151
|
Basu U, Wang Y, Alt FW. Evolution of phosphorylation-dependent regulation of activation-induced cytidine deaminase. Mol Cell 2008; 32:285-91. [PMID: 18951095 PMCID: PMC2597080 DOI: 10.1016/j.molcel.2008.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/15/2008] [Accepted: 08/20/2008] [Indexed: 01/23/2023]
Abstract
Interaction of activation-induced cytidine deaminase (AID) with replication protein A (RPA) has been proposed to promote AID access to transcribed double-stranded (ds) DNA during immunoglobulin light chain and heavy chain class switch recombination (CSR). Mouse AID (mAID) interaction with RPA and transcription-dependent dsDNA deamination in vitro requires protein kinase A (PKA) phosphorylation at serine 38 (S38), and normal mAID CSR activity depends on S38. However, zebrafish AID (zAID) catalyzes robust CSR in mouse cells despite lacking an S38-equivalent PKA site. Here, we show that aspartate 44 (D44) in zAID provides similar in vitro and in vivo functionality as mAID S38 phosphorylation. Moreover, introduction of a PKA site into a zAID D44 mutant made it PKA dependent for in vitro activities and restored normal CSR activity. Based on these findings, we generated mAID mutants that similarly function independently of S38 phosphorylation. Comparison of bony fish versus amphibian and mammalian AIDs suggests evolutionary divergence from constitutive to PKA-regulated RPA/AID interaction.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, The Children's Hospital, Harvard Medical School, and the Immune Disease Institute, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
152
|
Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting. Blood 2008; 113:3706-15. [PMID: 19023113 DOI: 10.1182/blood-2008-10-183632] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subjects with X-linked hyper-IgM syndrome (X-HIgM) have a markedly reduced frequency of CD27(+) memory B cells, and their Ig genes have a low level of somatic hypermutation (SHM). To analyze the nature of SHM in X-HIgM, we sequenced 209 nonproductive and 926 productive Ig heavy chain genes. In nonproductive rearrangements that were not subjected to selection, as well as productive rearrangements, most of the mutations were within targeted RGYW, WRCY, WA, or TW motifs (R = purine, Y = pyrimidine, and W = A or T). However, there was significantly decreased targeting of the hypermutable G in RGYW motifs. Moreover, the ratio of transitions to transversions was markedly increased compared with normal. Microarray analysis documented that specific genes involved in SHM, including activation-induced cytidine deaminase (AICDA) and uracil-DNA glycosylase (UNG2), were up-regulated in normal germinal center (GC) B cells, but not induced by CD40 ligation. Similar results were obtained from light chain rearrangements. These results indicate that in the absence of CD40-CD154 interactions, there is a marked reduction in SHM and, specifically, mutations of AICDA-targeted G residues in RGYW motifs along with a decrease in transversions normally related to UNG2 activity.
Collapse
|
153
|
McBride KM, Gazumyan A, Woo EM, Schwickert TA, Chait BT, Nussenzweig MC. Regulation of class switch recombination and somatic mutation by AID phosphorylation. ACTA ACUST UNITED AC 2008; 205:2585-94. [PMID: 18838546 PMCID: PMC2571933 DOI: 10.1084/jem.20081319] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching.
Collapse
Affiliation(s)
- Kevin M McBride
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
154
|
Dissociation of in vitro DNA deamination activity and physiological functions of AID mutants. Proc Natl Acad Sci U S A 2008; 105:15866-71. [PMID: 18832469 DOI: 10.1073/pnas.0806641105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the DNA cleavage that initiates both somatic hypermutation (SHM) and class switch recombination (CSR) of the Ig gene. Two alternative mechanisms of DNA cleavage by AID have been proposed: RNA editing and DNA deamination. In support of the latter, AID has DNA deamination activity in cell-free systems that is assumed to represent its physiological function. To test this hypothesis, we generated various mouse AID mutants and compared their DNA deamination, CSR, and SHM activities. Here, we compared DNA deamination, CSR, and SHM activities of various AID mutants and found that most of their CSR or SHM activities were disproportionate with their DNA deamination activities. Specifically, we identified a cluster of mutants (H48A, L49A, R50A, and N51A) with low DNA deamination activity but relatively intact CSR activity. Of note is an AID mutant (N51A) that retained CSR function but lost DNA deamination activity. In addition, an APOBEC1 mutation at N57, homologous to N51 of AID, also abolished DNA deamination activity but retained RNA editing activity. These results indicate that DNA deamination activity does not represent the physiological function of AID.
Collapse
|
155
|
Canugovi C, Samaranayake M, Bhagwat AS. Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase. FASEB J 2008; 23:34-44. [PMID: 18772346 DOI: 10.1096/fj.08-115352] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription of the rearranged immunoglobulin gene and expression of the enzyme activation-induced deaminase (AID) are essential for somatic hypermutations of this gene during antibody maturation. While AID acts as a single-strand DNA-cytosine deaminase creating U . G mispairs that lead to mutations, the role played by transcription in this process is less clear. We have used in vitro transcription of the kan gene by the T7 RNA polymerase (RNAP) in the presence of AID and a genetic reversion assay for kanamycin-resistance to investigate the causes of multiple clustered mutations (MCMs) during somatic hypermutations. We find that, depending on transcription conditions, AID can cause single-base substitutions or MCMs. When wild-type RNAP is used for transcription at physiologically relevant concentrations of ribonucleoside triphosphates (NTPs), few MCMs are found. In contrast, slowing the rate of elongation by reducing the NTP concentration or using a mutant RNAP increases several-fold the percent of revertants containing MCMs. Arresting the elongation complexes by a quick removal of NTPs leads to formation of RNA-DNA hybrids (R-loops). Treatment of these structures with AID results in a high percentage of Kan(R) revertants with MCMs. Furthermore, selecting for transcription elongation complexes stalled near the codon that suffers mutations during acquisition of kanamycin-resistance results in an overwhelming majority of revertants with MCMs. These results show that if RNAP II pauses or stalls during transcription of immunoglobulin gene, AID is likely to promote MCMs. As changes in physiological conditions such as occurrence of certain DNA primary or secondary structures or DNA adducts are known to cause transcriptional pausing and stalling in mammalian cells, this process may cause MCMs during somatic hypermutation.
Collapse
Affiliation(s)
- Chandrika Canugovi
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
156
|
Endo Y, Marusawa H, Kou T, Nakase H, Fujii S, Fujimori T, Kinoshita K, Honjo T, Chiba T. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology 2008; 135:889-98, 898.e1-3. [PMID: 18691581 DOI: 10.1053/j.gastro.2008.06.091] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/06/2008] [Accepted: 06/05/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Activation-induced cytidine deaminase (AID) was originally identified as an inducer of somatic hypermutations in the immunoglobulin gene. We recently revealed that ectopic AID expression serves as a link between the cellular editing machinery and high mutation frequencies, leading to human cancer development. In the current study, we investigated whether AID might contribute to the development of colitis-associated colorectal cancers. METHODS The expression and regulation of AID in association with proinflammatory cytokine stimulation were investigated in cultured colonic cells. Genotoxic activity of AID in colonic cells was analyzed using retroviral system. Immunohistochemistry for AID was carried out on various human colonic tissues specimens. RESULTS Tumor necrosis factor-alpha induced aberrant AID expression via IkappaB kinase-dependent nuclear factor (NF)-kappaB-signaling pathways in human colonic epithelial cells. Moreover, AID expression was also induced in response to the T helper cell 2-driven cytokines interleukin-4 and interleukin-13, which are activated in human inflammatory bowel disease. Aberrant activation of AID in colonic cells preferentially induced genetic mutations in the TP53 gene, whereas there were no nucleotide alterations of the APC gene. Immunohistochemistry revealed enhanced expression of endogenous AID protein not only in the inflamed colonic mucosa of ulcerative colitis patients but also in tumor lesions of colitis-associated colorectal cancers. CONCLUSIONS Our findings indicate that proinflammatory cytokine-mediated aberrant expression of AID in colonic epithelial cells is a genotoxic factor linking inflammation, somatic mutations, and colorectal cancer development.
Collapse
Affiliation(s)
- Yoko Endo
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Wright BE, Schmidt KH, Minnick MF, Davis N. I. VH gene transcription creates stabilized secondary structures for coordinated mutagenesis during somatic hypermutation. Mol Immunol 2008; 45:3589-99. [PMID: 18585784 DOI: 10.1016/j.molimm.2008.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 02/29/2008] [Indexed: 02/01/2023]
Abstract
During the adaptive immune response, antigen challenge triggers a million-fold increase in mutation rates in the variable-region antibody genes. The frequency of mutation is causally and directly linked to transcription, which provides ssDNA and drives supercoiling that stabilizes secondary structures containing unpaired, intrinsically mutable bases. Simulation analysis of transcription in VH5 reveals a dominant 65nt secondary structure in the non-transcribed strand containing six sites of mutable ssDNA that have also been identified independently in human B cell lines and in primary mouse B cells. This dominant structure inter-converts briefly with less stable structures and is formed repeatedly during transcription, due to periodic pauses and backtracking. In effect, this creates a stable yet dynamic "mutability platform" consisting of ever-changing patterns of unpaired bases that are simultaneously exposed and therefore able to coordinate mutagenesis. Such a complex of secondary structures may be the source of ssDNA for enzyme-based diversification, which ultimately results in high affinity antibodies.
Collapse
Affiliation(s)
- Barbara E Wright
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | | | |
Collapse
|
158
|
Abstract
Antibody class switching occurs in mature B cells in response to antigen stimulation and costimulatory signals. It occurs by a unique type of intrachromosomal deletional recombination within special G-rich tandem repeated DNA sequences [called switch, or S, regions located upstream of each of the heavy chain constant (C(H)) region genes, except Cdelta]. The recombination is initiated by the B cell-specific activation-induced cytidine deaminase (AID), which deaminates cytosines in both the donor and acceptor S regions. AID activity converts several dC bases to dU bases in each S region, and the dU bases are then excised by the uracil DNA glycosylase UNG; the resulting abasic sites are nicked by apurinic/apyrimidinic endonuclease (APE). AID attacks both strands of transcriptionally active S regions, but how transcription promotes AID targeting is not entirely clear. Mismatch repair proteins are then involved in converting the resulting single-strand DNA breaks to double-strand breaks with DNA ends appropriate for end-joining recombination. Proteins required for the subsequent S-S recombination include DNA-PK, ATM, Mre11-Rad50-Nbs1, gammaH2AX, 53BP1, Mdc1, and XRCC4-ligase IV. These proteins are important for faithful joining of S regions, and in their absence aberrant recombination and chromosomal translocations involving S regions occur.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-012, USA.
| | | | | |
Collapse
|
159
|
Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, Scharff MD. The biochemistry of somatic hypermutation. Annu Rev Immunol 2008; 26:481-511. [PMID: 18304001 DOI: 10.1146/annurev.immunol.26.021607.090236] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Affinity maturation of the humoral response is mediated by somatic hypermutation of the immunoglobulin (Ig) genes and selection of higher-affinity B cell clones. Activation-induced cytidine deaminase (AID) is the first of a complex series of proteins that introduce these point mutations into variable regions of the Ig genes. AID deaminates deoxycytidine residues in single-stranded DNA to deoxyuridines, which are then processed by DNA replication, base excision repair (BER), or mismatch repair (MMR). In germinal center B cells, MMR, BER, and other factors are diverted from their normal roles in preserving genomic integrity to increase diversity within the Ig locus. Both AID and these components of an emerging error-prone mutasome are regulated on many levels by complex mechanisms that are only beginning to be elucidated.
Collapse
Affiliation(s)
- Jonathan U Peled
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
160
|
Aoufouchi S, Faili A, Zober C, D'Orlando O, Weller S, Weill JC, Reynaud CA. Proteasomal degradation restricts the nuclear lifespan of AID. ACTA ACUST UNITED AC 2008; 205:1357-68. [PMID: 18474627 PMCID: PMC2413033 DOI: 10.1084/jem.20070950] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates all postrearrangement processes that diversify the immunoglobulin repertoire by specific deamination of cytidines at the immunoglobulin (Ig) locus. As uncontrolled expression of AID is potentially mutagenic, different types of regulation, particularly nucleocytoplasmic shuttling, restrict the likelihood of AID–deoxyribonucleic acid encounters. We studied additional mechanisms of regulation affecting the stability of the AID protein. No modulation of protein accumulation according to the cell cycle was observed in a Burkitt's lymphoma cell line. In contrast, the half-life of AID was markedly reduced in the nucleus, and this destabilization was accompanied by a polyubiquitination that was revealed in the presence of proteasome inhibitors. The same compartment-specific degradation was observed in activated mouse B cells, and also in a non–B cell line. No specific lysine residues could be linked to this degradation, so it remains unclear whether polyubiquitination proceeds through several alternatives sites or through the protein N terminus. The nuclear-restricted form of AID displayed enhanced mutagenicity at both Ig and non-Ig loci, most notably at TP53, suggesting that modulation of nuclear AID content through proteasomal degradation may represent another level of control of AID activity.
Collapse
Affiliation(s)
- Said Aoufouchi
- Institut National de la Santé et de la Recherche Médicale U783, Développement du Système Immunitaire, and Université Paris Descartes, Faculté de Médecine, Site Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
161
|
Pham P, Smolka MB, Calabrese P, Landolph A, Zhang K, Zhou H, Goodman MF. Impact of phosphorylation and phosphorylation-null mutants on the activity and deamination specificity of activation-induced cytidine deaminase. J Biol Chem 2008; 283:17428-39. [PMID: 18417471 DOI: 10.1074/jbc.m802121200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination in B cells by deaminating C --> U on transcribed DNA. Here we analyze the role of phosphorylation and phosphorylation-null mutants on the biochemical behavior of AID, including enzyme specific activity, processivity, deamination spectra, deamination motif specificity, and transcription-dependent deamination in the presence and absence of RPA. We show that a small fraction of recombinant human AID expressed in Sf9 insect cells is phosphorylated at previously identified residues Ser(38) and Thr(27) and also at Ser(41) and Ser(43). S43P AID has been identified in a patient with hyper-IgM immunodeficiency syndrome. Ser-substituted phosphorylation-null mutants (S38A, S41A, S43A, and S43P) exhibit wild type (WT) activity on single-stranded DNA. Deamination of transcribed double-stranded DNA is similar for WT and mutant AID and occurs with or without RPA. Although WT and AID mutants catalyze processive deamination favoring canonical WRC hot spot motifs (where W represents A/T and R is A/G), their deamination spectra differ significantly. The differences between the WT and AID mutants appear to be caused by the replacement of Ser as opposed to an absence of phosphorylation. The spectral differences reflect a marked change in deamination efficiencies in two motifs, GGC and AGC, which are preferred by mutant AID but disfavored by WT AID. Both motifs occur with exceptionally high frequency in human switch regions, suggesting a possible relationship between AID deamination specificity and a loss of antibody diversification.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
|
163
|
Lin W, Hashimoto SI, Seo H, Shibata T, Ohta K. Modulation of immunoglobulin gene conversion frequency and distribution by the histone deacetylase HDAC2 in chicken DT40. Genes Cells 2008; 13:255-68. [DOI: 10.1111/j.1365-2443.2008.01166.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
164
|
Antisense transcripts from immunoglobulin heavy-chain locus V(D)J and switch regions. Proc Natl Acad Sci U S A 2008; 105:3843-8. [PMID: 18292225 DOI: 10.1073/pnas.0712291105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation-induced cytosine deaminase (AID) is essential for both somatic hypermutation (SHM) and class switch recombination (CSR), two processes involved in antibody diversification. Previously, various groups showed both in vitro and in vivo that AID initiates SHM and CSR by deaminating cytosines in DNA in a transcription-dependent manner. Although in vivo both DNA strands are equally targeted by AID, many in vitro and bacterial experiments found that AID almost exclusively targets the nontemplate strand of a transcribed substrate. Here, we report the detection of antisense transcripts in assembled Ig heavy chain (IgH) variable region exons and their immediate downstream region, as well as in switch regions, sequences that, respectively, are targets for SHM and CSR in vivo. In contrast, we did not detect antisense transcripts from the Cmu constant region exons, which lie between the IgH variable region exons and downstream S regions and which are not normally an AID target. Expression of the antisense variable region/flanking region and the S-region transcripts were found in all lymphocytes that transcribe these sequences in the sense direction. Steady-state levels of antisense transcripts appeared very low, and start sites potentially appeared heterogeneous. We discuss the potential implications of antisense IgH locus transcription for AID targeting or other processes.
Collapse
|
165
|
Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 2008; 8:22-33. [PMID: 18097447 DOI: 10.1038/nri2217] [Citation(s) in RCA: 605] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the past several years, studies on normal and malignant B cells have provided new insights into the unique physiology of the germinal centre (GC). In particular, advances in technology have allowed a more precise dissection of the phenotypes of GC B cells and the specific transcriptional programmes that are responsible for this phenotype. Furthermore, substantial progress has been made in the understanding of the mechanism controlling the exit of B cells from the GC and the decision to become a memory B cell or plasma cell. This Review focuses on these recent advances and discusses their implications for the pathogenesis of B-cell lymphomas.
Collapse
Affiliation(s)
- Ulf Klein
- Institute for Cancer Genetics, Departments of Pathology and Genetics & Development, and Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA
| | | |
Collapse
|
166
|
Jovanic T, Roche B, Attal-Bonnefoy G, Leclercq O, Rougeon F. Ectopic expression of AID in a non-B cell line triggers A:T and G:C point mutations in non-replicating episomal vectors. PLoS One 2008; 3:e1480. [PMID: 18213388 PMCID: PMC2195452 DOI: 10.1371/journal.pone.0001480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/27/2007] [Indexed: 11/19/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin genes is currently viewed as a two step process initiated by the deamination of deoxycytidine (C) to deoxyuridine (U), catalysed by the activation induced deaminase (AID). Phase 1 mutations arise from DNA replication across the uracil residue or the abasic site, generated by the uracil-DNA glycosylase, yielding transitions or transversions at G:C pairs. Phase 2 mutations result from the recognition of the U∶G mismatch by the Msh2/Msh6 complex (MutS Homologue), followed by the excision of the mismatched nucleotide and the repair, by the low fidelity DNA polymerase η, of the gap generated by the exonuclease I. These mutations are mainly focused at A∶T pairs. Whereas in activated B cells both G:C and A∶T pairs are equally targeted, ectopic expression of AID was shown to trigger only G:C mutations on a stably integrated reporter gene. Here we show that when using non-replicative episomal vectors containing a GFP gene, inactivated by the introduction of stop codons at various positions, a high level of EGFP positive cells was obtained after transient expression in Jurkat cells constitutively expressing AID. We show that mutations at G:C and A∶T pairs are produced. EGFP positive cells are obtained in the absence of vector replication demonstrating that the mutations are dependent only on the mismatch repair (MMR) pathway. This implies that the generation of phase 1 mutations is not a prerequisite for the expression of phase 2 mutations.
Collapse
Affiliation(s)
- Tihana Jovanic
- Unité de Génétique et Biochimie du Développement, Département d'Immunologie, URA CNRS 2581, Institut Pasteur, Paris, France
| | - Benjamin Roche
- Unité de Génétique et Biochimie du Développement, Département d'Immunologie, URA CNRS 2581, Institut Pasteur, Paris, France
| | - Géraldine Attal-Bonnefoy
- Unité de Génétique et Biochimie du Développement, Département d'Immunologie, URA CNRS 2581, Institut Pasteur, Paris, France
| | - Olivier Leclercq
- Unité de Génétique et Biochimie du Développement, Département d'Immunologie, URA CNRS 2581, Institut Pasteur, Paris, France
| | - François Rougeon
- Unité de Génétique et Biochimie du Développement, Département d'Immunologie, URA CNRS 2581, Institut Pasteur, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
167
|
Abstract
The clonal selection theory proposed by Burnet required a genetic process, for which there was then no precedent, which randomizes the region of the gene(s) responsible for the specification of gamma-globulin molecules. Work over the subsequent half-century substantiated Burnet's speculation, revealing two distinct novel genetic processes. During early development (when Burnet first thought the randomization took place) programmed gene segment rearrangement catalysed by the RAG1/RAG2 recombinase generates a substantial diversity of immunoglobulin molecules (the primary repertoire). Somatic hypermutation (triggered by the activation-induced deaminase (AID) DNA deaminase) then occurs following antigen encounter in man and mouse, yielding a secondary repertoire. This hypermutation allows both limitless diversification as well as maturation of the antibody response by a process of somatic evolution akin to that envisioned by Burnet in later formulations of the clonal selection theory. AID-triggered antigen receptor diversification probably arose earlier in evolution than RAG-mediated repertoire generation. Here I trace our insights into the molecular mechanism antibody somatic mutation from when it was first proposed through to our current understanding of how it is triggered by targeted deamination of deoxycytidine residues in immunoglobulin gene DNA.
Collapse
|
168
|
Oruc Z, Boumédiène A, Le Bert M, Khamlichi AA. Replacement of Igamma3 germ-line promoter by Igamma1 inhibits class-switch recombination to IgG3. Proc Natl Acad Sci U S A 2007; 104:20484-9. [PMID: 18077389 PMCID: PMC2154457 DOI: 10.1073/pnas.0608364104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Indexed: 11/18/2022] Open
Abstract
Class-switch recombination (CSR) enables IgM-producing B cells to switch to the production of IgG, IgE, and IgA. The process requires germ-line (GL) transcription that initiates from promoters upstream of switch (S) sequences and is regulated by the 3' regulatory region (3'RR) located downstream of the Ig heavy chain (IgH) locus. How the 3'RR effect its long-range activation is presently unclear. We generated a mouse line in which Igamma3 GL promoter was replaced by Igamma1. We found that GL transcription could initiate from the inserted Igamma1 promoter and was induced by increased concentrations of IL-4 and that the transcripts were normally spliced. However, when compared with GL transcripts derived from the endogenous Igamma1 promoter in the same stimulation conditions, those from the inserted Igamma1 promoter were less abundant. CSR to Cgamma3 was abrogated both in vivo and in vitro. The results strongly suggest that the endogenous Igamma1 promoter insulates the inserted Igamma1 from the long-range activating effect of the 3'RR. The implications of our findings are discussed in light of the prominent models of long-distance activation in complex loci.
Collapse
Affiliation(s)
- Zeliha Oruc
- Université Paul Sabatier, III, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5089-IPBS, Equipe "Instabilité génétique et régulation transcriptionnelle," 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | |
Collapse
|
169
|
Di Noia JM, Williams GT, Chan DTY, Buerstedde JM, Baldwin GS, Neuberger MS. Dependence of antibody gene diversification on uracil excision. ACTA ACUST UNITED AC 2007; 204:3209-19. [PMID: 18070939 PMCID: PMC2150978 DOI: 10.1084/jem.20071768] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Activation-induced deaminase (AID) catalyses deamination of deoxycytidine to deoxyuridine within immunoglobulin loci, triggering pathways of antibody diversification that are largely dependent on uracil-DNA glycosylase (uracil-N-glycolase [UNG]). Surprisingly efficient class switch recombination is restored to ung(-/-) B cells through retroviral delivery of active-site mutants of UNG, stimulating discussion about the need for UNG's uracil-excision activity. In this study, however, we find that even with the overexpression achieved through retroviral delivery, switching is only mediated by UNG mutants that retain detectable excision activity, with this switching being especially dependent on MSH2. In contrast to their potentiation of switching, low-activity UNGs are relatively ineffective in restoring transversion mutations at C:G pairs during hypermutation, or in restoring gene conversion in stably transfected DT40 cells. The results indicate that UNG does, indeed, act through uracil excision, but suggest that, in the presence of MSH2, efficient switch recombination requires base excision at only a small proportion of the AID-generated uracils in the S region. Interestingly, enforced expression of thymine-DNA glycosylase (which can excise U from U:G mispairs) does not (unlike enforced UNG or SMUG1 expression) potentiate efficient switching, which is consistent with a need either for specific recruitment of the uracil-excision enzyme or for it to be active on single-stranded DNA.
Collapse
Affiliation(s)
- Javier M Di Noia
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 QH, UK.
| | | | | | | | | | | |
Collapse
|
170
|
AID is required for germinal center-derived lymphomagenesis. Nat Genet 2007; 40:108-12. [PMID: 18066064 DOI: 10.1038/ng.2007.35] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/09/2007] [Indexed: 11/08/2022]
Abstract
Most human B cell non-Hodgkin's lymphomas (B-NHLs) derive from germinal centers (GCs), the structure in which B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR) before being selected for high-affinity antibody production. The pathogenesis of B-NHL is associated with distinct genetic lesions, including chromosomal translocations and aberrant SHM, which arise from mistakes occurring during CSR and SHM. A direct link between these DNA remodeling events and GC lymphoma development, however, has not been demonstrated. Here we have crossed three mouse models of B cell lymphoma driven by oncogenes (Myc, Bcl6 and Myc/Bcl6; refs. 5,6) with mice lacking activation-induced cytidine deaminase (AID), the enzyme required for both CSR and SHM. We show that AID deficiency prevents Bcl6-dependent, GC-derived B-NHL, but has no impact on Myc-driven, pre-GC lymphomas. Accordingly, abrogation of AID is associated with the disappearance of CSR- and SHM-mediated structural alterations. These results show that AID is required for GC-derived lymphomagenesis, supporting the notion that errors in AID-mediated antigen-receptor gene modification processes are principal contributors to the pathogenesis of human B-NHL.
Collapse
|
171
|
Cummings WJ, Yabuki M, Ordinario EC, Bednarski DW, Quay S, Maizels N. Chromatin structure regulates gene conversion. PLoS Biol 2007; 5:e246. [PMID: 17880262 PMCID: PMC1976632 DOI: 10.1371/journal.pbio.0050246] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/17/2007] [Indexed: 12/29/2022] Open
Abstract
Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vλ pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205), expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vλ donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vλ array, and altered the outcome of Vλ diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences. Homologous recombination promotes genetic exchange between regions containing identical or highly related sequences. This is useful in repairing damaged DNA, or in reassorting genes in meiosis, but uncontrolled homologous recombination can create genomic instability. Chromosomes are made up of a complex of DNA and protein, called chromatin. DNA within chromatin is packed tightly in order to fit the entire genome inside a cell; but chromatin structure may become relaxed to allow access to enzymes that regulate gene expression, transcribe genes into mesenger RNA, or carry out gene replication. We asked if chromatin packing regulates homologous recombination. To do this, we tethered a factor associated with compact chromatin, called HP1, adjacent to an immunoglobulin gene locus at which homologous recombination occurs constitutively, in order to produce a diverse repertoire of antibodies. We found that the compact, repressive chromatin structure produced by HP1 prevents homologous recombination. This finding suggests that regulated changes in chromatin structure may contribute to maintaining genomic stability by preventing recombination between repetitive sequences. Much of the chromosome is tightly packed (heterochromatic) and not transcribed. Here, the authors show that tight packing has another effect: it prevents recombination between homologous sequences.
Collapse
Affiliation(s)
- W. Jason Cummings
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Munehisa Yabuki
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ellen C Ordinario
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - David W Bednarski
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Simon Quay
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
172
|
Larijani M, Martin A. Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol Cell Biol 2007; 27:8038-48. [PMID: 17893327 PMCID: PMC2169167 DOI: 10.1128/mcb.01046-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/06/2007] [Accepted: 09/12/2007] [Indexed: 01/05/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates antibody diversification processes by deaminating immunoglobulin sequences. Since transcription of target genes is required for deamination in vivo and AID exclusively mutates single-stranded DNA (ssDNA) in vitro, AID has been postulated to mutate transcription bubbles. However, since ssDNA generated by transcription can assume multiple structures, it is unknown which of these are targeted in vivo. Here we examine the enzymatic and binding properties of AID for different DNA structures. We report that AID has minimal activity on stem-loop structures and preferentially deaminates five-nucleotide bubbles. We compared AID activity on cytidines placed at various distances from the single-stranded/double-stranded DNA junction of bubble substrates and found that the optimal target consists of a single-stranded NWRCN motif. We also show that high-affinity binding is required for but does not necessarily lead to efficient deamination. Using nucleotide analogues, we show that AID's WRC preference (W = A or T; R = A or G) involves the recognition of a purine in the R position and that the carbonyl or amino side chains of guanosine negatively influence specificity at the W position. Our results indicate that AID is likely to target short-tract regions of ssDNA produced by transcription elongation and that it requires a fully single-stranded WRC motif.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Canada M5S 1A8
| | | |
Collapse
|
173
|
Gopal AR, Fugmann SD. AID-mediated diversification within the IgL locus of chicken DT40 cells is restricted to the transcribed IgL gene. Mol Immunol 2007; 45:2062-8. [PMID: 18023479 DOI: 10.1016/j.molimm.2007.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/11/2007] [Indexed: 12/19/2022]
Abstract
Somatic hypermutation (SHM) and gene conversion (GCV) are closely related processes that increase the diversity the primary immunoglobulin repertoire. In both processes the activation-induced cytidine deaminase (AID) converts cytosine residues to uracils within the DNA of the immunoglobulin (Ig) genes in a transcription-dependent manner, and subsequent error-prone repair processes lead to changes in the antigen recognition site of the encoded receptors. This activity is specifically recruited to the Ig loci by unknown mechanisms. Our analyses of the chicken B-cell line DT40, and derivatives thereof, now revealed that even the closest neighbors of the Ig light chain (IgL) gene are protected from AID activity, albeit being transcribed and thus acting as potential targets of AID. Our findings are in support of a model in which cis-acting DNA boundary elements restrict AID activity to the IgL locus and guard the genome in the vicinity of the IgL gene from deleterious mutations.
Collapse
Affiliation(s)
- Anjali R Gopal
- Molecular Immunology Unit, Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
174
|
Heltemes-Harris LM, Gearhart PJ, Ghosh P, Longo DL. Activation-induced deaminase-mediated class switch recombination is blocked by anti-IgM signaling in a phosphatidylinositol 3-kinase-dependent fashion. Mol Immunol 2007; 45:1799-806. [PMID: 17983655 DOI: 10.1016/j.molimm.2007.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/21/2007] [Accepted: 09/22/2007] [Indexed: 11/28/2022]
Abstract
Activation-induced deaminase (AID) is expressed in activated B lymphocytes and initiates somatic hypermutation and class switch recombination. To determine if different stimuli affect the expression and function of AID, we monitored AID activity in murine B cells stimulated ex vivo with various ligands. AID was rapidly expressed at both the RNA and protein levels following stimulation with LPS, LPS plus IL-4, and anti-CD40 plus IL-4, but was delayed after stimulation with anti-IgM plus IL-4. By day 4, AID was expressed in all groups; however, cells stimulated with anti-IgM plus IL-4 did not undergo switch recombination. These cells expressed normal levels of gamma 1 germline transcripts, implying that the gamma 1 switch region was accessible. Furthermore, switching was suppressed by the addition of anti-IgM to cells stimulated with LPS plus IL-4 or anti-CD40 plus IL-4, even though AID was expressed. The lack of class switch recombination could be reversed by inhibition of phosphatidylinositol 3-kinase (PI3K). This suggests that activation through the B cell receptor induces PI3K, which interferes with the function of AID.
Collapse
Affiliation(s)
- Lynn M Heltemes-Harris
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | | | |
Collapse
|
175
|
Schrader CE, Guikema JEJ, Linehan EK, Selsing E, Stavnezer J. Activation-Induced Cytidine Deaminase-Dependent DNA Breaks in Class Switch Recombination Occur during G1 Phase of the Cell Cycle and Depend upon Mismatch Repair. THE JOURNAL OF IMMUNOLOGY 2007; 179:6064-71. [DOI: 10.4049/jimmunol.179.9.6064] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
176
|
Abstract
Functional antibody genes are assembled by V-D-J joining and then diversified by somatic hypermutation. This hypermutation results from stepwise incorporation of single nucleotide substitutions into the V gene, underpinning much of antibody diversity and affinity maturation. Hypermutation is triggered by activation-induced deaminase (AID), an enzyme which catalyzes targeted deamination of deoxycytidine residues in DNA. The pathways used for processing the AID-generated U:G lesions determine the variety of base substitutions observed during somatic hypermutation. Thus, DNA replication across the uracil yields transition mutations at C:G pairs, whereas uracil excision by UNG uracil-DNA glycosylase creates abasic sites that can also yield transversions. Recognition of the U:G mismatch by MSH2/MSH6 triggers a mutagenic patch repair in which polymerase eta plays a major role and leads to mutations at A:T pairs. AID-triggered DNA deamination also underpins immunoglobulin variable (IgV) gene conversion, isotype class switching, and some oncogenic translocations in B cell tumors.
Collapse
Affiliation(s)
- Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Québec, Canada.
| | | |
Collapse
|
177
|
Jankovic M, Nussenzweig A, Nussenzweig MC. Antigen receptor diversification and chromosome translocations. Nat Immunol 2007; 8:801-8. [PMID: 17641661 DOI: 10.1038/ni1498] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Double-stranded DNA breaks (DSBs) can result in chromosomal abnormalities, including deletions, translocations and aneuploidy, which can promote neoplastic transformation. DSBs arise accidentally during DNA replication and can be induced by environmental factors such as ultraviolet light or ionizing radiation, and they are generated during antigen receptor-diversification reactions in lymphocytes. Cellular pathways that maintain genomic integrity use sophisticated mechanisms that recognize and repair all DSBs regardless of their origin. Such pathways, along with DNA-damage checkpoints, ensure that either the damage is properly repaired or cells with damaged DNA are eliminated. Here we review how impaired DNA-repair or DNA-damage checkpoints can lead to genetic instability and predispose lymphocytes undergoing diversification of antigen receptor genes to malignant transformation.
Collapse
Affiliation(s)
- Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
178
|
He WJ, Chen R, Yang Z, Zhou Q. Regulation of two key nuclear enzymatic activities by the 7SK small nuclear RNA. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:301-11. [PMID: 17381310 DOI: 10.1101/sqb.2006.71.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
7SK is a highly conserved small nuclear RNA (snRNA) in vertebrates. Since its discovery in 1968, little had been known about its function until recently, when 7SK was found to associate with the general transcription elongation factor P-TEFb. Together with the HEXIM1 protein, 7SK sequesters P-TEFb into a kinase-inactive complex, where it mediates HEXIM1's inhibition of P-TEFb. This helps maintain P-TEFb in a functional equilibrium to control transcription, cell growth, and differentiation. Although highly abundant, only a small fraction of 7SK is P-TEFb-bound. Using affinity purification, we have identified APOBEC3C as another 7SK-associated protein. As a member of the APOBEC family that functions in diverse processes through deaminating cytosine in DNA, it is unclear how APOBEC3C's activity is controlled to prevent its mutations of genomic DNA. We show that most of APOBEC3C interact with about half of nuclear 7SK, which suppresses APOBEC3C's deaminase activity and sequesters APOBEC3C in the nucleolus where it could be at a safe distance from most genomic sequences. Because the DNA substrate-binding site in APOBEC3C differs from the region for 7SK binding, 7SK does not act as a substrate competitor in inhibiting APOBEC3C. The demonstration of 7SK's suppression of yet another enzyme besides P-TEFb suggests a general role for this RNA in regulating key nuclear functions.
Collapse
Affiliation(s)
- W-J He
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
179
|
Basu U, Chaudhuri J, Phan RT, Datta A, Alt FW. Regulation of activation induced deaminase via phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 596:129-37. [PMID: 17338181 DOI: 10.1007/0-387-46530-8_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immunoglobulin gene diversification by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion is dependent upon activation-induced cytidine deaminase (AID). AID is a single-stranded DNA specific cytidine deaminase that is expressed primarily in activated mature B lymphocytes. AID appears to catalyze DNA cytidine deamination of immunoglobulin heavy (IgH) and light chain (IgL) variable region (V) exons and IgH switch (S) region sequences to initiate, respectively, IgH and IgL somatic hypermutation (SHM) and IgH class switch recombination (CSR). Here, we will discuss the implications of recent studies that demonstrate the role of AID phosphorylation in augmenting AID activity with respect to these two processes.
Collapse
Affiliation(s)
- Uttiya Basu
- The Howard Hughes Medical Institute, The Children's Hospital, The CBR Institute for Biomedical Research, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
180
|
Gómez-González B, Aguilera A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc Natl Acad Sci U S A 2007; 104:8409-14. [PMID: 17488823 PMCID: PMC1895963 DOI: 10.1073/pnas.0702836104] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is a B cell enzyme essential for Ig somatic hypermutation and class switch recombination. AID acts on ssDNA, and switch regions of Ig genes, a target of AID, form R-loops that contain ssDNA. Nevertheless, how AID action is specifically targeted to particular DNA sequences is not clear. Because mutations altering cotranscriptional messenger ribonucleoprotein (mRNP) formation such as those in THO/TREX in yeast promote R-loops, we investigated whether the cotranscriptional assembly of mRNPs could affect AID targeting. Here we show that AID action is transcription-dependent in yeast and that strong and transcription-dependent hypermutation and hyperrecombination are induced by AID if cells are deprived of THO. In these strains AID-induced mutations occurred preferentially at WRC motifs in the nontranscribed DNA strand. We propose that a suboptimal cotranscriptional mRNP assembly at particular DNA regions could play an important role in Ig diversification and genome dynamics.
Collapse
Affiliation(s)
- Belén Gómez-González
- Departamento de Genética, Facultad de Biología, and Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, and Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| |
Collapse
|
181
|
Péron S, Pan-Hammarström Q, Imai K, Du L, Taubenheim N, Sanal O, Marodi L, Bergelin-Besançon A, Benkerrou M, de Villartay JP, Fischer A, Revy P, Durandy A. A primary immunodeficiency characterized by defective immunoglobulin class switch recombination and impaired DNA repair. ACTA ACUST UNITED AC 2007; 204:1207-16. [PMID: 17485519 PMCID: PMC2118580 DOI: 10.1084/jem.20070087] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immunoglobulin class switch recombination (CSR) deficiencies are rare primary immunodeficiencies, characterized by a lack of switched isotype (IgG, IgA, or IgE) production, variably associated with abnormal somatic hypermutation (SHM). Deficiencies in CD40 ligand, CD40, activation-induced cytidine deaminase, and uracil-N-glycosylase may account for this syndrome. We previously described another Ig CSR deficiency condition, characterized by a defect in CSR downstream of the generation of double-stranded DNA breaks in switch (S) μ regions. Further analysis performed with the cells of five affected patients showed that the Ig CSR deficiency was associated with an abnormal formation of the S junctions characterized by microhomology and with increased cell radiosensitivity. In addition, SHM was skewed toward transitions at G/C residues. Overall, these findings suggest that a unique Ig CSR deficiency phenotype could be related to an as-yet-uncharacterized defect in a DNA repair pathway involved in both CSR and SHM events.
Collapse
Affiliation(s)
- Sophie Péron
- Institut National de la Santé et de la Recherche Médicale, U768, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, Azuma T, Okazaki IM, Honjo T, Chiba T. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med 2007; 13:470-6. [PMID: 17401375 DOI: 10.1038/nm1566] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 02/21/2007] [Indexed: 12/12/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IkappaB kinase-dependent nuclear factor-kappaB activation pathway. H. pylori-mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Yuko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
The DNA deaminase family encompasses enzymes that have been highly conserved throughout vertebrate evolution and which display wide-ranging positive effects upon innate and adaptive immune system and development. Activation-induced cytidine deaminase was identified as a DNA mutator after its necessity in the successful development of high-affinity B cells via somatic hypermutation, class switch recombination, and gene conversion was determined. APOBEC3 exhibits the ability to deaminate retroviral first strand cDNA in a variety of viral infections, including HIV and hepatitis. Recent work has highlighted the potential importance of activation-induced cytidine deaminase (AID) and APOBEC1 in epigenetic reprogramming, and also the role that AID and the APOBECs may have in the development of cancer. In addition to the known activities of these members of the protein family, there are still other deaminases, such as APOBEC2, whose targets and functions are as yet unknown. This chapter provides the details of two assays that have proved to be invaluable in elucidating the exact specificities of deaminases both in vitro and in Escherichia coli. The application of these assays to future studies of the deaminase family will provide an indispensible tool in determining the potentially diverse functions of the remainder of this family of enzymes.
Collapse
Affiliation(s)
- Heather A Coker
- DNA Editing Laboratory, Cancer Research United Kingdom, Clare Hall Laboratories, South Mimms, Hertfordshire
| | | | | |
Collapse
|
184
|
Xiao Z, Ray M, Jiang C, Clark AB, Rogozin IB, Diaz M. Known components of the immunoglobulin A:T mutational machinery are intact in Burkitt lymphoma cell lines with G:C bias. Mol Immunol 2007; 44:2659-66. [PMID: 17240451 PMCID: PMC1868521 DOI: 10.1016/j.molimm.2006.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/10/2006] [Indexed: 12/14/2022]
Abstract
The basis for mutations at A:T base pairs in immunoglobulin hypermutation and defining how AID interacts with the DNA of the immunoglobulin locus are major aspects of the immunoglobulin mutator mechanism where questions remain unanswered. Here, we examined the pattern of mutations generated in mice deficient in various DNA repair proteins implicated in A:T mutation and found a previously unappreciated bias at G:C base pairs in spectra from mice simultaneously deficient in DNA mismatch repair and uracil DNA glycosylase. This suggests a strand-biased DNA transaction for AID delivery which is then masked by the mechanism that introduces A:T mutations. Additionally, we asked if any of the known components of the A:T mutation machinery underscore the basis for the paucity of A:T mutations in the Burkitt lymphoma cell lines, Ramos and BL2. Ramos and BL2 cells were proficient in MSH2/MSH6-mediated mismatch repair, and express high levels of wild-type, full-length DNA polymerase eta. In addition, Ramos cells have high levels of uracil DNA glycosylase protein and are proficient in base excision repair. These results suggest that Burkitt lymphoma cell lines may be deficient in an unidentified factor that recruits the machinery necessary for A:T mutation or that AID-mediated cytosine deamination in these cells may be processed by conventional base excision repair truncating somatic hypermutation at the G:C phase. Either scenario suggests that cytosine deamination by AID is not enough to trigger A:T mutation, and that additional unidentified factors are required for full spectrum hypermutation in vivo.
Collapse
Affiliation(s)
- Zheng Xiao
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Madhumita Ray
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Chuancang Jiang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Alan B. Clark
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Libray of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
- * Corresponding author: , Phone Number: 919-541-4740, Fax: 919-541-7593
| |
Collapse
|
185
|
Ronai D, Iglesias-Ussel MD, Fan M, Li Z, Martin A, Scharff MD. Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. ACTA ACUST UNITED AC 2007; 204:181-90. [PMID: 17227912 PMCID: PMC2118410 DOI: 10.1084/jem.20062032] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After encounter with antigen, the antibody repertoire is shaped by somatic hypermutation (SHM), which leads to an increase in the affinity of antibodies for the antigen, and class-switch recombination (CSR), which results in a change in the effector function of antibodies. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID), which deaminates deoxycytidine to deoxyuridine in single-stranded DNA (ssDNA). The precise mechanism responsible for the formation of ssDNA in V regions undergoing SHM has yet to be experimentally established. In this study, we searched for ssDNA in mutating V regions in which DNA–protein complexes were preserved in the context of chromatin in human B cell lines and in primary mouse B cells. We found that V regions that undergo SHM were enriched in short patches of ssDNA, rather than R loops, on both the coding and noncoding strands. Detection of these patches depended on the presence of DNA-associated proteins and required active transcription. Consistent with this, we found that both DNA strands in the V region were transcribed. We conclude that regions of DNA that are targets of SHM assemble protein–DNA complexes in which ssDNA is exposed, making it accessible to AID.
Collapse
Affiliation(s)
- Diana Ronai
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
186
|
Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. Evolution of the Immunoglobulin Heavy Chain Class Switch Recombination Mechanism. Adv Immunol 2007; 94:157-214. [PMID: 17560275 DOI: 10.1016/s0065-2776(06)94006-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To mount an optimum immune response, mature B lymphocytes can change the class of expressed antibody from IgM to IgG, IgA, or IgE through a recombination/deletion process termed immunoglobulin heavy chain (IgH) class switch recombination (CSR). CSR requires the activation-induced cytidine deaminase (AID), which has been shown to employ single-stranded DNA as a substrate in vitro. IgH CSR occurs within and requires large, repetitive sequences, termed S regions, which are parts of germ line transcription units (termed "C(H) genes") that are composed of promoters, S regions, and individual IgH constant region exons. CSR requires and is directed by germ line transcription of participating C(H) genes prior to CSR. AID deamination of cytidines in S regions appears to lead to S region double-stranded breaks (DSBs) required to initiate CSR. Joining of two broken S regions to complete CSR exploits the activities of general DNA DSB repair mechanisms. In this chapter, we discuss our current knowledge of the function of S regions, germ line transcription, AID, and DNA repair in CSR. We present a model for CSR in which transcription through S regions provides DNA substrates on which AID can generate DSB-inducing lesions. We also discuss how phosphorylation of AID may mediate interactions with cofactors that facilitate access to transcribed S regions during CSR and transcribed variable regions during the related process of somatic hypermutation (SHM). Finally, in the context of this CSR model, we further discuss current findings that suggest synapsis and joining of S region DSBs during CSR have evolved to exploit general mechanisms that function to join widely separated chromosomal DSBs.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
After their assembly by V(D)J recombination, immunoglobulin (Ig) genes undergo somatic hypermutation, gene conversion, and class switch recombination to generate additional antibody diversity. The three diversification processes depend on activation-induced cytidine deaminase (AID) and are tightly linked to transcription. The reactions occur primarily on Ig genes and the molecular mechanisms that underlie their targeting to Ig loci have been of intense interest. In this chapter, we discuss the evidence linking transcription and transcriptional control elements to the three diversification pathways, and we consider how various features of chromatin could render parts of the genome permissive for AID-mediated sequence diversification.
Collapse
Affiliation(s)
- Shu Yuan Yang
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
188
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
189
|
Ramiro A, Reina San-Martin B, McBride K, Jankovic M, Barreto V, Nussenzweig A, Nussenzweig MC. The Role of Activation‐Induced Deaminase in Antibody Diversification and Chromosome Translocations. Adv Immunol 2007; 94:75-107. [PMID: 17560272 DOI: 10.1016/s0065-2776(06)94003-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although B and T lymphocytes are similar in many respects including diversification of their antigen receptor genes by V(D)J recombination, 95% of all lymphomas diagnosed in the western world are of B-cell origin. Many of these are derived from mature B cells [Kuppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251-262] and display hallmark chromosome translocations involving immunoglobulin genes and a proto-oncogene partner whose expression becomes deregulated as a result of the translocation reaction [Kuppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251-262; Kuppers, R., and Dalla-Favera, R. (2001). Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580-5594]. These translocations are essential to the etiology of B-cell neoplasms. Here we will review how the B-cell specific molecular events required for immunoglobulin class switch recombination are initiated and how they contribute to chromosome translocations in vivo.
Collapse
Affiliation(s)
- Almudena Ramiro
- DNA Hypermutation and Cancer Group, Spanish National Cancer Center (CNIO), Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
190
|
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, 4/312, Bethesda, MD 20892, USA
| |
Collapse
|
191
|
Conticello SG, Langlois MA, Yang Z, Neuberger MS. DNA deamination in immunity: AID in the context of its APOBEC relatives. Adv Immunol 2007; 94:37-73. [PMID: 17560271 DOI: 10.1016/s0065-2776(06)94002-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation-induced cytidine deaminase (AID)/apolipoprotein B RNA-editing catalytic component (APOBEC) family is a vertebrate-restricted subgrouping of a superfamily of zinc (Zn)-dependent deaminases that has members distributed throughout the biological world. AID and APOBEC2 are the oldest family members with APOBEC1 and the APOBEC3s being later arrivals restricted to placental mammals. Many AID/APOBEC family members exhibit cytidine deaminase activity on polynucleotides, although in different physiological contexts. Here, we examine the AID/APOBEC proteins in the context of the entire Zn-dependent deaminase superfamily. On the basis of secondary structure predictions, we propose that the cytosine and tRNA deaminases are likely to provide better structural paradigms for the AID/APOBEC family than do the cytidine deaminases, to which they have conventionally been compared. These comparisons yield predictions concerning likely polynucleotide-interacting residues in AID/APOBEC3s, predictions that are supported by mutagenesis studies. We also focus on a specific comparison between AID and the APOBEC3s. Both are DNA deaminases that function in immunity and are responsible for the hypermutation of their target substrates. AID functions in the adaptive immune system to diversify antibodies with targeted DNA deamination being central to this function. APOBEC3s function as part of an innate pathway of immunity to retroviruses with targeted DNA deamination being central to their activity in retroviral hypermutation. However, the mechanism by which the APOBEC3s fulfill their function of retroviral restriction remains unresolved.
Collapse
Affiliation(s)
- Silvestro G Conticello
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
192
|
Abstract
The prevalence of immunoglobulin E (IgE)-mediated allergic diseases has been increasing for the last four decades. In this review determinants for an increased IgE synthesis are discussed on both an epidemiological and on an immunological level with special emphasis on the differentiation of the B cell to an IgE-producing plasma cell. Factors that favor an IgE immune response are low antigen doses and immunization via mucous membranes, but it is highly likely that other environmental factors besides exposure to the allergenic sources play a role. Important factors in the formation of the Thelper type 2 (Th2) T cell subset are the actions of thymic stromal lymphopoietin (TSLP) on dendritic cells and the OX40 ligand on CD4+ T cells. In order for a B lymphocyte to switch to IgE production it needs two signals provided by a Th2 cell in the form of the cytokines interleukin (IL-) 4/IL-13 and ligation of the CD40. In spite of a half-life of only a few days, there is evidence that the IgE response may last for years even without allergen stimulation. This is likely to be caused by long-lived IgE-producing plasma cells, and such cells may be difficult to target therapeutically thus emphasizing the need for more knowledge on preventable causes of IgE- and allergy development.
Collapse
Affiliation(s)
- Lars K Poulsen
- Laboratory of Medical Allergology, Allergy Clinic, National University Hospital, Copenhagen, Denmark.
| | | |
Collapse
|
193
|
Durandy A, Taubenheim N, Peron S, Fischer A. Pathophysiology of B‐Cell Intrinsic Immunoglobulin Class Switch Recombination Deficiencies. Adv Immunol 2007; 94:275-306. [PMID: 17560278 DOI: 10.1016/s0065-2776(06)94009-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.
Collapse
|
194
|
Yang SY, Fugmann SD, Schatz DG. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. ACTA ACUST UNITED AC 2006; 203:2919-28. [PMID: 17178919 PMCID: PMC2118177 DOI: 10.1084/jem.20061835] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is thought that gene conversion (GCV) and somatic hypermutation (SHM) of immunoglobulin (Ig) genes occur in two steps: the generation of uracils in DNA by activation-induced cytidine deaminase, followed by their subsequent repair by various DNA repair pathways to generate sequence-diversified products. It is not known how either of the two steps is targeted specifically to Ig loci. Because of the tight link between transcription and SHM, we have investigated the role of endogenous Ig light chain (IgL) transcriptional control elements in GCV/SHM in the chicken B cell line DT40. Promoter substitution experiments led to identification of a strong RNA polymerase II promoter incapable of supporting efficient GCV/SHM. This surprising finding indicates that high levels of transcription are not sufficient for robust GCV/SHM in Ig loci. Deletion of the IgL enhancer in a context in which high-level transcription was not compromised showed that the enhancer is not necessary for GCV/SHM. Our results indicate that cis-acting elements are important for Ig gene diversification, and we propose that targeting specificity is achieved through the combined action of several Ig locus elements that include the promoter.
Collapse
Affiliation(s)
- Shu Yuan Yang
- Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
195
|
Coker HA, Petersen-Mahrt SK. The nuclear DNA deaminase AID functions distributively whereas cytoplasmic APOBEC3G has a processive mode of action. DNA Repair (Amst) 2006; 6:235-43. [PMID: 17161027 DOI: 10.1016/j.dnarep.2006.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 09/29/2006] [Accepted: 10/12/2006] [Indexed: 12/30/2022]
Abstract
AID deaminates cytosine in the context of single stranded DNA to generate uracil, essential for effective class-switch recombination, somatic hypermutation and gene conversion at the B cell immunoglobulin locus. As a nuclear DNA mutator, AID activity must be tightly controlled and regulated, but the genetic analysis of AID and other DNA deaminases has left unstudied a number of important biochemical details. We have asked fundamental questions regarding AID's substrate recognition and processing, i.e. whether AID acts distributively or processively. We demonstrate that in vitro, human AID exhibits turnover, a prerequisite for our analysis, and show that it exhibits a distributive mode of action. Using a variety of different assays, we established that human AID is alone unable to act processively on any of a number of DNA substrates, i.e. one AID molecule is unable to carry out multiple, sequential deamination events on the same substrate. This is in contrast to the cytoplasmically expressed anti-viral DNA deaminase APOBEC3G, which acts in a processive manner, possibly suggesting that evolutionary pressure has altered the ability of DNA deaminases to act in a processive or distributive manner, depending on the physiological need.
Collapse
Affiliation(s)
- Heather A Coker
- DNA Editing Lab, Clare Hall Laboratories, Cancer Research UK, South Mimms EN6 3LD, UK
| | | |
Collapse
|
196
|
Durandy A, Peron S, Taubenheim N, Fischer A. Activation-induced cytidine deaminase: structure-function relationship as based on the study of mutants. Hum Mutat 2006; 27:1185-91. [PMID: 16964591 DOI: 10.1002/humu.20414] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation-induced cytidine deaminase (AID; gene symbol AICDA) is the key molecule required to induce immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM) of the variable regions of Ig genes. Its deficiency causes a form of hyper-IgM (HIGM) syndrome. The study of natural AID mutants associated with HIGM as well as engineered mutants led to the characterization of the active domains of the protein. AID, through its cytidine deaminase activity, induces a targeted DNA lesion as an early step required for both CSR and SHM. Besides its cytidine deaminase activity, AID plays a further essential role in CSR, likely by recruiting CSR-specific cofactors by its C-terminus. A similar binding of SHM-specific cofactors to the N-terminal part is suggested by the functional characteristics of N(ter) AID artificial mutants. These data require confirmation in vivo. Finally, AID acts as a homo-, di-, or multimeric complex. Together, these data strongly suggest that AID, a master molecule for antibody diversification, exerts its activity on CSR not only as a cytidine deaminase enzyme but also as a docking protein, recruiting specific cofactors to a multimeric complex.
Collapse
Affiliation(s)
- Anne Durandy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U768, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | |
Collapse
|
197
|
Abstract
PURPOSE OF REVIEW The recent elucidation of the molecular defects leading to hyper-IgM syndromes has provided considerable insight into the complex mechanisms that govern the antibody maturation in humans. RECENT FINDINGS The study of a large cohort of patients revealed unexpected clinical, immunological and genetic findings, which have significant implications on the molecular basis of immunoglobulin class switch recombination and somatic hypermutation, as shown for hypomorphic mutations in the nuclear factor-kappaB essential modulator (NEMO) gene and peculiar activation-induced cytidine deaminase defects that differently affect class switch recombination and somatic hypermutation. The description of the hyper-IgM condition due to mutations in the gene encoding uracil-N glycosylase has been essential for defining the DNA-editing activity of activation-induced cytidine deaminase. Novel findings are awaited from the study of the yet genetically undefined hyper-IgM syndromes, leading to the identification of activation-induced cytidine deaminase cofactors and proteins involved in class switch recombination-induced DNA repair. In the genetically characterized hyper-IgM syndromes, the precise identification of the molecular defect allows the evaluation of hyper-IgM complications, and thus aids assessment of prognosis and proper survey and treatment. SUMMARY The important contribution made by investigation of this condition improves our understanding of the physiology of the antibody response in humans.
Collapse
Affiliation(s)
- Anne Durandy
- Inserm U768, René Descartes-Paris 5 University, France.
| | | | | |
Collapse
|
198
|
Larijani M, Petrov AP, Kolenchenko O, Berru M, Krylov SN, Martin A. AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence-independent manner. Mol Cell Biol 2006; 27:20-30. [PMID: 17060445 PMCID: PMC1800660 DOI: 10.1128/mcb.00824-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates secondary antibody diversification processes by deaminating cytidines on single-stranded DNA. AID preferentially mutates cytidines preceded by W(A/T)R(A/G) dinucleotides, a sequence specificity that is evolutionarily conserved from bony fish to humans. To uncover the biochemical mechanism of AID, we compared the catalytic and binding kinetics of AID on WRC (a hot-spot motif, where W equals A or T and R equals A or G) and non-WRC motifs. We show that although purified AID preferentially deaminates WRC over non-WRC motifs to the same degree observed in vivo, it exhibits similar binding affinities to either motif, indicating that its sequence specificity is not due to preferential binding of WRC motifs. AID preferentially deaminates bubble substrates of five to seven nucleotides rather than larger bubbles and preferentially binds to bubble-type rather than to single-stranded DNA substrates, suggesting that the natural targets of AID are either transcription bubbles or stem-loop structures. Importantly, AID displays remarkably high affinity for single-stranded DNA as indicated by the low dissociation constants and long half-life of complex dissociation that are typical of transcription factors and single-stranded DNA binding protein. These findings suggest that AID may persist on immunoglobulin and other target sequences after deamination, possibly acting as a scaffolding protein to recruit other factors.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
199
|
Abstract
Somatic hypermutation (SHM) introduces mutations in the variable region of immunoglobulin genes at a rate of approximately 10(-3) mutations per base pair per cell division, which is 10(6)-fold higher than the spontaneous mutation rate in somatic cells. To ensure genomic integrity, SHM needs to be targeted specifically to immunoglobulin genes. The rare mistargeting of SHM can result in mutations and translocations in oncogenes, and is thought to contribute to the development of B-cell malignancies. Despite years of intensive investigation, the mechanism of SHM targeting is still unclear. We review and attempt to reconcile the numerous and sometimes conflicting studies on the targeting of SHM to immunoglobulin loci, and highlight areas that hold promise for further investigation.
Collapse
Affiliation(s)
- Valerie H Odegard
- VaxInnate Corporation, 300 George Street, Suite 311, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
200
|
Abstract
Numerous studies support the idea that the complex process of gene expression is composed of multiple highly coordinated and integrated steps. While such an extensive coupling ensures the efficiency and accuracy of each step during the gene expression pathway, recent studies have suggested an evolutionarily conserved function for cotranscriptional processes in the maintenance of genome stability. Specifically, such processes prevent a detrimental effect of nascent transcripts on the integrity of the genome. Here we describe studies indicating that nascent transcripts can rehybridize with template DNA, and that this can lead to DNA strand breaks and rearrangements. We present an overview of the diverse mechanisms that different species employ to keep nascent RNA away from DNA during transcription. We also discuss possible mechanisms by which nascent transcripts impact genome stability, as well as the possibility that transcription-induced genomic instability may contribute to disease.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|