinics Berlin-Buch, Berlin 13125, Germany
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Sophia S Wang
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm 118 83, Sweden
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu 90570, Finland; Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu 90570, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala 751 05, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA 92617, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Stephen J Pettitt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland BT7 1NN, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
164
|
Abstract
Disease classification, or nosology, was historically driven by careful examination of clinical features of patients. As technologies to measure and understand human phenotypes advanced, so too did classifications of disease, and the advent of genetic data has led to a surge in genetic subtyping in the past decades. Although the fundamental process of refining disease definitions and subtypes is shared across diverse fields, each field is driven by its own goals and technological expertise, leading to inconsistent and conflicting definitions of disease subtypes. Here, we review several classical and recent subtypes and subtyping approaches and provide concrete definitions to delineate subtypes. In particular, we focus on subtypes with distinct causal disease biology, which are of primary interest to scientists, and subtypes with pragmatic medical benefits, which are of primary interest to physicians. We propose genetic heterogeneity as a gold standard for establishing biologically distinct subtypes of complex polygenic disease. We focus especially on methods to find and validate genetic subtypes, emphasizing common pitfalls and how to avoid them.
Collapse
Affiliation(s)
- Andy Dahl
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA; .,Department of Neurology, University of California, Los Angeles, California 90024, USA; .,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, California 90024, USA; .,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
165
|
Cumova A, Vymetalkova V, Opattova A, Bouskova V, Pardini B, Kopeckova K, Kozevnikovova R, Lickova K, Ambrus M, Vodickova L, Naccarati A, Soucek P, Vodicka P. Genetic variations in 3´UTRs of SMUG1 and NEIL2 genes modulate breast cancer risk, survival and therapy response. Mutagenesis 2021; 36:269-279. [PMID: 34097065 DOI: 10.1093/mutage/geab017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy in women accounting for approximately 2 million new cases worldwide annually. Several genetic, epigenetic and environmental factors are known to be involved in BC development and progression, including alterations in post-transcriptional gene regulation mediated by microRNAs (miRNAs). Single nucleotide polymorphisms (SNPs) located in miRNA binding sites (miRSNPs) in 3'-untranslated (UTR) regions of target genes may affect miRNA-binding affinity and consequently modulate gene expression. We have previously reported a significant association of miRSNPs in the SMUG1 and NEIL2 genes with overall survival in colorectal cancer patients. SMUG1 and NEIL2 are DNA glycosylases involved in base excision DNA repair (BER). Assuming that certain genetic traits are common for solid tumours, we have investigated wherever variations in SMUG1 and NEIL2 genes display an association with BC risk, prognosis, and therapy response in a group of 673 BC patients and 675 healthy female controls. Patients with TC genotype of NEIL2 rs6997097 and receiving only hormonal therapy displayed markedly shorter overall survival (OS) (HR=4.15, 95% CI=1.7-10.16, P= 0.002) and disease-free survival (DFS) (HR=2.56, 95% CI=1.5-5.7, P= 0.02). Our results suggest that regulation of base excision repair glycosylases operated by miRNAs may modulate the prognosis of hormonally treated BC.
Collapse
Affiliation(s)
- Andrea Cumova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Opattova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Bouskova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Katerina Lickova
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Miloslav Ambrus
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
166
|
Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation (PERSPECTIVE I&I). J Pers Med 2021; 11:jpm11060511. [PMID: 34199804 PMCID: PMC8226444 DOI: 10.3390/jpm11060511] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of breast cancer through screening reduces breast cancer mortality. The benefits of screening must also be considered within the context of potential harms (e.g., false positives, overdiagnosis). Furthermore, while breast cancer risk is highly variable within the population, most screening programs use age to determine eligibility. A risk-based approach is expected to improve the benefit-harm ratio of breast cancer screening programs. The PERSPECTIVE I&I (Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation) project seeks to improve personalized risk assessment to allow for a cost-effective, population-based approach to risk-based screening and determine best practices for implementation in Canada. This commentary describes the four inter-related activities that comprise the PERSPECTIVE I&I project. 1: Identification and validation of novel moderate to high-risk susceptibility genes. 2: Improvement, validation, and adaptation of a risk prediction web-tool for the Canadian context. 3: Development and piloting of a socio-ethical framework to support implementation of risk-based breast cancer screening. 4: Economic analysis to optimize the implementation of risk-based screening. Risk-based screening and prevention is expected to benefit all women, empowering them to work with their healthcare provider to make informed decisions about screening and prevention.
Collapse
|
167
|
Schmutzler RK. Quality and Quantity: How to Organize a Countrywide Genetic Counseling and Testing. Breast Care (Basel) 2021; 16:196-201. [PMID: 34248460 PMCID: PMC8248770 DOI: 10.1159/000515429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND About 30% of all women with breast or ovarian cancer exhibit a family history of the disease. So far, the genetic cause could be deciphered in about 30% of these cases. The results demonstrate a high genetic heterogeneity, with high-risk and moderate-risk genes and low-risk variants contributing alone or in concert to the development of cancer. Furthermore, it has been shown that the genotype significantly determines the phenotype and that knowledge of the phenotype is as important as the genotype to offer adequate and risk-adapted prevention to persons at risk. For newly identified risk genes, however, the phenotype is not sufficiently characterized at first, and thus prevention measures are not sufficiently evaluated. SUMMARY The German Consortium for Hereditary Breast and Ovarian Cancer has developed a concept for collecting the missing data in the context of knowledge-generating care and at the same time ensuring care based on the best available knowledge. Core elements of this concept are: structured and standardized care, an outcome-oriented evaluation based on a comprehensive registry, networking with certified breast and gynecological cancer centers combined with regular training on state-of-the-art care for doctors, and compilation of comprehensible patient information. This comprehensive concept has been incorporated into contracts for specialized care with health insurers and thus ensures nationwide care at the highest scientific and clinical levels. KEY MESSAGES This article describes how to implement a concept of evidence-generating care for risk-adjusted prevention in a nationwide health care system.
Collapse
Affiliation(s)
- Rita Katharina Schmutzler
- Center for Familial Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
168
|
Stickeler E, Aktas B, Behrens A, Belleville E, Ditsch N, Fasching PA, Fehm TN, Hartkopf AD, Jackisch C, Janni W, Kolberg-Liedtke C, Kolberg HC, Lüftner D, Lux MP, Müller V, Schneeweiss A, Schütz F, Schulmeyer CE, Tesch H, Thomssen C, Uleer C, Untch M, Welslau M, Wöckel A, Wurmthaler LA, Würstlein R, Thill M. Update Breast Cancer 2021 Part 1 - Prevention and Early Stages. Geburtshilfe Frauenheilkd 2021; 81:526-538. [PMID: 34035547 PMCID: PMC8137274 DOI: 10.1055/a-1464-0953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
This review summarises not only the latest evidence on prevention, but also the current research on the treatment of early-stage breast cancer patients. Recent years have seen a growing body of evidence on the risk of high- and moderate-penetrance breast cancer susceptibility genes. A large international consortium has now been able to further refine the answer to the question of the significance of the so-called panel genes. Moreover, the data on treatment selection regarding endocrine efficacy and the decision for or against chemotherapy have also been advanced markedly. There is also new data on adjuvant CDK4/6 (cyclin-dependent kinase 4/6) inhibitors, which are standard in first-line treatment in patients with metastatic HER2-negative, hormone receptor-positive (HR+) breast cancer. For other therapies such as immune checkpoint inhibitors, which have successfully improved the rate of pathologic complete response (pCR) in neoadjuvant treatment settings for patients with triple-negative breast cancer (TNBC), there is a growing understanding of the quality of life and side effects. This is especially important in situations where patients could possibly be cured without such a regimen.
Collapse
Affiliation(s)
- Elmar Stickeler
- Department of Gynecology and Obstetrics, RWTH University Hospital Aachen, Aachen, Germany
| | - Bahriye Aktas
- Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Annika Behrens
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas D. Hartkopf
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Christian Jackisch
- Department of Obstetrics and Gynecology, Sana Klinikum Offenbach, Offenbach, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | | | | | - Diana Lüftner
- Charité University Hospital, Department of Hematology, Oncology and Tumour Immunology, University Medicine Berlin, Berlin, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, Germany
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Carla E. Schulmeyer
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Uleer
- Praxisgemeinschaft Frauenärzte am Bahnhofsplatz, Hildesheim, Germany
| | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Genecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | | | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Lena A. Wurmthaler
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt, Germany
| |
Collapse
|
169
|
Majumdar A, Giambartolomei C, Cai N, Haldar T, Schwarz T, Gandal M, Flint J, Pasaniuc B. Leveraging eQTLs to identify individual-level tissue of interest for a complex trait. PLoS Comput Biol 2021; 17:e1008915. [PMID: 34019542 PMCID: PMC8174686 DOI: 10.1371/journal.pcbi.1008915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 06/03/2021] [Accepted: 03/26/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic predisposition for complex traits often acts through multiple tissues at different time points during development. As a simple example, the genetic predisposition for obesity could be manifested either through inherited variants that control metabolism through regulation of genes expressed in the brain, or that control fat storage through dysregulation of genes expressed in adipose tissue, or both. Here we describe a statistical approach that leverages tissue-specific expression quantitative trait loci (eQTLs) corresponding to tissue-specific genes to prioritize a relevant tissue underlying the genetic predisposition of a given individual for a complex trait. Unlike existing approaches that prioritize relevant tissues for the trait in the population, our approach probabilistically quantifies the tissue-wise genetic contribution to the trait for a given individual. We hypothesize that for a subgroup of individuals the genetic contribution to the trait can be mediated primarily through a specific tissue. Through simulations using the UK Biobank, we show that our approach can predict the relevant tissue accurately and can cluster individuals according to their tissue-specific genetic architecture. We analyze body mass index (BMI) and waist to hip ratio adjusted for BMI (WHRadjBMI) in the UK Biobank to identify subgroups of individuals whose genetic predisposition act primarily through brain versus adipose tissue, and adipose versus muscle tissue, respectively. Notably, we find that these individuals have specific phenotypic features beyond BMI and WHRadjBMI that distinguish them from random individuals in the data, suggesting biological effects of tissue-specific genetic contribution for these traits.
Collapse
Affiliation(s)
- Arunabha Majumdar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Mathematics, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Claudia Giambartolomei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Na Cai
- Wellcome Sanger Institute, Wellcome genome campus, Hinxton, United Kingdom
- European Bioinformatics Institute (EMBL-EBI), Wellcome genome campus, Hinxton, United Kingdom
| | - Tanushree Haldar
- Institute for Human Genetics, University of California, San Francisco, California, United States of America
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| | - Michael Gandal
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| |
Collapse
|
170
|
Ma C, Storer CE, Chandran U, LaFramboise WA, Petrosko P, Frank M, Hartman DJ, Pantanowitz L, Haritunians T, Head RD, Liu TC. Crohn's disease-associated ATG16L1 T300A genotype is associated with improved survival in gastric cancer. EBioMedicine 2021; 67:103347. [PMID: 33906066 PMCID: PMC8099593 DOI: 10.1016/j.ebiom.2021.103347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A non-synonymous single nucleotide polymorphism of the ATG16L1 gene, T300A, is a major Crohn's disease (CD) susceptibility allele, and is known to be associated with increased apoptosis induction in the small intestinal crypt base in CD subjects and mouse models. We hypothesized that ATG16L1 T300A genotype also correlates with increased tumor apoptosis and therefore could lead to superior clinical outcome in cancer subjects. METHODS T300A genotyping by Taqman assay was performed for gastric carcinoma subjects who underwent resection from two academic medical centers. Transcriptomic analysis was performed by RNA-seq on formalin-fixed paraffin-embedded cancerous tissue. Tumor apoptosis and autophagy were determined by cleaved caspase-3 and p62 immunohistochemistry, respectively. The subjects' genotypes were correlated with demographics, various histopathologic features, transcriptome, and clinical outcome. FINDINGS Of the 220 genotyped subjects, 163 (74%) subjects carried the T300A allele(s), including 55 (25%) homozygous and 108 (49%) heterozygous subjects. The T300A/T300A subjects had superior overall survival than the other groups. Their tumors were associated with increased CD-like lymphoid aggregates and increased tumor apoptosis without concurrent increase in tumor mitosis or defective autophagy. Transcriptomic analysis showed upregulation of WNT/β-catenin signaling and downregulation of PPAR, EGFR, and inflammatory chemokine pathways in tumors of T300A/T300A subjects. INTERPRETATION Gastric carcinoma of subjects with the T300A/T300A genotype is associated with repressed EGFR and PPAR pathways, increased tumor apoptosis, and improved overall survival. Genotyping gastric cancer subjects may provide additional insight for clinical stratification.
Collapse
Affiliation(s)
- Changqing Ma
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States.
| | - Chad E Storer
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - William A LaFramboise
- UPMC Hillman Cancer Center, Cancer Genomics Facility, Pittsburgh, PA 15232, United States
| | - Patricia Petrosko
- UPMC Hillman Cancer Center, Cancer Genomics Facility, Pittsburgh, PA 15232, United States
| | - Madison Frank
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Douglas J Hartman
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Talin Haritunians
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Ta-Chiang Liu
- Departments of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO 63110, United States.
| |
Collapse
|
171
|
Villemin JP, Lorenzi C, Cabrillac MS, Oldfield A, Ritchie W, Luco RF. A cell-to-patient machine learning transfer approach uncovers novel basal-like breast cancer prognostic markers amongst alternative splice variants. BMC Biol 2021; 19:70. [PMID: 33845831 PMCID: PMC8042689 DOI: 10.1186/s12915-021-01002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression profiles have been successfully used to classify breast tumours into 5 major types with different prognosis and sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice variants to subclassify highly aggressive breast cancers. RESULTS Transcriptomics analysis of alternative splicing events between luminal, basal A and basal B breast cancer cell lines identified a unique splicing signature for a subtype of tumours, the basal B, whose classification is not in use in the clinic yet. Basal B cell lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-to-mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance to drugs. By developing a semi-supervised machine learning approach, we transferred the molecular knowledge gained from these cell lines into patients to subclassify basal-like triple negative tumours into basal A- and basal B-like categories. Changes in splicing of 25 alternative exons, intimately related to EMT and cell invasion such as ENAH, CD44 and CTNND1, were sufficient to identify the basal-like patients with the worst prognosis. Moreover, patients expressing this basal B-specific splicing signature also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, supporting a more invasive phenotype for this basal B-like breast cancer subtype. CONCLUSIONS Using a novel machine learning approach, we have identified an EMT-related splicing signature capable of subclassifying the most aggressive type of breast cancer, which are basal-like triple negative tumours. This proof-of-concept demonstrates that the biological knowledge acquired from cell lines can be transferred to patients data for further clinical investigation. More studies, particularly in 3D culture and organoids, will increase the accuracy of this transfer of knowledge, which will open new perspectives into the development of novel therapeutic strategies and the further identification of specific biomarkers for drug resistance and cancer relapse.
Collapse
Affiliation(s)
- Jean-Philippe Villemin
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Claudio Lorenzi
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Marie-Sarah Cabrillac
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Andrew Oldfield
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - William Ritchie
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
| | - Reini F Luco
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
| |
Collapse
|
172
|
van den Broek JJ, Schechter CB, van Ravesteyn NT, Janssens ACJW, Wolfson MC, Trentham-Dietz A, Simard J, Easton DF, Mandelblatt JS, Kraft P, de Koning HJ. Personalizing Breast Cancer Screening Based on Polygenic Risk and Family History. J Natl Cancer Inst 2021; 113:434-442. [PMID: 32853342 PMCID: PMC8599807 DOI: 10.1093/jnci/djaa127] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We assessed the clinical utility of a first-degree breast cancer family history and polygenic risk score (PRS) to inform screening decisions among women aged 30-50 years. METHODS Two established breast cancer models evaluated digital mammography screening strategies in the 1985 US birth cohort by risk groups defined by family history and PRS based on 313 single nucleotide polymorphisms. Strategies varied in initiation age (30, 35, 40, 45, and 50 years) and interval (annual, hybrid, biennial, triennial). The benefits (breast cancer deaths averted, life-years gained) and harms (false-positive mammograms, overdiagnoses) were compared with those seen with 3 established screening guidelines. RESULTS Women with a breast cancer family history who initiated biennial screening at age 40 years (vs 50 years) had a 36% (model range = 29%-40%) increase in life-years gained and 20% (model range = 16%-24%) more breast cancer deaths averted, but 21% (model range = 17%-23%) more overdiagnoses and 63% (model range = 62%-64%) more false positives. Screening tailored to PRS vs biennial screening from 50 to 74 years had smaller positive effects on life-years gained (20%) and breast cancer deaths averted (11%) but also smaller increases in overdiagnoses (10%) and false positives (26%). Combined use of family history and PRS vs biennial screening from 50 to 74 years had the greatest increase in life-years gained (29%) and breast cancer deaths averted (18%). CONCLUSIONS Our results suggest that breast cancer family history and PRS could guide screening decisions before age 50 years among women at increased risk for breast cancer but expected increases in overdiagnoses and false positives should be expected.
Collapse
Affiliation(s)
- Jeroen J van den Broek
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Clyde B Schechter
- Departments of Family and Social Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Michael C Wolfson
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Amy Trentham-Dietz
- Carbone Cancer Center and Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacques Simard
- Department of Medicine, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department Public Health, and Primary Care, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jeanne S Mandelblatt
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Peter Kraft
- Department of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Harry J de Koning
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
173
|
Zhou J, Chen C, Liu S, Zhou W, Du J, Jiang Y, Dai J, Jin G, Ma H, Hu Z, Chen J, Shen H. Potential functional variants of KIAA genes are associated with breast cancer risk in a case control study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:549. [PMID: 33987247 DOI: 10.21037/atm-20-6108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background KIAA genes identified in the Kazusa cDNA-sequencing project may play important roles in biological processes and are involved in carcinogenesis of many cancers. Genetic variants of KIAA genes are implicated in the abnormal expression of these genes and are linked to susceptibility of several human complex diseases. Methods The differentially expressed KIAA genes were screened and identified in The Cancer Genome Atlas (TCGA) database of breast cancer. A total of 48 variants located in the 28 KIAA genes were selected to investigate the associations between polymorphism and breast cancer in 1,032 cases and 1,063 cancer-free controls in a Chinese population. Results Two coding variants, which included a SNP rs2306369 in KIAA1109 and a SNP rs1205434 in KIAA1755, were identified to be associated with the incidences of breast cancer. Logistic regression analysis showed that the SNP rs2306369 G allele was associated with a decreased risk of breast cancer (additive model: OR =0.81, 95% CI: 0.66-0.99, P=0.038), whereas the SNP rs1205434 A allele was involved with a higher risk of breast cancer (additive model: OR =1.19, 95% CI: 1.02-1.38, P= 0.025). Further stratified analysis revealed that the SNP rs1205434 showed a significant difference for age at menarche strata (heterogeneity test P=0.009). Multiplicative interaction analysis indicated that there was positive multiplicative interaction between the SNP rs1205434 and menarche age (OR =1.09, 95% CI: 1.01-1.17, P=0.036). Additionally, expression quantitative trait loci analysis revealed that the SNP rs1205434 A allele could decrease the KIAA1755 expression in the Genotype-Tissue Expression (GTEx) database (P=0.002). The Kaplan-Meier plotter showed that breast cancer patients with high KIAA1755 expression have significantly better outcomes than those with low levels of expression (HR =0.84, 95% CI: 0.72-0.99, P=0.033). Conclusions The results indicate that the genetic variants (rs2306369 and rs1205434) in the coding region of KIAA1109 and KIAA1755 respectively may affect Chinese females' breast cancer susceptibility and act as potential predictive biomarkers for breast cancer.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Statistical Center, Information Department, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Congcong Chen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Sijun Liu
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wen Zhou
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiaping Chen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
174
|
Woodward ER, van Veen EM, Evans DG. From BRCA1 to Polygenic Risk Scores: Mutation-Associated Risks in Breast Cancer-Related Genes. Breast Care (Basel) 2021; 16:202-213. [PMID: 34248461 DOI: 10.1159/000515319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background There has been huge progress over the last 30 years in identifying the familial component of breast cancer. Summary Currently around 20% is explained by the high-risk genes BRCA1 and BRCA2, a further 2% by other high-penetrance genes, and around 5% by the moderate risk genes ATM and CHEK2. In contrast, the more than 300 low-penetrance single-nucleotide polymorphisms (SNP) now account for around 28% and they are predicted to account for most of the remaining 45% yet to be found. Even for high-risk genes which confer a 40-90% risk of breast cancer, these SNP can substantially affect the level of breast cancer risk. Indeed, the strength of family history and hormonal and reproductive factors is very important in assessing risk even for a BRCA carrier. The risks of contralateral breast cancer are also affected by SNP as well as by the presence of high or moderate risk genes. Genetic testing using gene panels is now commonplace. Key-Messages There is a need for a more parsimonious approach to panels only testing those genes with a definite 2-fold increased risk and only testing those genes with challenging management implications, such as CDH1 and TP53, when there is strong clinical indication to do so. Testing of SNP alongside genes is likely to provide a more accurate risk assessment.
Collapse
Affiliation(s)
- Emma R Woodward
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elke M van Veen
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,PREVENT Breast Cancer Prevention Centre, Nightingale Centre, Manchester Universities Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom.,Manchester Breast Centre, Manchester Cancer Research Centre, The Christie, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
175
|
Variable expression quantitative trait loci analysis of breast cancer risk variants. Sci Rep 2021; 11:7192. [PMID: 33785833 PMCID: PMC8009949 DOI: 10.1038/s41598-021-86690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Genome wide association studies (GWAS) have identified more than 180 variants associated with breast cancer risk, however the underlying functional mechanisms and biological pathways which confer disease susceptibility remain largely unknown. As gene expression traits are under genetic regulation we hypothesise that differences in gene expression variability may identify causal breast cancer susceptibility genes. We performed variable expression quantitative trait loci (veQTL) analysis using tissue-specific expression data from the Genotype-Tissue Expression (GTEx) Common Fund Project. veQTL analysis identified 70 associations (p < 5 × 10–8) consisting of 60 genes and 27 breast cancer risk variants, including 55 veQTL that were observed in breast tissue only. Pathway analysis of genes associated with breast-specific veQTL revealed an enrichment of four genes (CYP11B1, CYP17A1 HSD3B2 and STAR) involved in the C21-steroidal biosynthesis pathway that converts cholesterol to breast-related hormones (e.g. oestrogen). Each of these four genes were significantly more variable in individuals homozygous for rs11075995 (A/A) breast cancer risk allele located in the FTO gene, which encodes an RNA demethylase. The A/A allele was also found associated with reduced expression of FTO, suggesting an epi-transcriptomic mechanism may underlie the dysregulation of genes involved in hormonal biosynthesis leading to an increased risk of breast cancer. These findings provide evidence that genetic variants govern high levels of expression variance in breast tissue, thus building a more comprehensive insight into the underlying biology of breast cancer risk loci.
Collapse
|
176
|
Genome-wide long non-coding RNA association study on Han Chinese women identifies lncHSAT164 as a novel susceptibility gene for breast cancer. Chin Med J (Engl) 2021; 134:1138-1145. [PMID: 34018994 PMCID: PMC8143754 DOI: 10.1097/cm9.0000000000001429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Single-nucleotide polymorphisms (SNPs)-associated genes and long non-coding RNAs (lncRNAs) can contribute to human disease. To comprehensively investigate the contribution of lncRNAs to breast cancer, we performed the first genome-wide lncRNA association study on Han Chinese women. Methods: We designed an lncRNA array containing >800,000 SNPs, which was incorporated into a 96-array plate by Affymetrix (CapitalBio Technology, China). Subsequently, we performed a two-stage genome-wide lncRNA association study on Han Chinese women covering 11,942 individuals (5634 breast cancer patients and 6308 healthy controls). Additionally, in vitro gain or loss of function strategies were performed to clarify the function of a novel SNP-associated gene. Results: We identified a novel breast cancer-associated susceptibility SNP, rs11066150 (Pmeta = 2.34 × 10−8), and a previously reported SNP, rs9397435 (Pmeta = 4.32 × 10−38), in Han Chinese women. rs11066150 is located in NONHSAT164009.1 (lncHSAT164), which is highly expressed in breast cancer tissues and cell lines. lncHSAT164 overexpression promoted colony formation, whereas lncHSAT164 knockdown promoted cell apoptosis and reduced colony formation by regulating the cell cycle. Conclusions: Based on our lncRNA array, we identified a novel breast cancer-associated lncRNA and found that lncHSAT164 may contribute to breast cancer by regulating the cell cycle. These findings suggest a potential therapeutic target in breast cancer.
Collapse
|
177
|
Kapoor PM, Mavaddat N, Choudhury PP, Wilcox AN, Lindström S, Behrens S, Michailidou K, Dennis J, Bolla MK, Wang Q, Jung A, Abu-Ful Z, Ahearn T, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Freeman LEB, Becher H, Beckmann MW, Beeghly-Fadiel A, Benitez J, Bernstein L, Bojesen SE, Brauch H, Brenner H, Brüning T, Cai Q, Campa D, Canzian F, Carracedo A, Carter BD, Castelao JE, Chanock SJ, Chatterjee N, Chenevix-Trench G, Clarke CL, Couch FJ, Cox A, Cross SS, Czene K, Dai JY, Earp HS, Ekici AB, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Figueroa J, Fritschi L, Gabrielson M, Gago-Dominguez M, Gao C, Gapstur SM, Gaudet MM, Giles GG, González-Neira A, Guénel P, Haeberle L, Haiman CA, Håkansson N, Hall P, Hamann U, Hatse S, Heyworth J, Holleczek B, Hoover RN, Hopper JL, Howell A, Hunter DJ, ABCTB Investigators, kConFab/AOCS Investigators, John EM, Jones ME, Kaaks R, Keeman R, Kitahara CM, Ko YD, Koutros S, Kurian AW, Lambrechts D, Le Marchand L, Lee E, Lejbkowicz F, Linet M, Lissowska J, Llaneza A, MacInnis RJ, Martinez ME, Maurer T, McLean C, Neuhausen SL, Newman WG, Norman A, O’Brien KM, Olshan AF, Olson JE, Olsson H, Orr N, et alKapoor PM, Mavaddat N, Choudhury PP, Wilcox AN, Lindström S, Behrens S, Michailidou K, Dennis J, Bolla MK, Wang Q, Jung A, Abu-Ful Z, Ahearn T, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Freeman LEB, Becher H, Beckmann MW, Beeghly-Fadiel A, Benitez J, Bernstein L, Bojesen SE, Brauch H, Brenner H, Brüning T, Cai Q, Campa D, Canzian F, Carracedo A, Carter BD, Castelao JE, Chanock SJ, Chatterjee N, Chenevix-Trench G, Clarke CL, Couch FJ, Cox A, Cross SS, Czene K, Dai JY, Earp HS, Ekici AB, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Figueroa J, Fritschi L, Gabrielson M, Gago-Dominguez M, Gao C, Gapstur SM, Gaudet MM, Giles GG, González-Neira A, Guénel P, Haeberle L, Haiman CA, Håkansson N, Hall P, Hamann U, Hatse S, Heyworth J, Holleczek B, Hoover RN, Hopper JL, Howell A, Hunter DJ, ABCTB Investigators, kConFab/AOCS Investigators, John EM, Jones ME, Kaaks R, Keeman R, Kitahara CM, Ko YD, Koutros S, Kurian AW, Lambrechts D, Le Marchand L, Lee E, Lejbkowicz F, Linet M, Lissowska J, Llaneza A, MacInnis RJ, Martinez ME, Maurer T, McLean C, Neuhausen SL, Newman WG, Norman A, O’Brien KM, Olshan AF, Olson JE, Olsson H, Orr N, Perou CM, Pita G, Polley EC, Prentice RL, Rennert G, Rennert HS, Ruddy KJ, Sandler DP, Saunders C, Schoemaker MJ, Schöttker B, Schumacher F, Scott C, Scott RJ, Shu XO, Smeets A, Southey MC, Spinelli JJ, Stone J, Swerdlow AJ, Tamimi RM, Taylor JA, Troester MA, Vachon CM, van Veen EM, Wang X, Weinberg CR, Weltens C, Willett W, Winham SJ, Wolk A, Yang XR, Zheng W, Ziogas A, Dunning AM, Pharoah PDP, Schmidt MK, Kraft P, Easton DF, Milne RL, García-Closas M, Chang-Claude J. Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk. J Natl Cancer Inst 2021; 113:329-337. [PMID: 32359158 PMCID: PMC7936056 DOI: 10.1093/jnci/djaa056] [Show More Authors] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023] Open
Abstract
We evaluated the joint associations between a new 313-variant PRS (PRS313) and questionnaire-based breast cancer risk factors for women of European ancestry, using 72 284 cases and 80 354 controls from the Breast Cancer Association Consortium. Interactions were evaluated using standard logistic regression and a newly developed case-only method for breast cancer risk overall and by estrogen receptor status. After accounting for multiple testing, we did not find evidence that per-standard deviation PRS313 odds ratio differed across strata defined by individual risk factors. Goodness-of-fit tests did not reject the assumption of a multiplicative model between PRS313 and each risk factor. Variation in projected absolute lifetime risk of breast cancer associated with classical risk factors was greater for women with higher genetic risk (PRS313 and family history) and, on average, 17.5% higher in the highest vs lowest deciles of genetic risk. These findings have implications for risk prevention for women at increased risk of breast cancer.
Collapse
Affiliation(s)
- Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Parichoy Pal Choudhury
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amber N Wilcox
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara Lindström
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit and the Cyprus, School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zomoroda Abu-Ful
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, C070, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences and Cancer Research Institute, Queen’s University, Kingston, ON, Canada
| | - Paul L Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Javier Benitez
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiltrud Brauch
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, C070, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angel Carracedo
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER) y Centro Nacional de Genotipado (CEGEN-PRB2), Universidad de Santiago de Compostela, Santiago De Compostela, Spain
| | - Brian D Carter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - James Y Dai
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Chi Gao
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham G Giles
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jane Heyworth
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - ABCTB Investigators
- Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - kConFab/AOCS Investigators
- Research Department, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Esther M John
- Division of Oncology, Departments of Epidemiology & Population Health and of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison W Kurian
- Division of Oncology, Departments of Epidemiology & Population Health and of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Flavio Lejbkowicz
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ana Llaneza
- General and Gastroenterology Surgery Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Elena Martinez
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catriona McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Aaron Norman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Katie M O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Ireland, UK
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guillermo Pita
- Human Genotyping-CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ross L Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Christobel Saunders
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, C070, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Fredrick Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Rodney J Scott
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, New South Wales, Australia
- Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - John J Spinelli
- Population Oncology, BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Curtin University and University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Elke M van Veen
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Xiaoliang Wang
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Caroline Weltens
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Walter Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stacey J Winham
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Roger L Milne
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, New South Wales, Australia
- Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
178
|
Lesseur C, Ferreiro-Iglesias A, McKay JD, Bossé Y, Johansson M, Gaborieau V, Landi MT, Christiani DC, Caporaso NC, Bojesen SE, Amos CI, Shete S, Liu G, Rennert G, Albanes D, Aldrich MC, Tardon A, Chen C, Triantafillos L, Field JK, Teare MD, Kiemeney LA, Diergaarde B, Ferris RL, Zienolddiny S, Lam S, Olshan AF, Weissler MC, Lacko M, Risch A, Bickeböller H, Ness AR, Thomas S, Le Marchand L, Schabath MB, Wünsch-Filho V, Tajara EH, Andrew AS, Clifford GM, Lazarus P, Grankvist K, Johansson M, Arnold S, Melander O, Brunnström H, Boccia S, Cadoni G, Timens W, Obeidat M, Xiao X, Houlston RS, Hung RJ, Brennan P. Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers. PLoS Genet 2021; 17:e1009254. [PMID: 33667223 PMCID: PMC7968735 DOI: 10.1371/journal.pgen.1009254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/17/2021] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
Abstract
Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes rel to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.
Collapse
Affiliation(s)
- Corina Lesseur
- Section of Genetics, Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Aida Ferreiro-Iglesias
- Section of Genetics, Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - James D. McKay
- Section of Genetics, Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Yohan Bossé
- Department of Molecular Medicine, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec City, Canada
| | - Mattias Johansson
- Section of Genetics, Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Valerie Gaborieau
- Section of Genetics, Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David C. Christiani
- Department of Environmental Health, Harvard TH Chan School of Public Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Neil C. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stig E. Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Christopher I. Amos
- Department of Medicine, Baylor college of Medicine, Houston, Texas, United States of America
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Geoffrey Liu
- Lunenfeld-Tanenbaum Research Institute of Sinai Health System, University of Toronto, Toronto, Canada
| | - Gadi Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melinda C. Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adonina Tardon
- Faculty of Medicine, University of Oviedo and CIBERESP, Oviedo, Spain
| | - Chu Chen
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, Washington, United States of America
| | | | - John K. Field
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Marion Dawn Teare
- School of Health and Related Research, University Of Sheffield, Sheffield, United Kingdom
| | | | - Brenda Diergaarde
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert L. Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, Canada
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark C. Weissler
- Department of Otolaryngology/Head and Neck Surgery, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin Lacko
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Angela Risch
- University of Salzburg, Department of Biosciences and Cancer Cluster Salzburg, Salzburg, Austria
- Division of Epigenomics, DKFZ – German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Andy R. Ness
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Steve Thomas
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | | | - Eloiza H. Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto, São José do Rio Preto, Brazil
| | - Angeline S. Andrew
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Gary M. Clifford
- Infections Section, Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, United States of America
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Hans Brunnström
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Stefania Boccia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italia
- Department of Woman and Child Health and Public Health - Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Gabriella Cadoni
- Dipartimento Patologia Testa Collo e Organi di Senso, Istituto di Clinica Otorinolaringoiatrica, Università Cattolica del Sacro Cuore, Roma, Italia
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Ma’en Obeidat
- Centre for Heart Lung Innovation, St Paul’s Hospital, The University of British Columbia, Vancouver, Canada
| | - Xiangjun Xiao
- Department of Medicine, Baylor college of Medicine, Houston, Texas, United States of America
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Paul Brennan
- Section of Genetics, Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
179
|
Bartnykaitė A, Savukaitytė A, Ugenskienė R, Daukšaitė M, Korobeinikova E, Gudaitienė J, Juozaitytė E. Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer. J Clin Med 2021; 10:jcm10040866. [PMID: 33669778 PMCID: PMC7922970 DOI: 10.3390/jcm10040866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is one of the most common cancers worldwide. Single nucleotide polymorphisms (SNPs) in MDM2 and MDM4 have been associated with various cancers. However, the influence on clinical characteristics of breast cancer has not been sufficiently investigated yet. Thus, this study aimed to investigate the relationship between SNPs in MDM2 (rs2279744, rs937283, rs937282) and MDM4 (rs1380576, rs4245739) and I-II stage breast cancer. For analysis, the genomic DNA was extracted from 100 unrelated women peripheral blood. Polymorphisms were analyzed with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The study showed that MDM2 rs937283 and rs937282 were significantly associated with estrogen receptor status and human epidermal growth factor receptor 2 (HER2) status. SNPs rs1380576 and rs4245739, located in MDM4, were significantly associated with status of estrogen and progesterone receptors. Our findings suggest that rs937283 AG, rs937282 CG, rs1380576 CC, and rs4245739 AA genotypes were linked to hormonal receptor positive breast cancer and may be useful genetic markers for disease assessment.
Collapse
Affiliation(s)
- Agnė Bartnykaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
- Correspondence: ; Tel.: +3-703-778-7317
| | - Aistė Savukaitytė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
| | - Monika Daukšaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
| | - Erika Korobeinikova
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| | - Jurgita Gudaitienė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| | - Elona Juozaitytė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| |
Collapse
|
180
|
Coignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, et alCoignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, Hunter DJ, Imyanitov EN, Jager A, Jakubowska A, James PA, Jensen UB, John EM, Jones ME, Kaaks R, Kapoor PM, Karlan BY, Keeman R, Khusnutdinova E, Kiiski JI, Ko YD, Kosma VM, Kraft P, Kurian AW, Laitman Y, Lambrechts D, Le Marchand L, Lester J, Lesueur F, Lindstrom T, Lopez-Fernández A, Loud JT, Luccarini C, Mannermaa A, Manoukian S, Margolin S, Martens JWM, Mebirouk N, Meindl A, Miller A, Milne RL, Montagna M, Nathanson KL, Neuhausen SL, Nevanlinna H, Nielsen FC, O'Brien KM, Olopade OI, Olson JE, Olsson H, Osorio A, Ottini L, Park-Simon TW, Parsons MT, Pedersen IS, Peshkin B, Peterlongo P, Peto J, Pharoah PDP, Phillips KA, Polley EC, Poppe B, Presneau N, Pujana MA, Punie K, Radice P, Rantala J, Rashid MU, Rennert G, Rennert HS, Robson M, Romero A, Rossing M, Saloustros E, Sandler DP, Santella R, Scheuner MT, Schmidt MK, Schmidt G, Scott C, Sharma P, Soucy P, Southey MC, Spinelli JJ, Steinsnyder Z, Stone J, Stoppa-Lyonnet D, Swerdlow A, Tamimi RM, Tapper WJ, Taylor JA, Terry MB, Teulé A, Thull DL, Tischkowitz M, Toland AE, Torres D, Trainer AH, Truong T, Tung N, Vachon CM, Vega A, Vijai J, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wolk A, Yadav S, Yang XR, Yannoukakos D, Zheng W, Ziogas A, Zorn KK, Park SK, Thomassen M, Offit K, Schmutzler RK, Couch FJ, Simard J, Chenevix-Trench G, Easton DF, Andrieu N, Antoniou AC. A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nat Commun 2021; 12:1078. [PMID: 33990587 PMCID: PMC7890067 DOI: 10.1038/s41467-020-20496-3] [Show More Authors] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/19/2020] [Indexed: 02/02/2023] Open
Abstract
Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Juliette Coignard
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- PSL University Paris, Paris, France
- Paris Sud University, Orsay, France
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan Beesley
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Simona Agata
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute Queen's University, Kingston, ON, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Heiko Becher
- Institute for Medical Biometrics and Epidemiology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Leslie Bernstein
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katarzyna Białkowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
- Department of Oncology Örebro University Hospital, Örebro, Sweden
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ake Borg
- Department of Oncology Lund University and Skåne University Hospital, Lund, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence University of Tübingen, Tübingen, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, C080 German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg University of Heidelberg, Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Trinidad Caldés
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Maria A Caligo
- SOD Genetica Molecolare University Hospital, Pisa, Italy
| | - Daniele Campa
- Department of Biology University of Pisa, Pisa, Italy
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brian D Carter
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Jose E Castelao
- Oncology and Genetics Unit Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | - Christine L Clarke
- Westmead Institute for Medical Research University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Don M Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, Philadelphia, PA, USA
| | - Peter Devilee
- Department of Pathology Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics Leiden University Medical Center, Leiden, The Netherlands
| | - Orland Diez
- Oncogenetics Group Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Clinical and Molecular Genetics Area University Hospital Vall d'Hebron, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences University of Westminster, London, UK
| | - Diana M Eccles
- Faculty of Medicine University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology University of Leipzig, Leipzig, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
- Genomic Medicine, North West Genomics hub Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology University of California at Los Angeles, Los Angeles, CA, USA
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine Tel Aviv University, Ramat Aviv, Israel
| | - Lin Fritschi
- School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center University of California, San Diego La Jolla, CA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Judy Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vanesa Garcia-Barberan
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Gehrig
- Department of Human Genetics University Würzburg, Würzburg, Germany
| | | | - Graham G Giles
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital McGill University Montréal, Montréal, QC, Canada
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Eric Hahnen
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| | | | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darling J Horcasitas
- New Mexico Oncology Hematology Consultants, University of New Mexico, Albuquerque, NM, USA
| | - Peter J Hulick
- Center for Medical Genetics NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine Chicago, Chicago, IL, USA
| | - David J Hunter
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
- Nuffield Department of Population Health University of Oxford, Oxford, UK
| | | | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics Pomeranian Medical University, Szczecin, Poland
| | - Paul A James
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Uffe Birk Jensen
- Department of Clinical Genetics Aarhus, University Hospital, Aarhus, Denmark
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Beth Y Karlan
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Renske Keeman
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Division of Molecular Pathology The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Johanna I Kiiski
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Yon-Dschun Ko
- Department of Obstetrics and Gynecology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Veli-Matti Kosma
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Peter Kraft
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | - Allison W Kurian
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jenny Lester
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Tricia Lindstrom
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Adria Lopez-Fernández
- High Risk and Cancer Prevention Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Arto Mannermaa
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - John W M Martens
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics University of Munich, Campus Grosshadern, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roger L Milne
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Marco Montagna
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Finn C Nielsen
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katie M O'Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | | | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Ana Osorio
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Ottini
- Department of Molecular Medicine University La Sapienza, Rome, Italy
| | | | - Michael T Parsons
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Inge Sokilde Pedersen
- Molecular Diagnostics Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine Aalborg University, Aalborg, Denmark
| | - Beth Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program IFOM - the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kelly-Anne Phillips
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bruce Poppe
- Centre for Medical Genetics Ghent University, Gent, Belgium
| | - Nadege Presneau
- School of Life Sciences University of Westminster, London, UK
| | - Miquel Angel Pujana
- Translational Research Laboratory IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Kevin Punie
- Leuven Multidisciplinary Breast Center, Department of Oncology Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | | | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Atocha Romero
- Medical Oncology Department Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Maria Rossing
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Regina Santella
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Maren T Scheuner
- Cancer Genetics and Prevention Program University of California San Francisco, San Francisco, CA, USA
| | - Marjanka K Schmidt
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Gunnar Schmidt
- Institute of Human Genetics Hannover Medical School, Hannover, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology University of Kansas Medical Center, Westwood, KS, USA
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology The University of Melbourne, Melbourne, VIC, Australia
| | - John J Spinelli
- Population Oncology BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health University of British Columbia, Vancouver, BC, Canada
| | - Zoe Steinsnyder
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- The Curtin UWA Centre for Genetic Origins of Health and Disease Curtin University and University of Western Australia, Perth, Western Australia, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Institut Curie, Paris, France
- Department of Tumour Biology INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Anthony Swerdlow
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Division of Breast Cancer Research Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | | | - Jack A Taylor
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
- Epigenetic and Stem Cell Biology Laboratory National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Alex Teulé
- Hereditary Cancer Program ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Darcy L Thull
- Department of Medicine Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics The Ohio State University, Columbus, OH, USA
| | - Diana Torres
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics Pontificia Universidad Javeriana, Bogota, Colombia
| | - Alison H Trainer
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- Department of medicine University Of Melbourne, Melbourne, VIC, Australia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Nadine Tung
- Department of Medical Oncology Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology Mayo Clinic, Rochester, MN, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica-SERGAS, Instituto de Investigación Sanitaria Santiago de Compostela (IDIS); CIBERER, Santiago de Compostela, Spain
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | | | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences Uppsala University, Uppsala, Sweden
| | | | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Kristin K Zorn
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sue K Park
- Department of Preventive Medicine Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute Seoul National University, Seoul, Korea
| | - Mads Thomassen
- Department of Clinical Genetics Odense University Hospital, Odence C, Denmark
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Nadine Andrieu
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France.
- Institut Curie Paris, Paris, France.
- Mines ParisTech Fontainebleau, Paris, France.
- PSL University Paris, Paris, France.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
181
|
Patel PS, Abraham KJ, Guturi KKN, Halaby MJ, Khan Z, Palomero L, Ho B, Duan S, St-Germain J, Algouneh A, Mateo F, El Ghamrasni S, Barbour H, Barnes DR, Beesley J, Sanchez O, Berman HK, Brown GW, El Bachir Affar, Chenevix-Trench G, Antoniou AC, Arrowsmith CH, Raught B, Pujana MA, Mekhail K, Hakem A, Hakem R. RNF168 regulates R-loop resolution and genomic stability in BRCA1/2-deficient tumors. J Clin Invest 2021; 131:140105. [PMID: 33529165 PMCID: PMC7843228 DOI: 10.1172/jci140105] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.
Collapse
Affiliation(s)
- Parasvi S. Patel
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Karan Joshua Abraham
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kiran Kumar Naidu Guturi
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Marie-Jo Halaby
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Zahra Khan
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Luis Palomero
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Brandon Ho
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Arash Algouneh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Francesca Mateo
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Haithem Barbour
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Daniel R. Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Beesley
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Otto Sanchez
- University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Hal K. Berman
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - El Bachir Affar
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | | | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Cheryl H. Arrowsmith
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Miquel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Anne Hakem
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
182
|
Li H, Liu Y, Liu J, Sun Y, Wu J, Xiong Z, Zhang Y, Li B, Jin T. Assessment of ADCY9 polymorphisms and colorectal cancer risk in the Chinese Han population. J Gene Med 2021; 23:e3298. [PMID: 33232543 DOI: 10.1002/jgm.3298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/24/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recently, ADCY9 has been found to be highly expressed in colon cancer, and high ADCY9 expressionis a poor prognostic factor of colon cancer. However, no study has reported on the relationship between single nucleotide polymorphisms (SNPs) of ADCY9 and colorectal cancer risk in the Chinese Han population. METHODS To evaluate the association between four ADCY9 SNPs and colorectal cancer risk, we performed a case-control study including 511 colorectal cancer patients and 511 healthy controls. SNPs were genotyped using the Agena MassARRAY platform (Agena Bioscience, San Diego, CA, USA). The distributions of alleles and genotypes frequencies between the case and control groups were compared using chi-squared. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression adjusted for age and gender to assess the association between SNPs and colorectal cancer risk. RESULTS The overall analysis found that rs2230742 was associated with an increased risk of colorectal cancer (AA versus GG: OR = 3.54, 95% CI = 1.16-10.86, p = 0.027; recessive model: OR = 3.55, 95% CI = 1.16-10.85, p = 0.027). Stratification analysis showed that rs2230742 was associated with an increased rectal cancer risk; rs11076810 was associated with a reduced colorectal cancer risk for age > 59 years. No association was observed between other two SNPs and colorectal cancer risk. CONCLUSIONS Our findings suggest that ADCY9 polymorphisms (rs2230742 and rs11076810) have an effect on colorectal cancer risk in the Chinese Han population. Future association and functional studies are required to confirm our findings and explore the mechanism of ADCY2 in colorectal cancer.
Collapse
Affiliation(s)
- Haiyue Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuanwei Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Jianfeng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Zhang
- Department of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.,The 21st Century Biotechnology Co., Ltd, Xi'an, Shaanxi, China
| |
Collapse
|
183
|
Lonjou C, Eon-Marchais S, Truong T, Dondon MG, Karimi M, Jiao Y, Damiola F, Barjhoux L, Le Gal D, Beauvallet J, Mebirouk N, Cavaciuti E, Chiesa J, Floquet A, Audebert-Bellanger S, Giraud S, Frebourg T, Limacher JM, Gladieff L, Mortemousque I, Dreyfus H, Lejeune-Dumoulin S, Lasset C, Venat-Bouvet L, Bignon YJ, Pujol P, Maugard CM, Luporsi E, Bonadona V, Noguès C, Berthet P, Delnatte C, Gesta P, Lortholary A, Faivre L, Buecher B, Caron O, Gauthier-Villars M, Coupier I, Mazoyer S, Monraz LC, Kondratova M, Kuperstein I, Guénel P, Barillot E, Stoppa-Lyonnet D, Andrieu N, Lesueur F. Gene- and pathway-level analyses of iCOGS variants highlight novel signaling pathways underlying familial breast cancer susceptibility. Int J Cancer 2021; 148:1895-1909. [PMID: 33368296 PMCID: PMC9290690 DOI: 10.1002/ijc.33457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Single‐nucleotide polymorphisms (SNPs) in over 180 loci have been associated with breast cancer (BC) through genome‐wide association studies involving mostly unselected population‐based case‐control series. Some of them modify BC risk of women carrying a BRCA1 or BRCA2 (BRCA1/2) mutation and may also explain BC risk variability in BC‐prone families with no BRCA1/2 mutation. Here, we assessed the contribution of SNPs of the iCOGS array in GENESIS consisting of BC cases with no BRCA1/2 mutation and a sister with BC, and population controls. Genotyping data were available for 1281 index cases, 731 sisters with BC, 457 unaffected sisters and 1272 controls. In addition to the standard SNP‐level analysis using index cases and controls, we performed pedigree‐based association tests to capture transmission information in the sibships. We also performed gene‐ and pathway‐level analyses to maximize the power to detect associations with lower‐frequency SNPs or those with modest effect sizes. While SNP‐level analyses identified 18 loci, gene‐level analyses identified 112 genes. Furthermore, 31 Kyoto Encyclopedia of Genes and Genomes and 7 Atlas of Cancer Signaling Network pathways were highlighted (false discovery rate of 5%). Using results from the “index case‐control” analysis, we built pathway‐derived polygenic risk scores (PRS) and assessed their performance in the population‐based CECILE study and in a data set composed of GENESIS‐affected sisters and CECILE controls. Although these PRS had poor predictive value in the general population, they performed better than a PRS built using our SNP‐level findings, and we found that the joint effect of family history and PRS needs to be considered in risk prediction models.
What's new?
Genetic studies have identified more than 180 single‐nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility, but these studies are reaching their limits. Here, the authors evaluated SNPs in the iCOGS genotyping array using a multilevel approach, including single variant, gene, and pathway analyses. They measured the contribution of the SNPs to breast cancer in patients who have a sister with breast cancer but do not carry a BRCA1/2 mutation. They showed that a pathway‐derived polygenic risk score performed poorly in the general population, and that the best predictive model must include family history.
Collapse
Affiliation(s)
- Christine Lonjou
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Séverine Eon-Marchais
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Thérèse Truong
- Université Paris-Saclay, UVSQ, Inserm, CESP, Villejuif, France.,Inserm U1018, CESP, Team Exposome and Heredity, Villejuif, France
| | - Marie-Gabrielle Dondon
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Mojgan Karimi
- Université Paris-Saclay, UVSQ, Inserm, CESP, Villejuif, France.,Inserm U1018, CESP, Team Exposome and Heredity, Villejuif, France
| | - Yue Jiao
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | | | - Laure Barjhoux
- Department of BioPathology, Centre Léon Bérard, Lyon, France
| | - Dorothée Le Gal
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Juana Beauvallet
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Noura Mebirouk
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Eve Cavaciuti
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | | | | | | | - Sophie Giraud
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Thierry Frebourg
- Département de Génétique, Hôpital Universitaire de Rouen, Rouen, France
| | | | - Laurence Gladieff
- Service d'Oncologie Médicale, Institut Claudius Regaud-IUCT-Oncopole, Toulouse, France
| | | | - Hélène Dreyfus
- Clinique Sainte Catherine, Avignon, France.,Département de Génétique, CHU de Grenoble, Hôpital Couple-Enfant, Grenoble, France
| | | | - Christine Lasset
- Université Claude Bernard Lyon 1, Villeurbanne, France.,CNRS UMR 5558, Lyon, France.,Centre Léon Bérard, Unité de Prévention et Epidémiologie Génétique, Lyon, France
| | | | - Yves-Jean Bignon
- Département d'Oncogénétique, Université Clermont Auvergne, UMR INSERM, U1240, Centre Jean Perrin, Clermont Ferrand, France
| | - Pascal Pujol
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique Médicale et Oncogénétique, Montpellier, France.,INSERM 896, CRCM Val d'Aurelle, Montpellier, France
| | - Christine M Maugard
- Département d'Oncobiologie, LBBM, Hôpitaux Universitaires de Strasbourg, Génétique Oncologique Moléculaire, UF1422, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, UF6948 Génétique Oncologique Clinique, Évaluation Familiale et Suivi, Strasbourg, France
| | - Elisabeth Luporsi
- ICL Alexis Vautrin, Unité d'Oncogénétique, Vandœuvre-lès-Nancy, France
| | - Valérie Bonadona
- Université Claude Bernard Lyon 1, Villeurbanne, France.,CNRS UMR 5558, Lyon, France.,Centre Léon Bérard, Unité de Prévention et Epidémiologie Génétique, Lyon, France
| | - Catherine Noguès
- Département d'Anticipation et de Suivi des Cancers, Oncogénétique Clinique, Institut Paoli-Calmettes, Marseille, France.,Aix Marseille University, INSERM, IRD, SESSTIM, Marseille, France
| | - Pascaline Berthet
- Département de Biopathologie, Centre François Baclesse, Oncogénétique, Caen, France
| | - Capucine Delnatte
- Institut de Cancérologie de l'Ouest, Unité d'Oncogénétique, Saint Herblain, France
| | - Paul Gesta
- CH Georges Renon, Service d'Oncogénétique Régional Poitou-Charentes, Niort, France
| | - Alain Lortholary
- Centre Catherine de Sienne, Service d'Oncologie Médicale, Nantes, France
| | - Laurence Faivre
- Institut GIMI, CHU de Dijon, Hôpital d'Enfants, Dijon, France.,Oncogénétique, Centre de Lutte contre le Cancer Georges François Leclerc, Dijon, France
| | | | - Olivier Caron
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | | | - Isabelle Coupier
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique Médicale et Oncogénétique, Montpellier, France.,INSERM 896, CRCM Val d'Aurelle, Montpellier, France
| | - Sylvie Mazoyer
- Equipe GENDEV, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, Université Lyon 1, Université St Etienne, Lyon, France
| | - Luis-Cristobal Monraz
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Maria Kondratova
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Inna Kuperstein
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Pascal Guénel
- Université Paris-Saclay, UVSQ, Inserm, CESP, Villejuif, France.,Inserm U1018, CESP, Team Exposome and Heredity, Villejuif, France
| | - Emmanuel Barillot
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Dominique Stoppa-Lyonnet
- Institut Curie, Service de Génétique, Paris, France.,Inserm, U830, Université Paris-Descartes, Paris, France
| | - Nadine Andrieu
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, Paris, France.,Mines ParisTech, Fontainebleau, France.,PSL Research University, Paris, France
| |
Collapse
|
184
|
Relationships of physical and breast cancer phenotypes with three single-nucleotide polymorphisms (rs2046210, rs3757318, and rs3803662) associated with breast cancer risk in Japanese women. Breast Cancer 2020; 28:478-487. [PMID: 33185851 DOI: 10.1007/s12282-020-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Recent genome-wide association studies have shown that many single-nucleotide polymorphisms (SNPs) are associated with breast cancer risk. However, it is often unclear how these SNPs are related to breast cancer. Analysis of associations between SNPs and phenotypes may be important for determining mechanisms of action, including carcinogenesis. METHODS In previous case-control studies, we found three SNPs (rs2046210, rs3757318, and rs3573318) associated with breast cancer risk in Japanese women. Among these SNPs, two (rs2046210 and rs3757318) are located at 6q25.1, in proximity to the estrogen receptor 1 gene (ESR1). Using data from these studies, we examined associations between factors related to breast cancer risk, such as height, weight, and breast density, and the three SNPs in cases and controls. We also investigated whether the SNPs correlated with breast cancer features, such as estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor type-2 (HER2) status, and clinical stage. RESULTS There was a significant difference in mean height between risk and non-risk allele carriers for rs2046210 (156.0 ± 5.8 vs. 154.3 ± 5.5 cm, p = 0.002), and rs3757318 (155.8 ± 5.7 vs. 154.7 ± 5.6 cm, p = 0.035) in cases, but no significant associations between height and these SNPs in controls. There was also a significant difference in breast density between risk and non-risk allele carriers for rs2046210 (p = 0.040) and rs3757318 (p = 0.044) in cases. rs2046210 and rs3757318 risk allele carriers tended to have higher breast density in all subjects and in controls. In cases, rs3757318 risk allele carriers were also significantly more likely to be ER-negative compared to non-risk allele carriers (ER-positive rate: 77% vs. 84%, p = 0.036). CONCLUSIONS SNPs rs2046210 and rs3757318, which are associated with breast cancer risk in Japanese women, were significantly associated with height and high breast density, and this association was particularly strong in those with breast cancer. These findings suggest that SNPs in the ESR1 gene region affect phenotypes such as height and breast density.
Collapse
|
185
|
Huober J, Schneeweiss A, Hartkopf AD, Müller V, Lux MP, Janni W, Ettl J, Belleville E, Thill M, Fasching PA, Kolberg HC, Schulmeyer CE, Welslau M, Overkamp F, Tesch H, Fehm TN, Lüftner D, Schütz F, Wöckel A. Update Breast Cancer 2020 Part 3 - Early Breast Cancer. Geburtshilfe Frauenheilkd 2020; 80:1105-1114. [PMID: 33173238 PMCID: PMC7647721 DOI: 10.1055/a-1270-7208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
The treatment of patients with early breast cancer has always been characterised by escalation by new therapies and de-escalation through identification of better treatment regimens or introduction of better tools to estimate prognosis. Efforts in some of these areas in the last few years have led to solid data. The results of the large studies of de-escalation through use of multi-gene tests are available, as are the results of some studies that investigated the new anti-HER2 substances T-DM1 and pertuzumab in the early treatment situation. Several large-scale studies examining the role of CDK4/6 inhibitors will soon be concluded so innovations can be anticipated in this area also. This review article will summarise and classify the results of the latest publications.
Collapse
Affiliation(s)
- Jens Huober
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Andreas D Hartkopf
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Michael P Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Johannes Ettl
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt, Germany
| | - Peter A Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Carla E Schulmeyer
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Hans Tesch
- Oncology Practice at Bethanien Hospital Frankfurt, Frankfurt, Germany
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Diana Lüftner
- Charité University Hospital, Department of Hematology, Oncology and Tumour Immunology, Berlin, Germany
| | - Florian Schütz
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
186
|
Kramer I, Hooning MJ, Mavaddat N, Hauptmann M, Keeman R, Steyerberg EW, Giardiello D, Antoniou AC, Pharoah PDP, Canisius S, Abu-Ful Z, Andrulis IL, Anton-Culver H, Aronson KJ, Augustinsson A, Becher H, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Brauch H, Bremer M, Brucker SY, Burwinkel B, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Choi JY, Clarke CL, Collée JM, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Evans DG, Fasching PA, Flyger H, Gago-Dominguez M, García-Closas M, García-Sáenz JA, Giles GG, Goldgar DE, González-Neira A, Haiman CA, Håkansson N, Hamann U, Hartman M, Heemskerk-Gerritsen BAM, Hollestelle A, Hopper JL, Hou MF, Howell A, Ito H, Jakimovska M, Jakubowska A, Janni W, John EM, Jung A, Kang D, Kets CM, Khusnutdinova E, Ko YD, Kristensen VN, Kurian AW, Kwong A, Lambrechts D, Le Marchand L, Li J, Lindblom A, Lubiński J, Mannermaa A, Manoochehri M, Margolin S, Matsuo K, Mavroudis D, Meindl A, Milne RL, Mulligan AM, Muranen TA, Neuhausen SL, Nevanlinna H, Newman WG, Olshan AF, Olson JE, Olsson H, Park-Simon TW, Peto J, et alKramer I, Hooning MJ, Mavaddat N, Hauptmann M, Keeman R, Steyerberg EW, Giardiello D, Antoniou AC, Pharoah PDP, Canisius S, Abu-Ful Z, Andrulis IL, Anton-Culver H, Aronson KJ, Augustinsson A, Becher H, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Brauch H, Bremer M, Brucker SY, Burwinkel B, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Choi JY, Clarke CL, Collée JM, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Evans DG, Fasching PA, Flyger H, Gago-Dominguez M, García-Closas M, García-Sáenz JA, Giles GG, Goldgar DE, González-Neira A, Haiman CA, Håkansson N, Hamann U, Hartman M, Heemskerk-Gerritsen BAM, Hollestelle A, Hopper JL, Hou MF, Howell A, Ito H, Jakimovska M, Jakubowska A, Janni W, John EM, Jung A, Kang D, Kets CM, Khusnutdinova E, Ko YD, Kristensen VN, Kurian AW, Kwong A, Lambrechts D, Le Marchand L, Li J, Lindblom A, Lubiński J, Mannermaa A, Manoochehri M, Margolin S, Matsuo K, Mavroudis D, Meindl A, Milne RL, Mulligan AM, Muranen TA, Neuhausen SL, Nevanlinna H, Newman WG, Olshan AF, Olson JE, Olsson H, Park-Simon TW, Peto J, Petridis C, Plaseska-Karanfilska D, Presneau N, Pylkäs K, Radice P, Rennert G, Romero A, Roylance R, Saloustros E, Sawyer EJ, Schmutzler RK, Schwentner L, Scott C, See MH, Shah M, Shen CY, Shu XO, Siesling S, Slager S, Sohn C, Southey MC, Spinelli JJ, Stone J, Tapper WJ, Tengström M, Teo SH, Terry MB, Tollenaar RAEM, Tomlinson I, Troester MA, Vachon CM, van Ongeval C, van Veen EM, Winqvist R, Wolk A, Zheng W, Ziogas A, Easton DF, Hall P, Schmidt MK. Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. Am J Hum Genet 2020; 107:837-848. [PMID: 33022221 PMCID: PMC7675034 DOI: 10.1016/j.ajhg.2020.09.001] [Show More Authors] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS313) and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer from 1990 onward with follow-up from the Breast Cancer Association Consortium. Metachronous CBC risk (N = 1,027) according to the distribution of PRS313 was quantified using Cox regression analyses. We assessed PRS313 interaction with age at first diagnosis, family history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited follow-up, CBC risk associated with PRS313 was assessed using logistic regression for 340 women with CBC compared with 12,133 women with unilateral breast cancer. Higher PRS313 was associated with increased CBC risk: hazard ratio per standard deviation (SD) = 1.25 (95%CI = 1.18-1.33) for Europeans, and an OR per SD = 1.15 (95%CI = 1.02-1.29) for Asians. The absolute lifetime risks of CBC, accounting for death as competing risk, were 12.4% for European women at the 10th percentile and 20.5% at the 90th percentile of PRS313. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor, or treatment. The C-index for the PRS313 alone was 0.563 (95%CI = 0.547-0.586). In conclusion, PRS313 is an independent factor associated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance and treatment strategies.
Collapse
Affiliation(s)
- Iris Kramer
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam 1066 CX, the Netherlands
| | - Maartje J Hooning
- Erasmus MC Cancer Institute, Department of Medical Oncology, Rotterdam 3015 CN, the Netherlands
| | - Nasim Mavaddat
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge CB1 8RN, UK
| | - Michael Hauptmann
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Epidemiology and Biostatistics, Amsterdam 1066 CX, the Netherlands; Brandenburg Medical School Theodor Fontane, Institute of Biostatistics and Registry Research, Neuruppin 16816, Germany
| | - Renske Keeman
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam 1066 CX, the Netherlands
| | - Ewout W Steyerberg
- Leiden University Medical Center, Department of Biomedical Data Sciences, Leiden 2333 ZA, the Netherlands; Erasmus MC, Department of Public Health, Rotterdam 3015 GD, the Netherlands
| | - Daniele Giardiello
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam 1066 CX, the Netherlands; Leiden University Medical Center, Department of Biomedical Data Sciences, Leiden 2333 ZA, the Netherlands
| | - Antonis C Antoniou
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge CB1 8RN, UK; University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge CB1 8RN, UK
| | - Sander Canisius
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam 1066 CX, the Netherlands; The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Molecular Carcinogenesis, Amsterdam 1066 CX, the Netherlands
| | - Zumuruda Abu-Ful
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa 35254, Israel
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Hoda Anton-Culver
- University of California Irvine, Department of Epidemiology, Genetic Epidemiology Research Institute, Irvine, CA 92617, USA
| | - Kristan J Aronson
- Queen's University, Department of Public Health Sciences, and Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - Annelie Augustinsson
- Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund 222 42, Sweden
| | - Heiko Becher
- University Medical Center Hamburg-Eppendorf, Institute of Medical Biometry and Epidemiology, Hamburg 20246, Germany; Charité -Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology, Berlin 10117, Germany
| | - Matthias W Beckmann
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen 91054, Germany
| | - Sabine Behrens
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg 69120, Germany
| | - Javier Benitez
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain; Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid 28029, Spain
| | - Marina Bermisheva
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa 450054, Russia
| | - Natalia V Bogdanova
- Hannover Medical School, Department of Radiation Oncology, Hannover 30625, Germany; Hannover Medical School, Gynaecology Research Unit, Hannover 30625, Germany; N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus
| | - Stig E Bojesen
- Copenhagen University Hospital, Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev 2730, Denmark; Copenhagen University Hospital, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Herlev 2730, Denmark; University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen 2200, Denmark
| | - Manjeet K Bolla
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge CB1 8RN, UK
| | - Bernardo Bonanni
- IEO, European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics, Milan 20141, Italy
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart 70376, Germany; University of Tübingen, iFIT-Cluster of Excellence, Tübingen 72074, Germany; German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72074, Germany
| | - Michael Bremer
- Hannover Medical School, Department of Radiation Oncology, Hannover 30625, Germany
| | - Sara Y Brucker
- University of Tübingen, Department of Gynecology and Obstetrics, Tübingen 72076, Germany
| | - Barbara Burwinkel
- German Cancer Research Center (DKFZ), Molecular Epidemiology Group, C080, Heidelberg 69120, Germany; University of Heidelberg, Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, Heidelberg 69120, Germany
| | - Jose E Castelao
- Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Oncology and Genetics Unit, Vigo 36312, Spain
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; Hong Kong Sanatorium and Hospital, Department of Pathology, Happy Valley, Hong Kong
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg 69120, Germany; University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg 20246, Germany
| | - Stephen J Chanock
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD 20850, USA
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD 4006, Australia
| | - Ji-Yeob Choi
- Seoul National University Graduate School, Department of Biomedical Sciences, Seoul 03080, Korea; Seoul National University, Cancer Research Institute, Seoul 03080, Korea
| | - Christine L Clarke
- University of Sydney, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - J Margriet Collée
- Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam 3015 CN, the Netherlands
| | - Fergus J Couch
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | - Angela Cox
- University of Sheffield, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, Sheffield S10 2TN, UK
| | - Simon S Cross
- University of Sheffield, Academic Unit of Pathology, Department of Neuroscience, Sheffield S10 2TN, UK
| | - Kamila Czene
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm 171 65, Sweden
| | - Mary B Daly
- Fox Chase Cancer Center, Department of Clinical Genetics, Philadelphia, PA 19111, USA
| | - Peter Devilee
- Leiden University Medical Center, Department of Pathology, Leiden 2333 ZA, the Netherlands; Leiden University Medical Center, Department of Human Genetics, Leiden 2333 ZA, the Netherlands
| | - Thilo Dörk
- Hannover Medical School, Gynaecology Research Unit, Hannover 30625, Germany
| | - Isabel Dos-Santos-Silva
- London School of Hygiene and Tropical Medicine, Department of Non-Communicable Disease Epidemiology, London WC1E 7HT, UK
| | - Alison M Dunning
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge CB1 8RN, UK
| | - Miriam Dwek
- University of Westminster, School of Life Sciences, London W1B 2HW, UK
| | - Diana M Eccles
- University of Southampton, Faculty of Medicine, Southampton SO17 1BJ, UK
| | - D Gareth Evans
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9WL, UK; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester M13 9WL, UK
| | - Peter A Fasching
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen 91054, Germany; University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, Los Angeles, CA 90095, USA
| | - Henrik Flyger
- Copenhagen University Hospital, Department of Breast Surgery, Herlev and Gentofte Hospital, Herlev 2730, Denmark
| | - Manuela Gago-Dominguez
- Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela 15706, Spain; University of California San Diego, Moores Cancer Center, La Jolla, CA 92037, USA
| | - Montserrat García-Closas
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD 20850, USA
| | - José A García-Sáenz
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Graham G Giles
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, VIC 3004, Australia; The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, VIC 3010, Australia; Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC 3168, Australia
| | - David E Goldgar
- Huntsman Cancer Institute, University of Utah School of Medicine, Department of Dermatology, Salt Lake City, UT 84112, USA
| | - Anna González-Neira
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid 28029, Spain
| | - Christopher A Haiman
- University of Southern California, Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Niclas Håkansson
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm 171 77, Sweden
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg 69120, Germany
| | - Mikael Hartman
- National University of Singapore and National University Health System, Saw Swee Hock School of Public Health, Singapore 119077, Singapore; National University Health System, Department of Surgery, Singapore 119228, Singapore
| | | | - Antoinette Hollestelle
- Erasmus MC Cancer Institute, Department of Medical Oncology, Rotterdam 3015 CN, the Netherlands
| | - John L Hopper
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, VIC 3010, Australia
| | - Ming-Feng Hou
- Kaohsiung Medical University, Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan
| | - Anthony Howell
- University of Manchester, Division of Cancer Sciences, Manchester M13 9PL, UK
| | - Hidemi Ito
- Aichi Cancer Center Research Institute, Division of Cancer Epidemiology and Prevention, Nagoya 464-8681, Japan; Nagoya University Graduate School of Medicine, Division of Cancer Epidemiology, Nagoya 466-8550, Japan
| | - Milena Jakimovska
- MASA, Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Skopje 1000, Republic of North Macedonia
| | - Anna Jakubowska
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin 71-252, Poland; Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin 71-252, Poland
| | - Wolfgang Janni
- University Hospital Ulm, Department of Gynaecology and Obstetrics, Ulm 89075, Germany
| | - Esther M John
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Epidemiology & Population Health, Stanford, CA 94304, USA
| | - Audrey Jung
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg 69120, Germany
| | - Daehee Kang
- Seoul National University Graduate School, Department of Biomedical Sciences, Seoul 03080, Korea; Seoul National University, Cancer Research Institute, Seoul 03080, Korea; Seoul National University College of Medicine, Department of Preventive Medicine, Seoul 03080, Korea
| | - C Marleen Kets
- the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Clinical Genetics, Amsterdam 1066 CX, the Netherlands
| | - Elza Khusnutdinova
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa 450054, Russia; Bashkir State University, Department of Genetics and Fundamental Medicine, Ufa 450000, Russia
| | - Yon-Dschun Ko
- Johanniter Krankenhaus, Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Bonn 53177, Germany
| | - Vessela N Kristensen
- Oslo University Hospital-Radiumhospitalet, Department of Cancer Genetics, Institute for Cancer Research, Oslo 0379, Norway; Oslo University Hospital and University of Olso, Department of Medical Genetics, Oslo 0379, Norway
| | - Allison W Kurian
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Epidemiology & Population Health, Stanford, CA 94304, USA; Stanford University School of Medicine, Department of Health Research and Policy, Stanford, CA 94305, USA
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; The University of Hong Kong, Department of Surgery, Pok Fu Lam, Hong Kong; Hong Kong Sanatorium and Hospital, Cancer Genetics Center and Department of Surgery, Happy Valley, Hong Kong
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven 3001, Belgium; University of Leuven, Laboratory for Translational Genetics, Department of Human Genetics, Leuven 3000, Belgium
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI 96813, USA
| | - Jingmei Li
- Genome Institute of Singapore, Human Genetics Division, Singapore 138672, Singapore
| | - Annika Lindblom
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm 171 76, Sweden; Karolinska University Hospital, Department of Clinical Genetics, Stockholm 171 76, Sweden
| | - Jan Lubiński
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin 71-252, Poland
| | - Arto Mannermaa
- University of Eastern Finland, Translational Cancer Research Area, Kuopio 70210, Finland; University of Eastern Finland, Institute of Clinical Medicine, Pathology and Forensic Medicine, Kuopio 70210, Finland; Kuopio University Hospital, Biobank of Eastern Finland, Kuopio 70210, Finland
| | - Mehdi Manoochehri
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg 69120, Germany
| | - Sara Margolin
- Södersjukhuset, Department of Oncology, Stockholm 118 83, Sweden; Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm 118 83, Sweden
| | - Keitaro Matsuo
- Aichi Cancer Center Research Institute, Division of Cancer Epidemiology and Prevention, Nagoya 464-8681, Japan; Nagoya University Graduate School of Medicine, Division of Cancer Epidemiology, Nagoya 466-8550, Japan
| | - Dimitrios Mavroudis
- University Hospital of Heraklion, Department of Medical Oncology, Heraklion 711 10, Greece
| | - Alfons Meindl
- University of Munich, Campus Großhadern, Department of Gynecology and Obstetrics, Munich 81377, Germany
| | - Roger L Milne
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, VIC 3004, Australia; The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, VIC 3010, Australia; Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC 3168, Australia
| | - Anna Marie Mulligan
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, ON M5S 1A8, Canada; University Health Network, Laboratory Medicine Program, Toronto, ON M5G 2C4, Canada
| | - Taru A Muranen
- Helsinki University Hospital, Department of Obstetrics and Gynecology, University of Helsinki, Helsinki 00290, Finland
| | - Susan L Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA 91010, USA
| | - Heli Nevanlinna
- Helsinki University Hospital, Department of Obstetrics and Gynecology, University of Helsinki, Helsinki 00290, Finland
| | - William G Newman
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9WL, UK; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester M13 9WL, UK
| | - Andrew F Olshan
- University of North Carolina at Chapel Hill, Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | - Janet E Olson
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN 55905, USA
| | - Håkan Olsson
- Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund 222 42, Sweden
| | | | - Julian Peto
- London School of Hygiene and Tropical Medicine, Department of Non-Communicable Disease Epidemiology, London WC1E 7HT, UK
| | - Christos Petridis
- King's College London, Research Oncology, Guy's Hospital, London SE1 9RT, UK
| | - Dijana Plaseska-Karanfilska
- MASA, Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Skopje 1000, Republic of North Macedonia
| | - Nadege Presneau
- University of Westminster, School of Life Sciences, London W1B 2HW, UK
| | - Katri Pylkäs
- University of Oulu, Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu 90220, Finland; Northern Finland Laboratory Centre Oulu, Laboratory of Cancer Genetics and Tumor Biology, Oulu 90220, Finland
| | - Paolo Radice
- Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Milan 20133, Italy
| | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa 35254, Israel
| | - Atocha Romero
- Hospital Universitario Puerta de Hierro, Medical Oncology Department, Madrid 28222, Spain
| | - Rebecca Roylance
- UCLH Foundation Trust, Department of Oncology, London NW1 2PG, UK
| | | | - Elinor J Sawyer
- King's College London, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, London SE1 1UL, UK
| | - Rita K Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne 50937, Germany; Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne 50937, Germany; Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne 50931, Germany
| | - Lukas Schwentner
- University Hospital Ulm, Department of Gynaecology and Obstetrics, Ulm 89075, Germany
| | - Christopher Scott
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN 55905, USA
| | - Mee-Hoong See
- University of Malaya, Breast Cancer Research Unit, University Malaya Cancer Research Institute, Faculty of Medicine, Kuala Lumpur 50603, Malaysia
| | - Mitul Shah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge CB1 8RN, UK
| | - Chen-Yang Shen
- Academia Sinica, Institute of Biomedical Sciences, Taipei 115, Taiwan; China Medical University, School of Public Health, Taichung 40402, Taiwan
| | - Xiao-Ou Shu
- Vanderbilt University School of Medicine, Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Sabine Siesling
- Netherlands Comprehensive Cancer Organisation (IKNL), Department of Research, Utrecht 3511 DT, the Netherlands; University of Twente, Department of Health Technology and Service Research, Technical Medical Center, Enschede 7522 NB, the Netherlands
| | - Susan Slager
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN 55905, USA
| | - Christof Sohn
- University Hospital and German Cancer Research Center, National Center for Tumor Diseases, Heidelberg 69120, Germany
| | - Melissa C Southey
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, VIC 3004, Australia; Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC 3168, Australia; The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC 3010, Australia
| | - John J Spinelli
- BC Cancer, Population Oncology, Vancouver, BC V5Z 1G1, Canada; University of British Columbia, School of Population and Public Health, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer Stone
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, VIC 3010, Australia; Curtin University and University of Western Australia, The Curtin UWA Centre for Genetic Origins of Health and Disease, Perth, WA 6000, Australia
| | - William J Tapper
- University of Southampton, Faculty of Medicine, Southampton SO17 1BJ, UK
| | - Maria Tengström
- University of Eastern Finland, Translational Cancer Research Area, Kuopio 70210, Finland; Kuopio University Hospital, Department of Oncology, Cancer Center, Kuopio 70210, Finland; University of Eastern Finland, Institute of Clinical Medicine, Oncology, Kuopio 70210, Finland
| | - Soo Hwang Teo
- Cancer Research Malaysia, Breast Cancer Research Programme, Subang Jaya, Selangor 47500, Malaysia; University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur 50603, Malaysia
| | - Mary Beth Terry
- Columbia University, Department of Epidemiology, Mailman School of Public Health, New York, NY 10032, USA
| | - Rob A E M Tollenaar
- Leiden University Medical Center, Department of Surgery, Leiden 2333 ZA, the Netherlands
| | - Ian Tomlinson
- University of Birmingham, Institute of Cancer and Genomic Sciences, Birmingham B15 2TT, UK; University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford OX3 7BN, UK
| | - Melissa A Troester
- University of North Carolina at Chapel Hill, Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | - Celine M Vachon
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, MN 55905, USA
| | - Chantal van Ongeval
- Leuven Cancer Institute, University Hospitals Leuven, Leuven Multidisciplinary Breast Center, Department of Radiology, Leuven 3000, Belgium
| | - Elke M van Veen
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9WL, UK; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester M13 9WL, UK
| | - Robert Winqvist
- University of Oulu, Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu 90220, Finland; Northern Finland Laboratory Centre Oulu, Laboratory of Cancer Genetics and Tumor Biology, Oulu 90220, Finland
| | - Alicja Wolk
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm 171 77, Sweden; Uppsala University, Department of Surgical Sciences, Uppsala 751 05, Sweden
| | - Wei Zheng
- Vanderbilt University School of Medicine, Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Argyrios Ziogas
- University of California Irvine, Department of Epidemiology, Genetic Epidemiology Research Institute, Irvine, CA 92617, USA
| | - Douglas F Easton
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge CB1 8RN, UK; University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge CB1 8RN, UK
| | - Per Hall
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm 171 65, Sweden; Södersjukhuset, Department of Oncology, Stockholm 118 83, Sweden
| | - Marjanka K Schmidt
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam 1066 CX, the Netherlands; The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam 1066 CX, the Netherlands.
| |
Collapse
|
187
|
Ahn C, Lee S, Park SK. Causal Inference between Rheumatoid Arthritis and Breast Cancer in East Asian and European Population: A Two-Sample Mendelian Randomization. Cancers (Basel) 2020; 12:cancers12113272. [PMID: 33167385 PMCID: PMC7694331 DOI: 10.3390/cancers12113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Rheumatoid arthritis (RA) is one of the chronic autoimmune diseases that affects about 0.5 to 1.0% of the general population worldwide. The main symptom of RA is the destruction of the synovial joint, leading to a reduced quality of life and increased mortality. RA may be accompanied by several comorbidities, on which several studies have been conducted on the association between RA and breast cancer. However, the association between RA and breast cancer has shown different directions and has not been clearly established. In this study, we tried to determine whether RA had a causal effect on breast cancer using Mendelian randomization (MR) analysis, but causal evidence was not found. Therefore, additional studies are needed to determine whether RA patients are at high risk of breast cancer, based on large-scale cohorts to validate these results. Abstract Previous studies have been reported that the association between rheumatoid arthritis (RA) and breast cancer remains inconclusive. A two-sample Mendelian randomization (MR) analysis can reveal the potential causal association between exposure and outcome. A two-sample MR analysis using the penalized robust inverse variance weighted (PRIVW) method was performed to analyze the association between RA and breast cancer risk based on the summary statistics of six genome-wide association studies (GWAS) targeting RA in an East Asian population along with summary statistics of the BioBank Japan (BBJ), Breast Cancer Association Consortium (BCAC), and Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) targeting breast cancer. We found that the direction of the effect of RA on breast cancer varied among GWAS-summary data from BBJ, BCAC, and CIMBA. Significant horizontal pleiotropy based on a penalized robust MR-Egger regression was observed only for BBJ and CIMBA BRCA2 carriers. As the results of the two-sample MR analyses were inconsistent, the causal association between RA and breast cancer was inconclusive. The biological mechanisms explaining the relationship between RA and breast cancer were unclear in Asian as well as in Caucasians. Further studies using large-scale patient cohorts are required for the validation of these results.
Collapse
Affiliation(s)
- Choonghyun Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
- Tokyo University Hospital, Tokyo 1130033, Japan
| | - Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (C.A.); (S.L.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Convergence Graduate Program in Innovative Medicine Science, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8338
| |
Collapse
|
188
|
Fritsche LG, Patil S, Beesley LJ, VandeHaar P, Salvatore M, Ma Y, Peng RB, Taliun D, Zhou X, Mukherjee B. Cancer PRSweb: An Online Repository with Polygenic Risk Scores for Major Cancer Traits and Their Evaluation in Two Independent Biobanks. Am J Hum Genet 2020; 107:815-836. [PMID: 32991828 PMCID: PMC7675001 DOI: 10.1016/j.ajhg.2020.08.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
To facilitate scientific collaboration on polygenic risk scores (PRSs) research, we created an extensive PRS online repository for 35 common cancer traits integrating freely available genome-wide association studies (GWASs) summary statistics from three sources: published GWASs, the NHGRI-EBI GWAS Catalog, and UK Biobank-based GWASs. Our framework condenses these summary statistics into PRSs using various approaches such as linkage disequilibrium pruning/p value thresholding (fixed or data-adaptively optimized thresholds) and penalized, genome-wide effect size weighting. We evaluated the PRSs in two biobanks: the Michigan Genomics Initiative (MGI), a longitudinal biorepository effort at Michigan Medicine, and the population-based UK Biobank (UKB). For each PRS construct, we provide measures on predictive performance and discrimination. Besides PRS evaluation, the Cancer-PRSweb platform features construct downloads and phenome-wide PRS association study results (PRS-PheWAS) for predictive PRSs. We expect this integrated platform to accelerate PRS-related cancer research.
Collapse
Affiliation(s)
- Lars G Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Snehal Patil
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Lauren J Beesley
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Peter VandeHaar
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Maxwell Salvatore
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Ying Ma
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Robert B Peng
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Statistics, Northwestern University, Evanston, IL 60208, USA
| | - Daniel Taliun
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
189
|
Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, Sroczynski G, Hall P, Cuzick J, Evans DG, Simard J, Garcia-Closas M, Schmutzler R, Wegwarth O, Pharoah P, Moorthie S, De Montgolfier S, Baron C, Herceg Z, Turnbull C, Balleyguier C, Rossi PG, Wesseling J, Ritchie D, Tischkowitz M, Broeders M, Reisel D, Metspalu A, Callender T, de Koning H, Devilee P, Delaloge S, Schmidt MK, Widschwendter M. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol 2020; 17:687-705. [PMID: 32555420 PMCID: PMC7567644 DOI: 10.1038/s41571-020-0388-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The European Collaborative on Personalized Early Detection and Prevention of Breast Cancer (ENVISION) brings together several international research consortia working on different aspects of the personalized early detection and prevention of breast cancer. In a consensus conference held in 2019, the members of this network identified research areas requiring development to enable evidence-based personalized interventions that might improve the benefits and reduce the harms of existing breast cancer screening and prevention programmes. The priority areas identified were: 1) breast cancer subtype-specific risk assessment tools applicable to women of all ancestries; 2) intermediate surrogate markers of response to preventive measures; 3) novel non-surgical preventive measures to reduce the incidence of breast cancer of poor prognosis; and 4) hybrid effectiveness-implementation research combined with modelling studies to evaluate the long-term population outcomes of risk-based early detection strategies. The implementation of such programmes would require health-care systems to be open to learning and adapting, the engagement of a diverse range of stakeholders and tailoring to societal norms and values, while also addressing the ethical and legal issues. In this Consensus Statement, we discuss the current state of breast cancer risk prediction, risk-stratified prevention and early detection strategies, and their implementation. Throughout, we highlight priorities for advancing each of these areas.
Collapse
Affiliation(s)
- Nora Pashayan
- Department of Applied Health Research, Institute of Epidemiology and Healthcare, University College London, London, UK
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Urska Ivanus
- Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Laura J Esserman
- Carol Franc Buck Breast Care Center, University of California, San Francisco, CA, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - David French
- Division of Psychology & Mental Health, School of Health Sciences, University of Manchester, Manchester, UK
| | - Gaby Sroczynski
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute of Public Health, Medical Decision Making and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
- Division of Health Technology Assessment, Oncotyrol - Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Jack Cuzick
- Wolfson Institute of Preventive Medicine, Barts and The London, Centre for Cancer Prevention, Queen Mary University of London, London, UK
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Jacques Simard
- Genomics Center, CHU de Québec - Université Laval Research Center, Québec, Canada
| | | | - Rita Schmutzler
- Center of Family Breast and Ovarian Cancer, University Hospital Cologne, Cologne, Germany
| | - Odette Wegwarth
- Max Planck Institute for Human Development, Center for Adaptive Rationality, Harding Center for Risk Literacy, Berlin, Germany
| | - Paul Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | - Zdenko Herceg
- Epigenetic Group, International Agency for Research on Cancer (IARC), WHO, Lyon, France
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - David Ritchie
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Mireille Broeders
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dan Reisel
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Andres Metspalu
- The Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas Callender
- Department of Applied Health Research, Institute of Epidemiology and Healthcare, University College London, London, UK
| | - Harry de Koning
- Department of Public Health, Erasmus MC, Rotterdam, Netherlands
| | - Peter Devilee
- Department of Human Genetics, Department of Pathology, Leiden University Medical Centre, Leiden, Netherlands
| | - Suzette Delaloge
- Breast Cancer Department, Gustave Roussy Institute, Paris, France
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Martin Widschwendter
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK.
- Universität Innsbruck, Innsbruck, Austria.
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Hall in Tirol, Austria.
| |
Collapse
|
190
|
Sieh W, Rothstein JH, Klein RJ, Alexeeff SE, Sakoda LC, Jorgenson E, McBride RB, Graff RE, McGuire V, Achacoso N, Acton L, Liang RY, Lipson JA, Rubin DL, Yaffe MJ, Easton DF, Schaefer C, Risch N, Whittemore AS, Habel LA. Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk. Nat Commun 2020; 11:5116. [PMID: 33037222 PMCID: PMC7547012 DOI: 10.1038/s41467-020-18883-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
Mammographic density (MD) phenotypes are strongly associated with breast cancer risk and highly heritable. In this GWAS meta-analysis of 24,192 women, we identify 31 MD loci at P < 5 × 10-8, tripling the number known to 46. Seventeen identified MD loci also are associated with breast cancer risk in an independent meta-analysis (P < 0.05). Mendelian randomization analyses show that genetic estimates of dense area (DA), nondense area (NDA), and percent density (PD) are all significantly associated with breast cancer risk (P < 0.05). Pathway analyses reveal distinct biological processes involving DA, NDA and PD loci. These findings provide additional insights into the genetic basis of MD phenotypes and their associations with breast cancer risk.
Collapse
Affiliation(s)
- Weiva Sieh
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Joseph H Rothstein
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Valerie McGuire
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Luana Acton
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Rhea Y Liang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jafi A Lipson
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel L Rubin
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin J Yaffe
- Departments of Medical Biophysics and Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and Department of Oncology, University of Cambridge, Cambridge, UK
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Neil Risch
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| |
Collapse
|
191
|
Beesley J, Sivakumaran H, Moradi Marjaneh M, Shi W, Hillman KM, Kaufmann S, Hussein N, Kar S, Lima LG, Ham S, Möller A, Chenevix-Trench G, Edwards SL, French JD. eQTL Colocalization Analyses Identify NTN4 as a Candidate Breast Cancer Risk Gene. Am J Hum Genet 2020; 107:778-787. [PMID: 32871102 PMCID: PMC7536644 DOI: 10.1016/j.ajhg.2020.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer genome-wide association studies (GWASs) have identified 150 genomic risk regions containing more than 13,000 credible causal variants (CCVs). The CCVs are predominantly noncoding and enriched in regulatory elements. However, the genes underlying breast cancer risk associations are largely unknown. Here, we used genetic colocalization analysis to identify loci at which gene expression could potentially explain breast cancer risk phenotypes. Using data from the Breast Cancer Association Consortium (BCAC) and quantitative trait loci (QTL) from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Project (TCGA), we identify shared genetic relationships and reveal novel associations between cancer phenotypes and effector genes. Seventeen genes, including NTN4, were identified as potential mediators of breast cancer risk. For NTN4, we showed the rs61938093 CCV at this region was located within an enhancer element that physically interacts with the NTN4 promoter, and the risk allele reduced NTN4 promoter activity. Furthermore, knockdown of NTN4 in breast cells increased cell proliferation in vitro and tumor growth in vivo. These data provide evidence linking risk-associated variation to genes that may contribute to breast cancer predisposition.
Collapse
Affiliation(s)
- Jonathan Beesley
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.
| | - Haran Sivakumaran
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Wei Shi
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kristine M Hillman
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Susanne Kaufmann
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Nehal Hussein
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luize G Lima
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Sunyoung Ham
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Andreas Möller
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | | | - Stacey L Edwards
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.
| | - Juliet D French
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| |
Collapse
|
192
|
Barnes DR, Rookus MA, McGuffog L, Leslie G, Mooij TM, Dennis J, Mavaddat N, Adlard J, Ahmed M, Aittomäki K, Andrieu N, Andrulis IL, Arnold N, Arun BK, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Benitez J, Berthet P, Białkowska K, Blanco AM, Blok MJ, Bonanni B, Boonen SE, Borg Å, Bozsik A, Bradbury AR, Brennan P, Brewer C, Brunet J, Buys SS, Caldés T, Caligo MA, Campbell I, Christensen LL, Chung WK, Claes KBM, Colas C, Collonge-Rame MA, Cook J, Daly MB, Davidson R, de la Hoya M, de Putter R, Delnatte C, Devilee P, Diez O, Ding YC, Domchek SM, Dorfling CM, Dumont M, Eeles R, Ejlertsen B, Engel C, Evans DG, Faivre L, Foretova L, Fostira F, Friedlander M, Friedman E, Frost D, Ganz PA, Garber J, Gehrig A, Gerdes AM, Gesta P, Giraud S, Glendon G, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Gschwantler-Kaulich D, Hahnen E, Hamann U, Hanson H, Hentschel J, Hogervorst FBL, Hooning MJ, Horvath J, Hu C, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James PA, Janavicius R, John EM, Joseph V, Karlan BY, Kast K, Koudijs M, Kruse TA, Kwong A, Laitman Y, Lasset C, Lazaro C, et alBarnes DR, Rookus MA, McGuffog L, Leslie G, Mooij TM, Dennis J, Mavaddat N, Adlard J, Ahmed M, Aittomäki K, Andrieu N, Andrulis IL, Arnold N, Arun BK, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Benitez J, Berthet P, Białkowska K, Blanco AM, Blok MJ, Bonanni B, Boonen SE, Borg Å, Bozsik A, Bradbury AR, Brennan P, Brewer C, Brunet J, Buys SS, Caldés T, Caligo MA, Campbell I, Christensen LL, Chung WK, Claes KBM, Colas C, Collonge-Rame MA, Cook J, Daly MB, Davidson R, de la Hoya M, de Putter R, Delnatte C, Devilee P, Diez O, Ding YC, Domchek SM, Dorfling CM, Dumont M, Eeles R, Ejlertsen B, Engel C, Evans DG, Faivre L, Foretova L, Fostira F, Friedlander M, Friedman E, Frost D, Ganz PA, Garber J, Gehrig A, Gerdes AM, Gesta P, Giraud S, Glendon G, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Gschwantler-Kaulich D, Hahnen E, Hamann U, Hanson H, Hentschel J, Hogervorst FBL, Hooning MJ, Horvath J, Hu C, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James PA, Janavicius R, John EM, Joseph V, Karlan BY, Kast K, Koudijs M, Kruse TA, Kwong A, Laitman Y, Lasset C, Lazaro C, Lester J, Lesueur F, Liljegren A, Loud JT, Lubiński J, Mai PL, Manoukian S, Mari V, Mebirouk N, Meijers-Heijboer HEJ, Meindl A, Mensenkamp AR, Miller A, Montagna M, Mouret-Fourme E, Mukherjee S, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Niederacher D, Nielsen FC, Nikitina-Zake L, Noguès C, Olah E, Olopade OI, Ong KR, O'Shaughnessy-Kirwan A, Osorio A, Ott CE, Papi L, Park SK, Parsons MT, Pedersen IS, Peissel B, Peixoto A, Peterlongo P, Pfeiler G, Phillips KA, Prajzendanc K, Pujana MA, Radice P, Ramser J, Ramus SJ, Rantala J, Rennert G, Risch HA, Robson M, Rønlund K, Salani R, Schuster H, Senter L, Shah PD, Sharma P, Side LE, Singer CF, Slavin TP, Soucy P, Southey MC, Spurdle AB, Steinemann D, Steinsnyder Z, Stoppa-Lyonnet D, Sutter C, Tan YY, Teixeira MR, Teo SH, Thull DL, Tischkowitz M, Tognazzo S, Toland AE, Trainer AH, Tung N, van Engelen K, van Rensburg EJ, Vega A, Vierstraete J, Wagner G, Walker L, Wang-Gohrke S, Wappenschmidt B, Weitzel JN, Yadav S, Yang X, Yannoukakos D, Zimbalatti D, Offit K, Thomassen M, Couch FJ, Schmutzler RK, Simard J, Easton DF, Chenevix-Trench G, Antoniou AC. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genet Med 2020; 22:1653-1666. [PMID: 32665703 PMCID: PMC7521995 DOI: 10.1038/s41436-020-0862-x] [Show More Authors] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers. METHODS Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort. RESULTS The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10-72). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10-50). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10-22) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10-12) carriers. The associations in the prospective cohort were similar. CONCLUSION Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.
Collapse
Affiliation(s)
- Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Matti A Rookus
- The Netherlands Cancer Institute, Department of Epidemiology (PSOE), Amsterdam, The Netherlands
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thea M Mooij
- The Netherlands Cancer Institute, Department of Epidemiology (PSOE), Amsterdam, The Netherlands
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julian Adlard
- Chapel Allerton Hospital, Yorkshire Regional Genetics Service, Leeds, UK
| | - Munaza Ahmed
- Great Ormond Street Hospital for Children NHS Trust, North East Thames Regional Genetics Service, London, UK
| | - Kristiina Aittomäki
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Nadine Andrieu
- Inserm U900, Genetic Epidemiology of Cancer team, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- Department of Life & Health Sciences, PSL University, Paris, France
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada
| | - Norbert Arnold
- University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Department of Gynaecology and Obstetrics, Kiel, Germany
- University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Banu K Arun
- University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX, USA
| | - Jacopo Azzollini
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Judith Balmaña
- Vall d'Hebron Institute of Oncology, High Risk and Cancer Prevention Group, Barcelona, Spain
- University Hospital of Vall d'Hebron, Department of Medical Oncology, Barcelona, Spain
| | - Rosa B Barkardottir
- Landspitali University Hospital, Department of Pathology, Reykjavik, Iceland
- University of Iceland, BMC (Biomedical Centre), Faculty of Medicine, Reykjavik, Iceland
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Javier Benitez
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Pascaline Berthet
- Centre François Baclesse, Département de Biopathologie, Caen, France
| | - Katarzyna Białkowska
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Amie M Blanco
- University of California San Francisco, Cancer Genetics and Prevention Program, San Francisco, CA, USA
| | - Marinus J Blok
- Maastricht University Medical Center, Department of Clinical Genetics, Maastricht, The Netherlands
| | - Bernardo Bonanni
- IEO, European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics, Milan, Italy
| | - Susanne E Boonen
- Zealand University Hospital, Clinical Genetic Unit, Department of Paediatrics, Roskilde, Denmark
| | - Åke Borg
- Lund University, Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund, Sweden
| | - Aniko Bozsik
- National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary
| | - Angela R Bradbury
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Paul Brennan
- Institute of Genetic Medicine, International Centre for Life, Northern Genetic Service, Newcastle upon Tyne, UK
| | - Carole Brewer
- Royal Devon & Exeter Hospital, Department of Clinical Genetics, Exeter, UK
| | - Joan Brunet
- ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary Cancer Program, Barcelona, Spain
| | - Saundra S Buys
- Huntsman Cancer Institute, Department of Medicine, Salt Lake City, UT, USA
| | - Trinidad Caldés
- CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Molecular Oncology Laboratory, Madrid, Spain
| | - Maria A Caligo
- University Hospital, SOD Genetica Molecolare, Pisa, Italy
| | - Ian Campbell
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | | | - Wendy K Chung
- Columbia University, Departments of Pediatrics and Medicine, New York, NY, USA
| | | | | | | | - Jackie Cook
- Sheffield Children's Hospital, Sheffield Clinical Genetics Service, Sheffield, UK
| | - Mary B Daly
- Fox Chase Cancer Center, Department of Clinical Genetics, Philadelphia, PA, USA
| | - Rosemarie Davidson
- Queen Elizabeth University Hospitals, Department of Clinical Genetics, Glasgow, UK
| | - Miguel de la Hoya
- CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Molecular Oncology Laboratory, Madrid, Spain
| | - Robin de Putter
- Ghent University, Centre for Medical Genetics, Ghent, Belgium
| | | | - Peter Devilee
- Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Orland Diez
- Vall dHebron Institute of Oncology (VHIO), Oncogenetics Group, Barcelona, Spain
- University Hospital Vall dHebron, Clinical and Molecular Genetics Area, Barcelona, Spain
| | - Yuan Chun Ding
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Susan M Domchek
- University of Pennsylvania, Basser Center for BRCA, Abramson Cancer Center, Philadelphia, PA, USA
| | | | - Martine Dumont
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Genomics Center,, Québec City, QC, Canada
| | - Ros Eeles
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Oncogenetics Team, London, UK
| | - Bent Ejlertsen
- Rigshospitalet, Copenhagen University Hospital, Department of Oncology, Copenhagen, Denmark
| | - Christoph Engel
- University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
| | - D Gareth Evans
- The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary's Hospital, Genomic Medicine, Division of Evolution and Genomic Sciences, Manchester, UK
- Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary's Hospital, Genomic Medicine, North West Genomics hub, Manchester, UK
| | - Laurence Faivre
- Centre Georges-François Leclerc, Unité d'oncogénétique, Centre de Lutte Contre le Cancer, Dijon, France
- DHU Dijon, Centre de Génétique, Dijon, France
| | - Lenka Foretova
- Masaryk Memorial Cancer Institute, Department of Cancer Epidemiology and Genetics, Brno, Czech Republic
| | - Florentia Fostira
- National Centre for Scientific Research 'Demokritos', Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
| | - Michael Friedlander
- NHMRC Clinical Trials, ANZ GOTG Coordinating Centre, Camperdown, NSW, Australia
| | - Eitan Friedman
- Chaim Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit, Ramat Gan, Israel
- Tel Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Patricia A Ganz
- Jonsson Comprehensive Cancer Centre, UCLA, Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Los Angeles, CA, USA
| | - Judy Garber
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA, USA
| | - Andrea Gehrig
- University Würzburg, Department of Human Genetics, Würzburg, Germany
| | - Anne-Marie Gerdes
- Rigshospitalet, Copenhagen University Hospital, Department of Clinical Genetics, Copenhagen, Denmark
| | - Paul Gesta
- CH Niort, Service Régional Oncogénétique Poitou-Charentes, Niort, France
| | - Sophie Giraud
- Hospices Civils de Lyon, Department of Genetics, Bron, France
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON, Canada
| | - Andrew K Godwin
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - David E Goldgar
- Huntsman Cancer Institute, University of Utah School of Medicine, Department of Dermatology, Salt Lake City, UT, USA
| | - Anna González-Neira
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Helen Hanson
- St George's NHS Foundation Trust, Southwest Thames Regional Genetics Service, London, UK
| | - Julia Hentschel
- University Hospital Leipzig, Institute of Human Genetics, Leipzig, Germany
| | - Frans B L Hogervorst
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Family Cancer Clinic, Amsterdam, The Netherlands
| | - Maartje J Hooning
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - Judit Horvath
- University of Münster, Institute of Human Genetics, Münster, Germany
| | - Chunling Hu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Peter J Hulick
- NorthShore University HealthSystem, Center for Medical Genetics, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Louise Izatt
- Guy's and St Thomas' NHS Foundation Trust, Clinical Genetics, London, UK
| | - Angel Izquierdo
- ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary Cancer Program, Barcelona, Spain
| | - Anna Jakubowska
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
| | - Paul A James
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC, Australia
| | - Ramunas Janavicius
- Vilnius University Hospital Santariskiu Clinics, Hematology, Oncology and Transfusion Medicine Center, Department of Molecular and Regenerative Medicine, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Esther M John
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA, USA
| | - Vijai Joseph
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, New York, NY, USA
| | - Beth Y Karlan
- University of California at Los Angeles, David Geffen School of Medicine, Department of Obstetrics and Gynecology, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Karin Kast
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marco Koudijs
- University Medical Center Utrecht, Department of Medical Genetics, Utrecht, The Netherlands
| | - Torben A Kruse
- Odense University Hospital, Department of Clinical Genetics, Odense, Denmark
| | - Ava Kwong
- Cancer Genetics Centre, Hong Kong Hereditary Breast Cancer Family Registry, Happy Valley, Hong Kong
- The University of Hong Kong, Department of Surgery, Pok Fu Lam, Hong Kong
- Hong Kong Sanatorium and Hospital, Department of Surgery, Happy Valley, Hong Kong
| | - Yael Laitman
- Chaim Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit, Ramat Gan, Israel
| | - Christine Lasset
- Centre Léon Bérard, Unité de Prévention et d'Epidémiologie Génétique, Lyon, France
- Lyon University, UMR CNRS 5558, Lyon, France
| | - Conxi Lazaro
- ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary Cancer Program, Barcelona, Spain
| | - Jenny Lester
- University of California at Los Angeles, David Geffen School of Medicine, Department of Obstetrics and Gynecology, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Inserm U900, Genetic Epidemiology of Cancer team, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- Department of Life & Health Sciences, PSL University, Paris, France
| | | | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jan Lubiński
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Phuong L Mai
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siranoush Manoukian
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Véronique Mari
- Centre Antoine Lacassagne, Département d'Hématologie-Oncologie Médicale, Nice, France
| | - Noura Mebirouk
- Inserm U900, Genetic Epidemiology of Cancer team, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- Department of Life & Health Sciences, PSL University, Paris, France
| | | | - Alfons Meindl
- University of Munich, Campus Großhadern, Department of Gynecology and Obstetrics, Munich, Germany
| | - Arjen R Mensenkamp
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Austin Miller
- Roswell Park Cancer Institute, NRG Oncology, Statistics and Data Management Center, Buffalo, NY, USA
| | - Marco Montagna
- Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit, Padua, Italy
| | | | - Semanti Mukherjee
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA
| | - Anna Marie Mulligan
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
- University Health Network, Laboratory Medicine Program, Toronto, ON, Canada
| | - Katherine L Nathanson
- University of Pennsylvania, Basser Center for BRCA, Abramson Cancer Center, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Heli Nevanlinna
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Dieter Niederacher
- University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Department of Gynecology and Obstetrics, Düsseldorf, Germany
| | - Finn Cilius Nielsen
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
| | | | - Catherine Noguès
- Oncogénétique Clinique and Aix Marseille Univ, INSERM, IRD, SESSTIM, Institut Paoli-Calmettes, Département d'Anticipation et de Suivi des Cancers, Marseille, France
| | - Edith Olah
- National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary
| | | | - Kai-Ren Ong
- Birmingham Women's Hospital Healthcare NHS Trust, West Midlands Regional Genetics Service, Birmingham, UK
| | - Aoife O'Shaughnessy-Kirwan
- Cambridge University Hospitals NHS Foundation Trust, East Anglian Medical Genetics Service, Cambridge, UK
| | - Ana Osorio
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Claus-Eric Ott
- Campus Virchov Klinikum, Charite, Institute of Human Genetics, Berlin, Germany
| | - Laura Papi
- University of Florence, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics Unit, Florence, Italy
| | - Sue K Park
- Seoul National University College of Medicine, Department of Preventive Medicine, Seoul, Korea
- Seoul National University Graduate School, Department of Biomedical Sciences, Seoul, Korea
- Seoul National University, Cancer Research Institute, Seoul, Korea
| | - Michael T Parsons
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD, Australia
| | - Inge Sokilde Pedersen
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University Hospital, Clinical Cancer Research Center, Aalborg, Denmark
- Aalborg University, Department of Clinical Medicine, Aalborg, Denmark
| | - Bernard Peissel
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Ana Peixoto
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
| | - Paolo Peterlongo
- IFOM - the FIRC Institute of Molecular Oncology, Genome Diagnostics Program, Milan, Italy
| | - Georg Pfeiler
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Kelly-Anne Phillips
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, VIC, Australia
| | - Karolina Prajzendanc
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Miquel Angel Pujana
- IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, ProCURE, Barcelona, Spain
| | - Paolo Radice
- Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Milan, Italy
| | - Juliane Ramser
- Klinikum rechts der Isar der Technischen Universität München, Department of Gynaecology and Obstetrics, Munich, Germany
| | - Susan J Ramus
- University of NSW Sydney, School of Women's and Children's Health, Faculty of Medicine, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
- University of NSW Sydney, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, NSW, Australia
| | | | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Harvey A Risch
- Yale School of Medicine, Chronic Disease Epidemiology, New Haven, CT, USA
| | - Mark Robson
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA
| | - Karina Rønlund
- Region of Southern Denmark, Vejle Hospital, Department of Clinical Genetics, Vejle, Denmark
| | - Ritu Salani
- Wexner Medical Center, The Ohio State University, Department of Gynecology and Obstetrics, Columbus, OH, USA
| | - Hélène Schuster
- Unité d'Oncogénétique Centre de Lutte contre le Cancer Paul Strauss, Strasbourg, France
- Institut de Cancérologie Strasbourg Europe, ICANS, Strasbourg, France
- Université de Strasbourg, Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Strasbourg, France
| | - Leigha Senter
- The Ohio State University, Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center, Columbus, OH, USA
| | - Payal D Shah
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Priyanka Sharma
- University of Kansas Medical Center, Department of Internal Medicine, Division of Medical Oncology, Westwood, KS, USA
| | | | - Christian F Singer
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | | | - Penny Soucy
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Genomics Center,, Québec City, QC, Canada
| | - Melissa C Southey
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC, Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC, Australia
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, VIC, Australia
| | - Amanda B Spurdle
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD, Australia
| | - Doris Steinemann
- Hannover Medical School, Institute of Human Genetics, Hannover, Germany
| | - Zoe Steinsnyder
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA
| | - Dominique Stoppa-Lyonnet
- Institut Curie, Service de Génétique, Paris, France
- INSERM U830, Department of Tumour Biology, Paris, France
- Université Paris Descartes, Paris, France
| | - Christian Sutter
- University Hospital Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Yen Yen Tan
- Medical University of Vienna, Dept of OB/GYN, Vienna, Austria
| | - Manuel R Teixeira
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
| | - Soo Hwang Teo
- Cancer Research Malaysia, Breast Cancer Research Programme, Subang Jaya, Selangor, Malaysia
- University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur, Malaysia
| | - Darcy L Thull
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Department of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC, Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Silvia Tognazzo
- Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit, Padua, Italy
| | - Amanda E Toland
- The Ohio State University, Department of Cancer Biology and Genetics, Columbus, OH, USA
| | - Alison H Trainer
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC, Australia
- University Of Melbourne, Department of Medicine, Melbourne, VIC, Australia
| | - Nadine Tung
- Beth Israel Deaconess Medical Center, Department of Medical Oncology, Boston, MA, USA
| | - Klaartje van Engelen
- Amsterdam UMC, location VUmc, Department of Clinical Genetics, Amsterdam, The Netherlands
| | | | - Ana Vega
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | | | - Gabriel Wagner
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Lisa Walker
- Oxford University Hospitals, Oxford Centre for Genomic Medicine, Oxford, UK
| | - Shan Wang-Gohrke
- University Hospital Ulm, Department of Gynaecology and Obstetrics, Ulm, Germany
| | - Barbara Wappenschmidt
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
| | | | | | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Drakoulis Yannoukakos
- National Centre for Scientific Research 'Demokritos', Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
| | - Dario Zimbalatti
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Kenneth Offit
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, New York, NY, USA
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA
| | - Mads Thomassen
- Odense University Hospital, Department of Clinical Genetics, Odense, Denmark
| | - Fergus J Couch
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Rita K Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Genomics Center,, Québec City, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
193
|
Pal Choudhury P, Wilcox AN, Brook MN, Zhang Y, Ahearn T, Orr N, Coulson P, Schoemaker MJ, Jones ME, Gail MH, Swerdlow AJ, Chatterjee N, Garcia-Closas M. Comparative Validation of Breast Cancer Risk Prediction Models and Projections for Future Risk Stratification. J Natl Cancer Inst 2020; 112:278-285. [PMID: 31165158 DOI: 10.1093/jnci/djz113] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND External validation of risk models is critical for risk-stratified breast cancer prevention. We used the Individualized Coherent Absolute Risk Estimation (iCARE) as a flexible tool for risk model development and comparative model validation and to make projections for population risk stratification. METHODS Performance of two recently developed models, one based on the Breast and Prostate Cancer Cohort Consortium analysis (iCARE-BPC3) and another based on a literature review (iCARE-Lit), were compared with two established models (Breast Cancer Risk Assessment Tool and International Breast Cancer Intervention Study Model) based on classical risk factors in a UK-based cohort of 64 874 white non-Hispanic women (863 patients) age 35-74 years. Risk projections in a target population of US white non-Hispanic women age 50-70 years assessed potential improvements in risk stratification by adding mammographic breast density (MD) and polygenic risk score (PRS). RESULTS The best calibrated models were iCARE-Lit (expected to observed number of cases [E/O] = 0.98, 95% confidence interval [CI] = 0.87 to 1.11) for women younger than 50 years, and iCARE-BPC3 (E/O = 1.00, 95% CI = 0.93 to 1.09) for women 50 years or older. Risk projections using iCARE-BPC3 indicated classical risk factors can identify approximately 500 000 women at moderate to high risk (>3% 5-year risk) in the target population. Addition of MD and a 313-variant PRS is expected to increase this number to approximately 3.5 million women, and among them, approximately 153 000 are expected to develop invasive breast cancer within 5 years. CONCLUSIONS iCARE models based on classical risk factors perform similarly to or better than BCRAT or IBIS in white non-Hispanic women. Addition of MD and PRS can lead to substantial improvements in risk stratification. However, these integrated models require independent prospective validation before broad clinical applications.
Collapse
Affiliation(s)
| | - Amber N Wilcox
- Johns Hopkins University, Baltimore, MD.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda
| | | | - Yan Zhang
- Department of Biostatistics, Bloomberg School of Public Health
| | - Thomas Ahearn
- Johns Hopkins University, Baltimore, MD.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda
| | - Nick Orr
- Department of Biostatistics, Bloomberg School of Public Health.,Department of Oncology, School of Medicine.,Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | | | | | - Mitchell H Gail
- Johns Hopkins University, Baltimore, MD.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology.,Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | | | - Montserrat Garcia-Closas
- Johns Hopkins University, Baltimore, MD.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda
| |
Collapse
|
194
|
Núñez-Marrero A, Arroyo N, Godoy L, Rahman MZ, Matta JL, Dutil J. SNPs in the interleukin-12 signaling pathway are associated with breast cancer risk in Puerto Rican women. Oncotarget 2020; 11:3420-3431. [PMID: 32973967 PMCID: PMC7500104 DOI: 10.18632/oncotarget.27707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 07/14/2020] [Indexed: 01/04/2023] Open
Abstract
Interleukin-12 (IL-12) is a proinflammatory cytokine that links innate and adaptive immune responses against tumor cells. Single Nucleotide Polymorphisms (SNPs) in IL-12 genes have been associated with cancer risk. However, limited studies have assessed the role of IL-12 in breast cancer (BC) risk comprehensively, and these were done in European and Asian populations. Here, we evaluated the association of the IL-12 signaling pathway and BC risk in Puerto Rican women. A genetic association study was completed with 461 BC cases and 463 non-BC controls. By logistic regression, IL-12 signaling SNPs were associated with an increased BC risk, including rs2243123 (IL12A), rs3761041, rs401502 and rs404733 (IL12RB1), rs7849191 (JAK2), rs280500 (TYK2) and rs4274624 (STAT4). Conversely, other SNPs were associated with reduced BC risk including rs438421 (IL12RB1), rs6693065 (IL12RB2), rs10974947, and rs2274471 (JAK2), rs10168266 and rs925847 (STAT4), and rs2069718 (IFNG). Analyses based in hormone receptors such as estrogen (ER) and progesterone (PR) receptors also revealed protective (for SNPs rs3212227-IL12B; rs3024896 and rs3821236-STAT4) and predisposing (for rs2069705-IFNG SNP) BC associations. Haplotype analysis showed a decreased BC risk for IL12B and STAT4 SNPs, whereas increased risk for IL12RB1 SNPs. This study suggests a role of the IL-12 signaling axis and BC risk. SNPs in this pathway may alter IL-12 induced anti-tumor responses and modulate BC predisposition in a population-specific context. Functional studies will be necessary to confirm these findings, which potentially may benefit IL-12 related immunotherapeutic approaches towards BC.
Collapse
Affiliation(s)
- Angel Núñez-Marrero
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Nelly Arroyo
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Lenin Godoy
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Mohammad Zillur Rahman
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jaime L. Matta
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
195
|
Muranen TA, Khan S, Fagerholm R, Aittomäki K, Cunningham JM, Dennis J, Leslie G, McGuffog L, Parsons MT, Simard J, Slager S, Soucy P, Easton DF, Tischkowitz M, Spurdle AB, kConFab Investigators, Schmutzler RK, Wappenschmidt B, Hahnen E, Hooning MJ, HEBON Investigators, Singer CF, Wagner G, Thomassen M, Pedersen IS, Domchek SM, Nathanson KL, Lazaro C, Rossing CM, Andrulis IL, Teixeira MR, James P, Garber J, Weitzel JN, SWE-BRCA Investigators, Jakubowska A, Yannoukakos D, John EM, Southey MC, Schmidt MK, Antoniou AC, Chenevix-Trench G, Blomqvist C, Nevanlinna H. Association of germline variation with the survival of women with BRCA1/2 pathogenic variants and breast cancer. NPJ Breast Cancer 2020; 6:44. [PMID: 32964118 PMCID: PMC7483417 DOI: 10.1038/s41523-020-00185-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023] Open
Abstract
Germline genetic variation has been suggested to influence the survival of breast cancer patients independently of tumor pathology. We have studied survival associations of genetic variants in two etiologically unique groups of breast cancer patients, the carriers of germline pathogenic variants in BRCA1 or BRCA2 genes. We found that rs57025206 was significantly associated with the overall survival, predicting higher mortality of BRCA1 carrier patients with estrogen receptor-negative breast cancer, with a hazard ratio 4.37 (95% confidence interval 3.03-6.30, P = 3.1 × 10-9). Multivariable analysis adjusted for tumor characteristics suggested that rs57025206 was an independent survival marker. In addition, our exploratory analyses suggest that the associations between genetic variants and breast cancer patient survival may depend on tumor biological subgroup and clinical patient characteristics.
Collapse
Affiliation(s)
- Taru A. Muranen
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
- University of Turku and Åbo Akademi University, Turku Bioscience Centre, Turku, Finland
| | - Rainer Fagerholm
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Julie M. Cunningham
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
| | - Joe Dennis
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Goska Leslie
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Lesley McGuffog
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Michael T. Parsons
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
| | - Jacques Simard
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
| | - Susan Slager
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
| | - Penny Soucy
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
| | - Douglas F. Easton
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Marc Tischkowitz
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Amanda B. Spurdle
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
| | - kConFab Investigators
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
- University of Turku and Åbo Akademi University, Turku Bioscience Centre, Turku, Finland
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University, Dept of Clinical Medicine, Aalborg, Denmark
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
- ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
- City of Hope, Clinical Cancer Genomics, Duarte, CA USA
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA USA
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Rita K. Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Barbara Wappenschmidt
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Maartje J. Hooning
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - HEBON Investigators
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
- University of Turku and Åbo Akademi University, Turku Bioscience Centre, Turku, Finland
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University, Dept of Clinical Medicine, Aalborg, Denmark
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
- ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
- City of Hope, Clinical Cancer Genomics, Duarte, CA USA
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA USA
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Christian F. Singer
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Gabriel Wagner
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Mads Thomassen
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
| | - Inge Sokilde Pedersen
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University, Dept of Clinical Medicine, Aalborg, Denmark
| | - Susan M. Domchek
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
| | - Katherine L. Nathanson
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
| | - Conxi Lazaro
- ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
| | - Caroline Maria Rossing
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
| | - Manuel R. Teixeira
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
| | - Paul James
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
| | - Judy Garber
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
| | | | - SWE-BRCA Investigators
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
- University of Turku and Åbo Akademi University, Turku Bioscience Centre, Turku, Finland
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University, Dept of Clinical Medicine, Aalborg, Denmark
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
- ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
- City of Hope, Clinical Cancer Genomics, Duarte, CA USA
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA USA
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Anna Jakubowska
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
| | - Drakoulis Yannoukakos
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
| | - Esther M. John
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA USA
| | - Melissa C. Southey
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
| | - Marjanka K. Schmidt
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
| | - Antonis C. Antoniou
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
| | - Carl Blomqvist
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Heli Nevanlinna
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
196
|
Critical Analysis of Genome-Wide Association Studies: Triple Negative Breast Cancer Quae Exempli Causa. Int J Mol Sci 2020; 21:ijms21165835. [PMID: 32823908 PMCID: PMC7461549 DOI: 10.3390/ijms21165835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) are useful in assessing and analyzing either differences or variations in DNA sequences across the human genome to detect genetic risk factors of diseases prevalent within a target population under study. The ultimate goal of GWAS is to predict either disease risk or disease progression by identifying genetic risk factors. These risk factors will define the biological basis of disease susceptibility for the purposes of developing innovative, preventative, and therapeutic strategies. As single nucleotide polymorphisms (SNPs) are often used in GWAS, their relevance for triple negative breast cancer (TNBC) will be assessed in this review. Furthermore, as there are different levels and patterns of linkage disequilibrium (LD) present within different human subpopulations, a plausible strategy to evaluate known SNPs associated with incidence of breast cancer in ethnically different patient cohorts will be presented and discussed. Additionally, a description of GWAS for TNBC will be presented, involving various identified SNPs correlated with miRNA sites to determine their efficacies on either prognosis or progression of TNBC in patients. Although GWAS have identified multiple common breast cancer susceptibility variants that individually would result in minor risks, it is their combined effects that would likely result in major risks. Thus, one approach to quantify synergistic effects of such common variants is to utilize polygenic risk scores. Therefore, studies utilizing predictive risk scores (PRSs) based on known breast cancer susceptibility SNPs will be evaluated. Such PRSs are potentially useful in improving stratification for screening, particularly when combining family history, other risk factors, and risk prediction models. In conclusion, although interpretation of the results from GWAS remains a challenge, the use of SNPs associated with TNBC may elucidate and better contextualize these studies.
Collapse
|
197
|
Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol 2020; 10:1389. [PMID: 32850448 PMCID: PMC7419686 DOI: 10.3389/fonc.2020.01389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The oncogene MDMX, also known as MDM4 is a critical negative regulator of the tumor suppressor p53 and has been implicated in the initiation and progression of human cancers. Increasing evidence indicates that MDMX is often amplified and highly expressed in human cancers, promotes cancer cell growth, and inhibits apoptosis by dampening p53-mediated transcription of its target genes. Inhibiting MDMX-p53 interaction has been found to be effective for restoring the tumor suppressor activity of p53. Therefore, MDMX is becoming one of the most promising molecular targets for developing anticancer therapeutics. In the present review, we mainly focus on the current MDMX-targeting strategies and known MDMX inhibitors, as well as their mechanisms of action and in vitro and in vivo anticancer activities. We also propose other potential targeting strategies for developing more specific and effective MDMX inhibitors for cancer therapy.
Collapse
Affiliation(s)
- De-Hua Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shaowei Mo
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
198
|
Wood ME, McKinnon W, Garber J. Risk for breast cancer and management of unaffected individuals with non-BRCA hereditary breast cancer. Breast J 2020; 26:1528-1534. [PMID: 32741080 DOI: 10.1111/tbj.13969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
About 5%-10% of breast cancer is hereditary with BRCA1 and BRCA2 being the most common genes associated with hereditary breast cancer (HBC). Several additional genes have recently been associated with HBC. These genes can be classified as highly or moderately penetrant genes with lifetime risk >30% or 17%-30%, respectively. Highly penetrant genes associated with HBC include TP53, PTEN, CDH1, STK11, and PALB2. While, moderately penetrant genes include CHEK2, ATM, BARD1, BRIP1, NBN, NF1, RAD51D, and MSH6. Breast cancer risk and recommendations for screening and risk-reduction vary by gene. In general, screening breast MRI is recommended for women at >20% lifetime risk, which includes women with mutations in highly penetrant genes and the majority (but not all) moderately penetrant genes. Consideration of chemoprevention is recommended for women with mutations in high and moderately penetrant genes. Risk-reducing mastectomy does reduce the risk of breast cancer to the greatest extent and can be considered for women with highly penetrant genes. However, this procedure is associated with significant morbidities that should be considered, especially given the benefit of using screening breast MRI for high-risk women. BSO is only recommended for women with mutations in genes associate with increased risk for ovarian cancer and not as a breast cancer risk-reducing strategy. As more women undergo testing, additional genes may be identified and risk estimates for current genes and management recommendations may be modified.
Collapse
|
199
|
Sengupta D, Banerjee S, Mukhopadhyay P, Guha U, Ganguly K, Bhattacharjee S, Sengupta M. A meta-analysis and in silico analysis of polymorphic variants conferring breast cancer risk in the Indian subcontinent. Future Oncol 2020; 16:2121-2142. [PMID: 32744066 DOI: 10.2217/fon-2020-0333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Genetic association studies on breast cancer on the Indian subcontinent have yielded conflicting results, and the precise effect of these variants on breast cancer pathogenesis is not known. Methods: Genomic variants, as obtained from selected studies from the Indian subcontinent, were subjected to random-effects and fixed-effect meta-analysis. Functional annotation of the relevant variants was done through a tried and tested in silico pipeline. Results: We found rs4646903/CYP1A1, rs1799814/CYP1A1, rs61886492/GCPII, del2/GSTM1, rs4680/COMT and rs1801394/MTRR to be associated with breast cancer. The del2/GSTM1 holds the association in premenopausal women. Conclusions: This is the first study of its kind from the Indian subcontinent analysing the extent of association of variants across populations followed by their functional annotation in the disease pathway.
Collapse
Affiliation(s)
- Debmalya Sengupta
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Souradeep Banerjee
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Pramiti Mukhopadhyay
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Udayan Guha
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Kausik Ganguly
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Samsiddhi Bhattacharjee
- National Institute of Biomedical Genomics, Near Netaji Subhas Sanatorium Post Office, Kalyani, West Bengal 741251, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
200
|
Emerging Roles of Long Non-Coding RNAs in Renal Fibrosis. Life (Basel) 2020; 10:life10080131. [PMID: 32752143 PMCID: PMC7460436 DOI: 10.3390/life10080131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is an unavoidable consequence that occurs in nearly all of the nephropathies. It is characterized by a superabundant deposition and accumulation of extracellular matrix (ECM). All compartments in the kidney can be affected, including interstitium, glomeruli, vasculature, and other connective tissue, during the pathogenesis of renal fibrosis. The development of this process eventually causes destruction of renal parenchyma and end-stage renal failure, which is a devastating disease that requires renal replacement therapies. Recently, long non-coding RNAs (lncRNAs) have been emerging as key regulators governing gene expression and affecting various biological processes. These versatile roles include transcriptional regulation, organization of nuclear domains, and the regulation of RNA molecules or proteins. Current evidence proposes the involvement of lncRNAs in the pathologic process of kidney fibrosis. In this review, the biological relevance of lncRNAs in renal fibrosis will be clarified as important novel regulators and potential therapeutic targets. The biology, and subsequently the current understanding, of lncRNAs in renal fibrosis are demonstrated—highlighting the involvement of lncRNAs in kidney cell function, phenotype transition, and vascular damage and rarefaction. Finally, we discuss challenges and future prospects of lncRNAs in diagnostic markers and potential therapeutic targets, hoping to further inspire the management of renal fibrosis.
Collapse
|