151
|
Sverzhinsky A, Fabre L, Cottreau AL, Biot-Pelletier DMP, Khalil S, Bostina M, Rouiller I, Coulton JW. Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB-ExbD of Escherichia coli. Structure 2014; 22:791-7. [PMID: 24657092 DOI: 10.1016/j.str.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Gram-negative bacteria rely on the ExbB-ExbD-TonB system for the import of essential nutrients. Despite decades of research, the stoichiometry, subunit organization, and mechanism of action of the membrane proteins of the Ton system remain unclear. We copurified ExbB with ExbD as an ∼240 kDa protein-detergent complex, measured by light scattering and by native gels. Quantitative Coomassie staining revealed a stoichiometry of ExbB4-ExbD2. Negative stain electron microscopy and 2D analysis showed particles of ∼10 nm diameter in multiple structural states. Nanogold labeling identified the position of the ExbD periplasmic domain. Random conical tilt was used to reconstruct the particles in three structural states followed by sorting of the single particles and refinement of each state. The different states are interpreted by coordinated structural rearrangements between the cytoplasmic domain and the periplasmic domain, concordant with in vivo predictions.
Collapse
Affiliation(s)
- Aleksandr Sverzhinsky
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrew L Cottreau
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Sofia Khalil
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mihnea Bostina
- Facility for Electron Microscope Research, McGill University, Montreal, QC H3A 2B4, Canada
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B4, Canada
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
152
|
Zhao Z, Singer A. Rotationally invariant image representation for viewing direction classification in cryo-EM. J Struct Biol 2014; 186:153-66. [PMID: 24631969 DOI: 10.1016/j.jsb.2014.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/01/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
We introduce a new rotationally invariant viewing angle classification method for identifying, among a large number of cryo-EM projection images, similar views without prior knowledge of the molecule. Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed using steerable principal component analysis (PCA) such that rotating an image is equivalent to phase shifting the expansion coefficients. Thus we are able to extend the theory of bispectrum of 1D periodic signals to 2D images. The randomized PCA algorithm is then used to efficiently reduce the dimensionality of the bispectrum coefficients, enabling fast computation of the similarity between any pair of images. The nearest neighbors provide an initial classification of similar viewing angles. In this way, rotational alignment is only performed for images with their nearest neighbors. The initial nearest neighbor classification and alignment are further improved by a new classification method called vector diffusion maps. Our pipeline for viewing angle classification and alignment is experimentally shown to be faster and more accurate than reference-free alignment with rotationally invariant K-means clustering, MSA/MRA 2D classification, and their modern approximations.
Collapse
Affiliation(s)
- Zhizhen Zhao
- Courant Institute of Mathematical Sciences, New York University, Warren Weaver Hall, 251 Mercer Street, New York, NY 10012, USA.
| | - Amit Singer
- Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA.
| |
Collapse
|
153
|
Jin Q, Sorzano C, de la Rosa-Trevín J, Bilbao-Castro J, Núñez-Ramírez R, Llorca O, Tama F, Jonić S. Iterative Elastic 3D-to-2D Alignment Method Using Normal Modes for Studying Structural Dynamics of Large Macromolecular Complexes. Structure 2014; 22:496-506. [DOI: 10.1016/j.str.2014.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/28/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
|
154
|
Ayyer K, Philipp HT, Tate MW, Elser V, Gruner SM. Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames. OPTICS EXPRESS 2014; 22:2403-13. [PMID: 24663531 PMCID: PMC3927634 DOI: 10.1364/oe.22.002403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/02/2014] [Indexed: 05/24/2023]
Abstract
Schemes for X-ray imaging single protein molecules using new x-ray sources, like x-ray free electron lasers (XFELs), require processing many frames of data that are obtained by taking temporally short snapshots of identical molecules, each with a random and unknown orientation. Due to the small size of the molecules and short exposure times, average signal levels of much less than 1 photon/pixel/frame are expected, much too low to be processed using standard methods. One approach to process the data is to use statistical methods developed in the EMC algorithm (Loh & Elser, Phys. Rev. E, 2009) which processes the data set as a whole. In this paper we apply this method to a real-space tomographic reconstruction using sparse frames of data (below 10(-2) photons/pixel/frame) obtained by performing x-ray transmission measurements of a low-contrast, randomly-oriented object. This extends the work by Philipp et al. (Optics Express, 2012) to three dimensions and is one step closer to the single molecule reconstruction problem.
Collapse
Affiliation(s)
- Kartik Ayyer
- Cornell University, Laboratory of Atomic and Solid State Physics, Ithaca, NY,
USA
| | - Hugh T. Philipp
- Cornell University, Laboratory of Atomic and Solid State Physics, Ithaca, NY,
USA
| | - Mark W. Tate
- Cornell University, Laboratory of Atomic and Solid State Physics, Ithaca, NY,
USA
| | - Veit Elser
- Cornell University, Laboratory of Atomic and Solid State Physics, Ithaca, NY,
USA
| | - Sol M. Gruner
- Cornell University, Laboratory of Atomic and Solid State Physics, Ithaca, NY,
USA
- Cornell’s High Energy Synchrotron Source (CHESS), Ithaca, NY
USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY,
USA
| |
Collapse
|
155
|
|
156
|
Jomaa A, Jain N, Davis JH, Williamson JR, Britton RA, Ortega J. Functional domains of the 50S subunit mature late in the assembly process. Nucleic Acids Res 2013; 42:3419-35. [PMID: 24335279 PMCID: PMC3950693 DOI: 10.1093/nar/gkt1295] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite the identification of many factors that facilitate ribosome assembly, the molecular mechanisms by which they drive ribosome biogenesis are poorly understood. Here, we analyze the late stages of assembly of the 50S subunit using Bacillus subtilis cells depleted of RbgA, a highly conserved GTPase. We found that RbgA-depleted cells accumulate late assembly intermediates bearing sub-stoichiometric quantities of ribosomal proteins L16, L27, L28, L33a, L35 and L36. Using a novel pulse labeling/quantitative mass spectrometry technique, we show that this particle is physiologically relevant and is capable of maturing into a complete 50S particle. Cryo-electron microscopy and chemical probing revealed that the central protuberance, the GTPase associating region and tRNA-binding sites in this intermediate are unstructured. These findings demonstrate that key functional sites of the 50S subunit remain unstructured until late stages of maturation, preventing the incomplete subunit from prematurely engaging in translation. Finally, structural and biochemical analysis of a ribosome particle depleted of L16 indicate that L16 binding is necessary for the stimulation of RbgA GTPase activity and, in turn, release of this co-factor, and for conversion of the intermediate to a complete 50S subunit.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biochemistry and Biomedical Sciences and MG. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA and Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Biochemistry and Biomedical Sciences and MG. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA and Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph H. Davis
- Department of Biochemistry and Biomedical Sciences and MG. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA and Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R. Williamson
- Department of Biochemistry and Biomedical Sciences and MG. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA and Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A. Britton
- Department of Biochemistry and Biomedical Sciences and MG. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA and Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Correspondence may also be addressed to Robert A. Britton. Tel: +1 517 884 5395;
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and MG. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA and Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- *To whom correspondence should be addressed. Tel: +1 905 525 9140 (ext. 22703); Fax: +1 905 522 9033;
| |
Collapse
|
157
|
Xmipp 3.0: An improved software suite for image processing in electron microscopy. J Struct Biol 2013; 184:321-8. [DOI: 10.1016/j.jsb.2013.09.015] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/10/2013] [Accepted: 09/18/2013] [Indexed: 01/28/2023]
|
158
|
Cossio P, Hummer G. Bayesian analysis of individual electron microscopy images: towards structures of dynamic and heterogeneous biomolecular assemblies. J Struct Biol 2013; 184:427-37. [PMID: 24161733 DOI: 10.1016/j.jsb.2013.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
We develop a method to extract structural information from electron microscopy (EM) images of dynamic and heterogeneous molecular assemblies. To overcome the challenge of disorder in the imaged structures, we analyze each image individually, avoiding information loss through clustering or averaging. The Bayesian inference of EM (BioEM) method uses a likelihood-based probabilistic measure to quantify the consistency between each EM image and given structural models. The likelihood function accounts for uncertainties in the molecular position and orientation, variations in the relative intensities and noise in the experimental images. The BioEM formalism is physically intuitive and mathematically simple. We show that for experimental GroEL images, BioEM correctly identifies structures according to the functional state. The top-ranked structure is the corresponding X-ray crystal structure, followed by an EM structure generated previously from a superset of the EM images used here. To analyze EM images of highly flexible molecules, we propose an ensemble refinement procedure, and validate it with synthetic EM maps of the ESCRT-I-II supercomplex. Both the size of the ensemble and its structural members are identified correctly. BioEM offers an alternative to 3D-reconstruction methods, extracting accurate population distributions for highly flexible structures and their assemblies. We discuss limitations of the method, and possible applications beyond ensemble refinement, including the cross-validation and unbiased post-assessment of model structures, and the structural characterization of systems where traditional approaches fail. Overall, our results suggest that the BioEM framework can be used to analyze EM images of both ordered and disordered molecular systems.
Collapse
Affiliation(s)
- Pilar Cossio
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
159
|
Gómez-Llorente Y, Malik R, Jain R, Choudhury JR, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK. The architecture of yeast DNA polymerase ζ. Cell Rep 2013; 5:79-86. [PMID: 24120860 DOI: 10.1016/j.celrep.2013.08.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/11/2013] [Accepted: 08/29/2013] [Indexed: 02/06/2023] Open
Abstract
DNA polymerase ζ (Polζ) is specialized for the extension step of translesion DNA synthesis (TLS). Despite its central role in maintaining genome integrity, little is known about its overall architecture. Initially identified as a heterodimer of the catalytic subunit Rev3 and the accessory subunit Rev7, yeast Polζ has recently been shown to form a stable four-subunit enzyme (Polζ-d) upon the incorporation of Pol31 and Pol32, the accessory subunits of yeast Polδ. To understand the 3D architecture and assembly of Polζ and Polζ-d, we employed electron microscopy. We show here how the catalytic and accessory subunits of Polζ and Polζ-d are organized relative to each other. In particular, we show that Polζ-d has a bilobal architecture resembling the replicative polymerases and that Pol32 lies in proximity to Rev7. Collectively, our study provides views of Polζ and Polζ-d and a structural framework for understanding their roles in DNA damage bypass.
Collapse
Affiliation(s)
- Yacob Gómez-Llorente
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Polyomavirus large T antigen binds symmetrical repeats at the viral origin in an asymmetrical manner. J Virol 2013; 87:13751-9. [PMID: 24109229 DOI: 10.1128/jvi.01740-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Polyomaviruses have repeating sequences at their origins of replication that bind the origin-binding domain of virus-encoded large T antigen. In murine polyomavirus, the central region of the origin contains four copies (P1 to P4) of the sequence G(A/G)GGC. They are arranged as a pair of inverted repeats with a 2-bp overlap between the repeats at the center. In contrast to simian virus 40 (SV40), where the repeats are nonoverlapping and all four repeats can be simultaneously occupied, the crystal structure of the four central murine polyomavirus sequence repeats in complex with the polyomavirus origin-binding domain reveals that only three of the four repeats (P1, P2, and P4) are occupied. Isothermal titration calorimetry confirms that the stoichiometry is the same in solution as in the crystal structure. Consistent with these results, mutation of the third repeat has little effect on DNA replication in vivo. Thus, the apparent 2-fold symmetry within the DNA repeats is not carried over to the protein-DNA complex. Flanking sequences, such as the AT-rich region, are known to be important for DNA replication. When the orientation of the central region was reversed with respect to these flanking regions, the origin was still able to replicate and the P3 sequence (now located at the P2 position with respect to the flanking regions) was again dispensable. This highlights the critical importance of the precise sequence of the region containing the pentamers in replication.
Collapse
|
161
|
Elmlund H, Elmlund D, Bengio S. PRIME: Probabilistic Initial 3D Model Generation for Single-Particle Cryo-Electron Microscopy. Structure 2013; 21:1299-306. [DOI: 10.1016/j.str.2013.07.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 11/29/2022]
|
162
|
The ribosome triggers the stringent response by RelA via a highly distorted tRNA. EMBO Rep 2013; 14:811-6. [PMID: 23877429 PMCID: PMC3790049 DOI: 10.1038/embor.2013.106] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/08/2022] Open
Abstract
The bacterial stringent response links nutrient starvation with the transcriptional control of genes. This process is initiated by the stringent factor RelA, which senses the presence of deacylated tRNA in the ribosome as a symptom of amino-acid starvation to synthesize the alarmone (p)ppGpp. Here we report a cryo-EM study of RelA bound to ribosomes bearing cognate, deacylated tRNA in the A-site. The data show that RelA on the ribosome stabilizes an unusual distorted form of the tRNA, with the acceptor arm making contact with RelA and far from its normal location in the peptidyl transferase centre.
Collapse
|
163
|
Xu XP, Zhai D, Kim E, Swift M, Reed JC, Volkmann N, Hanein D. Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis 2013; 4:e683. [PMID: 23788040 PMCID: PMC3702287 DOI: 10.1038/cddis.2013.210] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) is a member of the Bcl-2 protein family having a pivotal role in triggering cell commitment to apoptosis. Bax is latent and monomeric in the cytosol but transforms into its lethal, mitochondria-embedded oligomeric form in response to cell stress, leading to the release of apoptogenic factors such as cytochrome C. Here, we dissected the structural correlates of Bax membrane insertion while oligomerization is halted. This strategy was enabled through the use of nanometer-scale phospholipid bilayer islands (nanodiscs) the size of which restricts the reconstituted system to single Bax-molecule activity. Using this minimal reconstituted system, we captured structural correlates that precede Bax homo-oligomerization elucidating previously inaccessible steps of the core molecular mechanism by which Bcl-2 family proteins regulate membrane permeabilization. We observe that, in the presence of BH3 interacting domain death agonist (Bid) BH3 peptide, Bax monomers induce the formation of ~3.5-nm diameter pores and significantly distort the phospholipid bilayer. These pores are compatible with promoting release of ions as well as proteinaceous components, suggesting that membrane-integrated Bax monomers in the presence of Bid BH3 peptides are key functional units for the activation of the cell demolition machinery.
Collapse
Affiliation(s)
- X-P Xu
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Sun C, Querol-Audí J, Mortimer SA, Arias-Palomo E, Doudna JA, Nogales E, Cate JHD. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation. Nucleic Acids Res 2013; 41:7512-21. [PMID: 23766293 PMCID: PMC3753635 DOI: 10.1093/nar/gkt510] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome.
Collapse
Affiliation(s)
- Chaomin Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Leong V, Kent M, Jomaa A, Ortega J. Escherichia coli rimM and yjeQ null strains accumulate immature 30S subunits of similar structure and protein complement. RNA (NEW YORK, N.Y.) 2013; 19:789-802. [PMID: 23611982 PMCID: PMC3683913 DOI: 10.1261/rna.037523.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Assembly of the Escherichia coli 30S ribosomal subunits proceeds through multiple parallel pathways. The protein factors RimM, YjeQ, RbfA, and Era work in conjunction to assist at the late stages of the maturation process of the small subunit. However, it is unclear how the functional interplay between these factors occurs in the context of multiple parallel pathways. To understand how these factors work together, we have characterized the immature 30S subunits that accumulate in ΔrimM cells and compared them with immature 30S subunits from a ΔyjeQ strain. The cryo-EM maps obtained from these particles showed that the densities representing helices 44 and 45 in the rRNA were partially missing, suggesting mobility of these motifs. These 30S subunits were also partially depleted in all tertiary ribosomal proteins, particularly those binding in the head domain. Using image classification, we identified four subpopulations of ΔrimM immature 30S subunits differing in the amount of missing density for helices 44 and 45, as well as the amount of density existing in these maps for the underrepresented proteins. The structural defects found in these immature subunits resembled those of the 30S subunits that accumulate in the ΔyjeQ strain. These findings are consistent with an "early convergency model" in which multiple parallel assembly pathways of the 30S subunit converge into a late assembly intermediate, as opposed to the mature state. Functionally related factors will bind to this intermediate to catalyze the last steps of maturation leading to the mature 30S subunit.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Gene Deletion
- Genes, Bacterial
- Models, Molecular
- Nucleic Acid Conformation
- Phenotype
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Species Specificity
Collapse
|
166
|
Daudén MI, Martín-Benito J, Sánchez-Ferrero JC, Pulido-Cid M, Valpuesta JM, Carrascosa JL. Large terminase conformational change induced by connector binding in bacteriophage T7. J Biol Chem 2013; 288:16998-17007. [PMID: 23632014 DOI: 10.1074/jbc.m112.448951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During bacteriophage morphogenesis DNA is translocated into a preformed prohead by the complex formed by the portal protein, or connector, plus the terminase, which are located at an especial prohead vertex. The terminase is a powerful motor that converts ATP hydrolysis into mechanical movement of the DNA. Here, we have determined the structure of the T7 large terminase by electron microscopy. The five terminase subunits assemble in a toroid that encloses a channel wide enough to accommodate dsDNA. The structure of the complete connector-terminase complex is also reported, revealing the coupling between the terminase and the connector forming a continuous channel. The structure of the terminase assembled into the complex showed a different conformation when compared with the isolated terminase pentamer. To understand in molecular terms the terminase morphological change, we generated the terminase atomic model based on the crystallographic structure of its phage T4 counterpart. The docking of the threaded model in both terminase conformations showed that the transition between the two states can be achieved by rigid body subunit rotation in the pentameric assembly. The existence of two terminase conformations and its possible relation to the sequential DNA translocation may shed light into the molecular bases of the packaging mechanism of bacteriophage T7.
Collapse
Affiliation(s)
- María I Daudén
- Department of Macromolecular Structure, 28049 Madrid, Spain
| | | | - Juan C Sánchez-Ferrero
- Computational Systems Biology Group, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Mar Pulido-Cid
- Department of Macromolecular Structure, 28049 Madrid, Spain
| | | | | |
Collapse
|
167
|
Substrate-specific structural rearrangements of human Dicer. Nat Struct Mol Biol 2013; 20:662-70. [PMID: 23624860 PMCID: PMC3676429 DOI: 10.1038/nsmb.2564] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/15/2013] [Indexed: 12/25/2022]
Abstract
Dicer plays a central role in RNA interference pathways by cleaving double-stranded RNAs (dsRNAs) to produce small regulatory RNAs. Human Dicer can process long double-stranded and hairpin precursor RNAs to yield short interfering RNAs (siRNAs) or microRNAs (miRNAs), respectively. Previous studies have shown that pre-miRNAs are cleaved more rapidly than pre-siRNAs in vitro and are the predominant natural Dicer substrates. We have used electron microscopy and single particle analysis of Dicer–RNA complexes to gain insight into the structural basis for human Dicer’s substrate preference. Our studies show that Dicer traps pre-siRNAs in a non-productive conformation, while interactions of Dicer with pre-miRNAs and dsRNA binding proteins induce structural changes in the enzyme that enable productive substrate recognition in the central catalytic channel. These findings implicate RNA structure and cofactors in determining substrate recognition and processing efficiency by human Dicer.
Collapse
|
168
|
von Loeffelholz O, Knoops K, Ariosa A, Zhang X, Karuppasamy M, Huard K, Schoehn G, Berger I, Shan SO, Schaffitzel C. Structural basis of signal sequence surveillance and selection by the SRP-FtsY complex. Nat Struct Mol Biol 2013; 20:604-10. [PMID: 23563142 DOI: 10.1038/nsmb.2546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/21/2013] [Indexed: 11/09/2022]
Abstract
Signal-recognition particle (SRP)-dependent targeting of translating ribosomes to membranes is a multistep quality-control process. Ribosomes that are translating weakly hydrophobic signal sequences can be rejected from the targeting reaction even after they are bound to the SRP. Here we show that the early complex, formed by Escherichia coli SRP and its receptor FtsY with ribosomes translating the incorrect cargo EspP, is unstable and rearranges inefficiently into subsequent conformational states, such that FtsY dissociation is favored over successful targeting. The N-terminal extension of EspP is responsible for these defects in the early targeting complex. The cryo-electron microscopy structure of this 'false' early complex with EspP revealed an ordered M domain of SRP protein Ffh making two ribosomal contacts, and the NG domains of Ffh and FtsY forming a distorted, flexible heterodimer. Our results provide a structural basis for SRP-mediated signal-sequence selection during recruitment of the SRP receptor.
Collapse
|
169
|
Bai XC, Fernandez IS, McMullan G, Scheres SHW. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2013; 2:e00461. [PMID: 23427024 PMCID: PMC3576727 DOI: 10.7554/elife.00461] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/15/2013] [Indexed: 11/13/2022] Open
Abstract
Although electron cryo-microscopy (cryo-EM) single-particle analysis has become an important tool for structural biology of large and flexible macro-molecular assemblies, the technique has not yet reached its full potential. Besides fundamental limits imposed by radiation damage, poor detectors and beam-induced sample movement have been shown to degrade attainable resolutions. A new generation of direct electron detectors may ameliorate both effects. Apart from exhibiting improved signal-to-noise performance, these cameras are also fast enough to follow particle movements during electron irradiation. Here, we assess the potentials of this technology for cryo-EM structure determination. Using a newly developed statistical movie processing approach to compensate for beam-induced movement, we show that ribosome reconstructions with unprecedented resolutions may be calculated from almost two orders of magnitude fewer particles than used previously. Therefore, this methodology may expand the scope of high-resolution cryo-EM to a broad range of biological specimens.DOI:http://dx.doi.org/10.7554/eLife.00461.001.
Collapse
Affiliation(s)
- Xiao-Chen Bai
- Medical Research Council Laboratory of Molecular Biology , Cambridge , United Kingdom
| | | | | | | |
Collapse
|
170
|
Hashem Y, des Georges A, Fu J, Buss SN, Jossinet F, Jobe A, Zhang Q, Liao HY, Grassucci RA, Bajaj C, Westhof E, Madison-Antenucci S, Frank J. High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature 2013; 494:385-9. [PMID: 23395961 DOI: 10.1038/nature11872] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022]
Abstract
Ribosomes, the protein factories of living cells, translate genetic information carried by messenger RNAs into proteins, and are thus involved in virtually all aspects of cellular development and maintenance. The few available structures of the eukaryotic ribosome reveal that it is more complex than its prokaryotic counterpart, owing mainly to the presence of eukaryote-specific ribosomal proteins and additional ribosomal RNA insertions, called expansion segments. The structures also differ among species, partly in the size and arrangement of these expansion segments. Such differences are extreme in kinetoplastids, unicellular eukaryotic parasites often infectious to humans. Here we present a high-resolution cryo-electron microscopy structure of the ribosome of Trypanosoma brucei, the parasite that is transmitted by the tsetse fly and that causes African sleeping sickness. The atomic model reveals the unique features of this ribosome, characterized mainly by the presence of unusually large expansion segments and ribosomal-protein extensions leading to the formation of four additional inter-subunit bridges. We also find additional rRNA insertions, including one large rRNA domain that is not found in other eukaryotes. Furthermore, the structure reveals the five cleavage sites of the kinetoplastid large ribosomal subunit (LSU) rRNA chain, which is known to be cleaved uniquely into six pieces, and suggests that the cleavage is important for the maintenance of the T. brucei ribosome in the observed structure. We discuss several possible implications of the large rRNA expansion segments for the translation-regulation process. The structure could serve as a basis for future experiments aimed at understanding the functional importance of these kinetoplastid-specific ribosomal features in protein-translation regulation, an essential step towards finding effective and safe kinetoplastid-specific drugs.
Collapse
Affiliation(s)
- Yaser Hashem
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Guo Q, Goto S, Chen Y, Feng B, Xu Y, Muto A, Himeno H, Deng H, Lei J, Gao N. Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Nucleic Acids Res 2013; 41:2609-20. [PMID: 23293003 PMCID: PMC3575805 DOI: 10.1093/nar/gks1256] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a tightly regulated, multi-stepped process. The assembly of ribosomal subunits is a central step of the complex biogenesis process, involving nearly 30 protein factors in vivo in bacteria. Although the assembly process has been extensively studied in vitro for over 40 years, very limited information is known for the in vivo process and specific roles of assembly factors. Such an example is ribosome maturation factor M (RimM), a factor involved in the late-stage assembly of the 30S subunit. Here, we combined quantitative mass spectrometry and cryo-electron microscopy to characterize the in vivo 30S assembly intermediates isolated from mutant Escherichia coli strains with genes for assembly factors deleted. Our compositional and structural data show that the assembly of the 3′-domain of the 30S subunit is severely delayed in these intermediates, featured with highly underrepresented 3′-domain proteins and large conformational difference compared with the mature 30S subunit. Further analysis indicates that RimM functions not only to promote the assembly of a few 3′-domain proteins but also to stabilize the rRNA tertiary structure. More importantly, this study reveals intriguing similarities and dissimilarities between the in vitro and the in vivo assembly pathways, suggesting that they are in general similar but with subtle differences.
Collapse
Affiliation(s)
- Qiang Guo
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Semiautomatic, high-throughput, high-resolution protocol for three-dimensional reconstruction of single particles in electron microscopy. Methods Mol Biol 2013; 950:171-93. [PMID: 23086876 DOI: 10.1007/978-1-62703-137-0_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In this chapter we describe the steps needed for reconstructing the three-dimensional structure of a macromolecular complex starting from its projections collected in electron micrographs. The concepts are shown through the use of Xmipp 3.0, a software suite specifically designed for the image processing of biological structures imaged with electron or X-ray microscopy. We illustrate the image processing workflow by applying it to the images of Bovine Papilloma virus published in Wolf et al. (Proc Natl Acad Sci USA 107:6298-6303, 2010). We show that in the case of high-quality, homogeneous datasets with a priori knowledge about the initial volume, we can have a high-resolution 3D reconstruction in less than 1 day using a computer cluster with only 32 processors.
Collapse
|
173
|
Milne JLS, Borgnia MJ, Bartesaghi A, Tran EEH, Earl LA, Schauder DM, Lengyel J, Pierson J, Patwardhan A, Subramaniam S. Cryo-electron microscopy--a primer for the non-microscopist. FEBS J 2012. [PMID: 23181775 DOI: 10.1111/febs.12078] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryo-electron microscopy (cryo-EM) is increasingly becoming a mainstream technology for studying the architecture of cells, viruses and protein assemblies at molecular resolution. Recent developments in microscope design and imaging hardware, paired with enhanced image processing and automation capabilities, are poised to further advance the effectiveness of cryo-EM methods. These developments promise to increase the speed and extent of automation, and to improve the resolutions that may be achieved, making this technology useful to determine a wide variety of biological structures. Additionally, established modalities for structure determination, such as X-ray crystallography and nuclear magnetic resonance spectroscopy, are being routinely integrated with cryo-EM density maps to achieve atomic-resolution models of complex, dynamic molecular assemblies. In this review, which is directed towards readers who are not experts in cryo-EM methodology, we provide an overview of emerging themes in the application of this technology to investigate diverse questions in biology and medicine. We discuss the ways in which these methods are being used to study structures of macromolecular assemblies that range in size from whole cells to small proteins. Finally, we include a description of how the structural information obtained by cryo-EM is deposited and archived in a publicly accessible database.
Collapse
Affiliation(s)
- Jacqueline L S Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Wang Q, Matsui T, Domitrovic T, Zheng Y, Doerschuk PC, Johnson JE. Dynamics in cryo EM reconstructions visualized with maximum-likelihood derived variance maps. J Struct Biol 2012; 181:195-206. [PMID: 23246781 DOI: 10.1016/j.jsb.2012.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 11/25/2022]
Abstract
CryoEM data capture the dynamic character associated with biological macromolecular assemblies by preserving the various conformations of the individual specimens at the moment of flash freezing. Regions of high variation in the data set are apparent in the image reconstruction due to the poor density that results from the lack of superposition of these regions. These observations are qualitative and, to date, only preliminary efforts have been made to quantitate the heterogeneity in the ensemble of particles that are individually imaged. We developed and tested a quantitative method for simultaneously computing a reconstruction of the particle and a map of the space-varying heterogeneity of the particle based on an entire data set. The method uses a maximum likelihood algorithm that explicitly takes into account the continuous variability from one instance to another instance of the particle. The result describes the heterogeneity of the particle as a variance to be plotted at every voxel of the reconstructed density. The test, employing time resolved data sets of virus maturation, not only recapitulated local variations obtained with difference map analysis, but revealed a remarkable time dependent reduction in the overall particle dynamics that was unobservable with classical methods of analysis.
Collapse
Affiliation(s)
- Qiu Wang
- Electrical and Computer Engineering, Cornell University, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
175
|
Elmlund D, Elmlund H. SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles. J Struct Biol 2012; 180:420-7. [DOI: 10.1016/j.jsb.2012.07.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|
176
|
Arranz R, Coloma R, Chichón FJ, Conesa JJ, Carrascosa JL, Valpuesta JM, Ortín J, Martín-Benito J. The structure of native influenza virion ribonucleoproteins. Science 2012. [PMID: 23180776 DOI: 10.1126/science.1228172] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The influenza viruses cause annual epidemics of respiratory disease and occasional pandemics, which constitute a major public-health issue. The segmented negative-stranded RNAs are associated with the polymerase complex and nucleoprotein (NP), forming ribonucleoproteins (RNPs), which are responsible for virus transcription and replication. We describe the structure of native RNPs derived from virions. They show a double-helical conformation in which two NP strands of opposite polarity are associated with each other along the helix. Both strands are connected by a short loop at one end of the particle and interact with the polymerase complex at the other end. This structure will be relevant for unraveling the mechanisms of nuclear import of parental virus RNPs, their transcription and replication, and the encapsidation of progeny RNPs into virions.
Collapse
Affiliation(s)
- Rocío Arranz
- Department of Macromolecular Structure, Centro Nacional de Biotecnología [Consejo Superior de Investigaciones Cienfícas (CSIC)], Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 2012; 20:1823-8. [PMID: 23022349 DOI: 10.1016/j.str.2012.08.026] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 08/25/2012] [Accepted: 08/30/2012] [Indexed: 11/23/2022]
Abstract
Low-dose images obtained by electron cryo-microscopy (cryo-EM) are often affected by blurring caused by sample motion during electron beam exposure, degrading signal especially at high resolution. We show here that we can align frames of movies, recorded with a direct electron detector during beam exposure of rotavirus double-layered particles, thereby greatly reducing image blurring caused by beam-induced motion and sample stage instabilities. This procedure increases the efficiency of cryo-EM imaging and enhances the resolution obtained in three-dimensional reconstructions of the particle. Using movies in this way is generally applicable to all cryo-EM samples and should also improve the performance of midrange electron microscopes that may have limited mechanical stability and beam coherence.
Collapse
|
178
|
Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na(+)/H(+) antiporter. J Mol Biol 2012; 424:283-94. [PMID: 23022605 DOI: 10.1016/j.jmb.2012.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/07/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022]
Abstract
The Arabidopsisthaliana Na(+)/H(+) antiporter salt-overly-sensitive 1 (SOS1) is essential to maintain low intracellular levels of toxic Na(+) under salt stress. Available data show that the plant SOS2 protein kinase and its interacting activator, the SOS3 calcium-binding protein, function together in decoding calcium signals elicited by salt stress and regulating the phosphorylation state and the activity of SOS1. Molecular genetic studies have shown that the activation implies a domain reorganization of the antiporter cytosolic moiety, indicating that there is a clear relationship between function and molecular structure of the antiporter. To provide information on this issue, we have carried out in vivo and in vitro studies on the oligomerization state of SOS1. In addition, we have performed electron microscopy and single-particle reconstruction of negatively stained full-length and active SOS1. Our studies show that the protein is a homodimer that contains a membrane domain similar to that found in other antiporters of the family and an elongated, large, and structured cytosolic domain. Both the transmembrane (TM) and cytosolic moieties contribute to the dimerization of the antiporter. The close contacts between the TM and the cytosolic domains provide a link between regulation and transport activity of the antiporter.
Collapse
|
179
|
López-Perrote A, Muñoz-Hernández H, Gil D, Llorca O. Conformational transitions regulate the exposure of a DNA-binding domain in the RuvBL1-RuvBL2 complex. Nucleic Acids Res 2012; 40:11086-99. [PMID: 23002137 PMCID: PMC3510503 DOI: 10.1093/nar/gks871] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RuvBL1 and RuvBL2, also known as Pontin and Reptin, are AAA+ proteins essential in small nucleolar ribonucloprotein biogenesis, chromatin remodelling, nonsense-mediated messenger RNA decay and telomerase assembly, among other functions. They are homologous to prokaryotic RuvB, forming single- and double-hexameric rings; however, a DNA binding domain II (DII) is inserted within the AAA+ core. Despite their biological significance, questions remain regarding their structure. Here, we report cryo-electron microscopy structures of human double-ring RuvBL1–RuvBL2 complexes at ∼15 Å resolution. Significantly, we resolve two coexisting conformations, compact and stretched, by image classification techniques. Movements in DII domains drive these conformational transitions, extending the complex and regulating the exposure of DNA binding regions. DII domains connect with the AAA+ core and bind nucleic acids, suggesting that these conformational changes could impact the regulation of RuvBL1–RuvBL2 containing complexes. These findings resolve some of the controversies in the structure of RuvBL1–RuvBL2 by revealing a mechanism that extends the complex by adjustments in DII.
Collapse
Affiliation(s)
- Andrés López-Perrote
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maetzu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
180
|
Scheres SHW. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 2012; 180:519-30. [PMID: 23000701 PMCID: PMC3690530 DOI: 10.1016/j.jsb.2012.09.006] [Citation(s) in RCA: 4048] [Impact Index Per Article: 311.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 11/17/2022]
Abstract
RELION, for REgularized LIkelihood OptimizatioN, is an open-source computer program for the refinement of macromolecular structures by single-particle analysis of electron cryo-microscopy (cryo-EM) data. Whereas alternative approaches often rely on user expertise for the tuning of parameters, RELION uses a Bayesian approach to infer parameters of a statistical model from the data. This paper describes developments that reduce the computational costs of the underlying maximum a posteriori (MAP) algorithm, as well as statistical considerations that yield new insights into the accuracy with which the relative orientations of individual particles may be determined. A so-called gold-standard Fourier shell correlation (FSC) procedure to prevent overfitting is also described. The resulting implementation yields high-quality reconstructions and reliable resolution estimates with minimal user intervention and at acceptable computational costs.
Collapse
Affiliation(s)
- Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
181
|
Frank J. Intermediate states during mRNA-tRNA translocation. Curr Opin Struct Biol 2012; 22:778-85. [PMID: 22906732 DOI: 10.1016/j.sbi.2012.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022]
Abstract
Recent studies support the notion that the pre-translocation (PRE) ribosomal complex functions, at least in part, as a Brownian machine, stochastically fluctuating among multiple conformations and transfer RNA (tRNA) binding configurations. Apart from the relatively more energetically stable conformational states of the PRE complex, termed macrostate I (MS I) and macrostate II (MS II), several additional intermediate states have been recently discovered. Structural and kinetic analyses of these states, made possible by cryogenic-electron microscopy (cryo-EM), X-ray crystallography, and single-molecule fluorescence resonance energy transfer (smFRET), have provided important insights into the translocation process, which is now understood to proceed, at least in the first step of the process, as a Brownian machine that is transiently stabilized in the 'productive' MS II conformation by the binding of the translocase elongation factor G (EF-G).
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032, United States.
| |
Collapse
|
182
|
Zhang J, Minary P, Levitt M. Multiscale natural moves refine macromolecules using single-particle electron microscopy projection images. Proc Natl Acad Sci U S A 2012; 109:9845-50. [PMID: 22665770 PMCID: PMC3382478 DOI: 10.1073/pnas.1205945109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The method presented here refines molecular conformations directly against projections of single particles measured by electron microscopy. By optimizing the orientation of the projection at the same time as the conformation, the method is well-suited to two-dimensional class averages from cryoelectron microscopy. Such direct use of two-dimensional images circumvents the need for a three-dimensional density map, which may be difficult to reconstruct from projections due to structural heterogeneity or preferred orientations of the sample on the grid. Our refinement protocol exploits Natural Move Monte Carlo to model a macromolecule as a small number of segments connected by flexible loops, on multiple scales. After tests on artificial data from lysozyme, we applied the method to the Methonococcus maripaludis chaperonin. We successfully refined its conformation from a closed-state initial model to an open-state final model using just one class-averaged projection. We also used Natural Moves to iteratively refine against heterogeneous projection images of Methonococcus maripaludis chaperonin in a mix of open and closed states. Our results suggest a general method for electron microscopy refinement specially suited to macromolecules with significant conformational flexibility. The algorithm is available in the program Methodologies for Optimization and Sampling In Computational Studies.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Building, Stanford, CA 94305
| | - Peter Minary
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Building, Stanford, CA 94305
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Building, Stanford, CA 94305
| |
Collapse
|
183
|
Giannakis D, Schwander P, Ourmazd A. The symmetries of image formation by scattering. I. Theoretical framework. OPTICS EXPRESS 2012; 20:12799-826. [PMID: 22714309 DOI: 10.1364/oe.20.012799] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We perceive the world through images formed by scattering. The ability to interpret scattering data mathematically has opened to our scrutiny the constituents of matter, the building blocks of life, and the remotest corners of the universe. Here, we present an approach to image formation based on the symmetry properties of operations in three-dimensional space. Augmented with graph-theoretic means, this approach can recover the three-dimensional structure of objects from random snapshots of unknown orientation at four orders of magnitude higher complexity than previously demonstrated. This is critical for the burgeoning field of structure recovery by X-ray Free Electron Lasers, as well as the more established electron microscopic techniques, including cryo-electron microscopy of biological systems. In a subsequent paper, we demonstrate the recovery of structure and dynamics from experimental, ultralow-signal random sightings of systems with X-rays, electrons, and photons, with no orientational or timing information.
Collapse
Affiliation(s)
- Dimitrios Giannakis
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, New York 10012, USA
| | | | | |
Collapse
|
184
|
Schwander P, Giannakis D, Yoon CH, Ourmazd A. The symmetries of image formation by scattering. II. Applications. OPTICS EXPRESS 2012; 20:12827-49. [PMID: 22714310 DOI: 10.1364/oe.20.012827] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We show that the symmetries of image formation by scattering enable graph-theoretic manifold-embedding techniques to extract structural and timing information from simulated and experimental snapshots at extremely low signal. The approach constitutes a physically-based, computationally efficient, and noise-robust route to analyzing the large and varied datasets generated by existing and emerging methods for studying structure and dynamics by scattering. We demonstrate three-dimensional structure recovery from X-ray diffraction and cryo-electron microscope image snapshots of unknown orientation, the latter at 12 times lower dose than currently in use. We also show that ultra-low-signal, random sightings of dynamically evolving systems can be sequenced into high quality movies to reveal their evolution. Our approach offers a route to recovering timing information in time-resolved experiments, and extracting 3D movies from two-dimensional random sightings of dynamic systems.
Collapse
Affiliation(s)
- Peter Schwander
- Department of Physics, University of Wisconsin Milwaukee, 1900 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | | | | | | |
Collapse
|
185
|
Zheng Y, Wang Q, Doerschuk PC. Three-dimensional reconstruction of the statistics of heterogeneous objects from a collection of one projection image of each object. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:959-970. [PMID: 22673427 DOI: 10.1364/josaa.29.000959] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An estimation problem for statistical reconstruction of heterogeneous three-dimensional objects from two-dimensional tomographic data (single-particle cryoelectron microscope images) is posed as the problem of estimating class probabilities, means, and covariances for a Gaussian mixture where both the mean and covariance are stochastically structured. Both discrete (i.e., classes) and continuous heterogeneity is included. A maximum likelihood solution computed by a generalized expectation-maximization algorithm is presented and demonstrated on experimental images of Flock House Virus.
Collapse
Affiliation(s)
- Yili Zheng
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
186
|
Schönegge AM, Villa E, Förster F, Hegerl R, Peters J, Baumeister W, Rockel B. The structure of human tripeptidyl peptidase II as determined by a hybrid approach. Structure 2012; 20:593-603. [PMID: 22483107 DOI: 10.1016/j.str.2012.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 10/28/2022]
Abstract
Tripeptidyl-peptidase II (TPPII) is a high molecular mass (∼5 MDa) serine protease, which is thought to act downstream of the 26S proteasome, cleaving peptides released by the latter. Here, the structure of human TPPII (HsTPPII) has been determined to subnanometer resolution by cryoelectron microscopy and single-particle analysis. The complex is built from two strands forming a quasihelical structure harboring a complex system of inner cavities. HsTPPII particles exhibit some polymorphism resulting in complexes consisting of nine or of eight dimers per strand. To obtain deeper insights into the architecture and function of HsTPPII, we have created a pseudoatomic structure of the HsTPPII spindle using a comparative model of HsTPPII dimers and molecular dynamics flexible fitting. Analyses of the resulting hybrid structure of the HsTPPII holocomplex provide new insights into the mechanism of maturation and activation.
Collapse
Affiliation(s)
- Anne-Marie Schönegge
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
187
|
Hipp K, Galani K, Batisse C, Prinz S, Böttcher B. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy. Nucleic Acids Res 2012; 40:3275-88. [PMID: 22167472 PMCID: PMC3326328 DOI: 10.1093/nar/gkr1217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 01/01/2023] Open
Abstract
Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.
Collapse
Affiliation(s)
- Katharina Hipp
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kyriaki Galani
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Claire Batisse
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Simone Prinz
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bettina Böttcher
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
188
|
Structural characterization of mRNA-tRNA translocation intermediates. Proc Natl Acad Sci U S A 2012; 109:6094-9. [PMID: 22467828 DOI: 10.1073/pnas.1201288109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cryo-EM analysis of a wild-type Escherichia coli pretranslocational sample has revealed the presence of previously unseen intermediate substates of the bacterial ribosome during the first phase of translocation, characterized by intermediate intersubunit rotations, L1 stalk positions, and tRNA configurations. Furthermore, we describe the domain rearrangements in quantitative terms, which has allowed us to characterize the processivity and coordination of the conformational reorganization of the ribosome, along with the associated changes in tRNA ribosome-binding configuration. The results are consistent with the view of the ribosome as a molecular machine employing Brownian motion to reach a functionally productive state via a series of substates with incremental changes in conformation.
Collapse
|
189
|
Penczek PA, Kimmel M, Spahn CMT. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 2012; 19:1582-90. [PMID: 22078558 DOI: 10.1016/j.str.2011.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 11/16/2022]
Abstract
We present the codimensional principal component analysis (PCA), a novel and straightforward method for resolving sample heterogeneity within a set of cryo-EM 2D projection images of macromolecular assemblies. The method employs PCA of resampled 3D structures computed using subsets of 2D data obtained with a novel hypergeometric sampling scheme. PCA provides us with a small subset of dominating "eigenvolumes" of the system, whose reprojections are compared with experimental projection data to yield their factorial coordinates constructed in a common framework of the 3D space of the macromolecule. Codimensional PCA is unique in the dramatic reduction of dimensionality of the problem, which facilitates rapid determination of both the plausible number of conformers in the sample and their 3D structures. We applied the codimensional PCA to a complex data set of Thermus thermophilus 70S ribosome, and we identified four major conformational states and visualized high mobility of the stalk base region.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, Houston Medical School, The University of Texas, Houston, TX 77030, USA.
| | | | | |
Collapse
|
190
|
Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO J 2012; 31:1836-46. [PMID: 22388519 DOI: 10.1038/emboj.2012.22] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/17/2012] [Indexed: 11/08/2022] Open
Abstract
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven towards the tRNA-exit (E) site, with a large rotational movement of domain II of RRF towards the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adopt hitherto unknown conformations. Furthermore, binding of EF-G to the PoTC·RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC and (ii) the modes of action of EF-G during tRNA translocation and ribosome-recycling steps are markedly different.
Collapse
|
191
|
Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci U S A 2012; 109:1479-84. [PMID: 22215586 DOI: 10.1073/pnas.1119394109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two canonical subunits of the 26S proteasome, Rpn10 and Rpn13, function as ubiquitin (Ub) receptors. The mutual arrangement of these subunits--and all other non-ATPase subunits--in the regulatory particle is unknown. Using electron cryomicroscopy, we calculated difference maps between wild-type 26S proteasome from Saccharomyces cerevisiae and deletion mutants (rpn10Δ, rpn13Δ, and rpn10Δrpn13Δ). These maps allowed us to localize the two Ub receptors unambiguously. Rpn10 and Rpn13 mapped to the apical part of the 26S proteasome, above the N-terminal coiled coils of the AAA-ATPase heterodimers Rpt4/Rpt5 and Rpt1/Rpt2, respectively. On the basis of the mutual positions of Rpn10 and Rpn13, we propose a model for polyubiquitin binding to the 26S proteasome.
Collapse
|
192
|
Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JLP. Small heat-shock proteins: paramedics of the cell. Top Curr Chem (Cham) 2012; 328:69-98. [PMID: 22576357 DOI: 10.1007/128_2012_324] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The small heat-shock proteins (sHSPs) comprise a family of molecular chaperones which are widespread but poorly understood. Despite considerable effort, comparatively few high-resolution structures have been determined for the sHSPs, a likely consequence of their tendency to populate ensembles of inter-converting conformational and oligomeric states at equilibrium. This dynamic structure appears to underpin the sHSPs' ability to bind and sequester target proteins rapidly, and renders them the first line of defence against protein aggregation during disease and cellular stress. Here we describe recent studies on the sHSPs, with a particular focus on those which have provided insight into the structure and dynamics of these proteins. The combined literature reveals a picture of a remarkable family of molecular chaperones whose thermodynamic and kinetic properties are exquisitely balanced to allow functional regulation by subtle changes in cellular conditions.
Collapse
|
193
|
Orlova EV, Saibil HR. Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 2011; 111:7710-48. [PMID: 21919528 PMCID: PMC3239172 DOI: 10.1021/cr100353t] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 12/11/2022]
Affiliation(s)
- E. V. Orlova
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - H. R. Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
194
|
Quinn JG. Evaluation of Taylor dispersion injections: determining kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing. Anal Biochem 2011; 421:401-10. [PMID: 22197422 DOI: 10.1016/j.ab.2011.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/14/2011] [Accepted: 11/21/2011] [Indexed: 11/19/2022]
Abstract
In label-free biomolecular interaction analysis, a standard injection provides an injection of uniform analyte concentration. An alternative approach exploiting Taylor dispersion produces a continuous analyte titration allowing a full analyte dose response to be recorded in a single injection. The enhanced biophysical characterization that is possible with this new technique is demonstrated using a commercially available surface plasmon resonance-based biosensor. A kinetic interaction model was fitted locally to Taylor dispersion curves for estimation of the analyte diffusion coefficient in addition to affinity/kinetic constants. Statistical confidence in the measured parameters from a single Taylor dispersion injection was comparable to that obtained for global analysis of multiple standard injections. The affinity constants for multisite interactions were resolved with acceptable confidence limits. Importantly, a single analyte injection could be treated as a high-resolution real-time affinity isotherm and was demonstrated using the complex two-site interaction of warfarin with human serum albumin. In all three model interactions tested, the kinetic/affinity constants compared favorably with those obtained from standard kinetic analysis and the estimates of analyte diffusion coefficients were in good agreement with the expected values.
Collapse
Affiliation(s)
- John G Quinn
- FLIR/ICx Nomadics, Oklahoma City, OK 73104, USA.
| |
Collapse
|
195
|
BAKER LINDSAYA, RUBINSTEIN JOHNL. SINGLE PARTICLE ELECTRON MICROSCOPY OF THE MITOCHONDRIAL ATP SYNTHASE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial ATP synthase is a large, membrane-bound protein complex that plays a central role in cellular metabolism. Since the identification of this assembly in micrographs of mitochondrial membranes, electron microscopy has been crucial in elucidating the structure and mechanism of the enzyme. This review addresses the recent use of single particle electron microscopy for structure determination of ATP synthase, including subunit localization, the challenges posed by the protein, and areas in which further work is needed.
Collapse
Affiliation(s)
- LINDSAY A. BAKER
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| | - JOHN L. RUBINSTEIN
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
196
|
Abstract
Cryo-electron microscopy (cryo-EM) in combination with single-particle analysis has begun to complement crystallography in the study of large macromolecules at near-atomic resolution. Furthermore, advances in cryo-electron tomography have made possible the study of macromolecules within their cellular environment. Single-particle and tomographic studies will become even more useful when technologies for improving the signal-to-noise ratio such as direct electron detectors and phase plates become widely available. Automated image acquisition has significantly reduced the time and effort required to determine the structures of macromolecular assemblies. As a result, the number of structures determined by cryo-EM is growing exponentially. However, there is an urgent need for improved criteria for validating both the reconstruction process and the atomic models derived from cryo-EM data. Another major challenge will be mitigating the effects of anisotropy caused by the missing wedge and the excessively low signal-to-noise ratio for tomographic data. Parallels between the development of macromolecular crystallography and cryo-EM have been used to tentatively predict the future of cryo-EM.
Collapse
Affiliation(s)
- Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
197
|
Jomaa A, Stewart G, Mears JA, Kireeva I, Brown ED, Ortega J. Cryo-electron microscopy structure of the 30S subunit in complex with the YjeQ biogenesis factor. RNA (NEW YORK, N.Y.) 2011; 17:2026-38. [PMID: 21960487 PMCID: PMC3198595 DOI: 10.1261/rna.2922311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/26/2011] [Indexed: 05/22/2023]
Abstract
YjeQ is a protein broadly conserved in bacteria containing an N-terminal oligonucleotide/oligosaccharide fold (OB-fold) domain, a central GTPase domain, and a C-terminal zinc-finger domain. YjeQ binds tightly and stoichiometrically to the 30S subunit, which stimulates its GTPase activity by 160-fold. Despite growing evidence for the involvement of the YjeQ protein in bacterial 30S subunit assembly, the specific function and mechanism of this protein remain unclear. Here, we report the costructure of YjeQ with the 30S subunit obtained by cryo-electron microscopy. The costructure revealed that YjeQ interacts simultaneously with helix 44, the head and the platform of the 30S subunit. This binding location of YjeQ in the 30S subunit suggests a chaperone role in processing of the 3' end of the rRNA as well as in mediating the correct orientation of the main domains of the 30S subunit. In addition, the YjeQ binding site partially overlaps with the interaction site of initiation factors 2 and 3, and upon binding, YjeQ covers three inter-subunit bridges that are important for the association of the 30S and 50S subunits. Hence, our structure suggests that YjeQ may assist in ribosome maturation by preventing premature formation of the translation initiation complex and association with the 50S subunit. Together, these results support a role for YjeQ in the late stages of 30S maturation.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Geordie Stewart
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Jason A. Mears
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Inga Kireeva
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
- Corresponding author.E-mail .
| |
Collapse
|
198
|
Heumann JM, Hoenger A, Mastronarde DN. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. J Struct Biol 2011; 175:288-99. [PMID: 21616153 PMCID: PMC3150390 DOI: 10.1016/j.jsb.2011.05.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/01/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Cryo-electron tomography provides 3D imaging of frozen hydrated biological samples with nanometer resolution. Reconstructed volumes suffer from low signal-to-noise-ratio (SNR)(1) and artifacts caused by systematically missing tomographic data. Both problems can be overcome by combining multiple subvolumes with varying orientations, assuming they contain identical structures. Clustering (unsupervised classification) is required to ensure or verify population homogeneity, but this process is complicated by the problems of poor SNR and missing data, the factors that led to consideration of multiple subvolumes in the first place. Here, we describe a new approach to clustering and variance mapping in the face of these difficulties. The combined subvolume is taken as an estimate of the true subvolume, and the effect of missing data is computed for individual subvolumes. Clustering and variance mapping then proceed based on differences between expected and observed subvolumes. We show that this new method is faster and more accurate than two current, widely used techniques.
Collapse
Affiliation(s)
- John M Heumann
- Boulder Laboratory For 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| | | | | |
Collapse
|
199
|
Abstract
The rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F₁F(o)-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H⁺-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A₁A(o)-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
Affiliation(s)
- Stephen P Muench
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorks, LS2 9JT, UK
| | | | | |
Collapse
|
200
|
Julián P, Milon P, Agirrezabala X, Lasso G, Gil D, Rodnina MV, Valle M. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol 2011; 9:e1001095. [PMID: 21750663 PMCID: PMC3130014 DOI: 10.1371/journal.pbio.1001095] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/24/2011] [Indexed: 12/04/2022] Open
Abstract
Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation. Translation is the process by which a ribosome converts the sequence of a messenger RNA (mRNA)—produced from a gene—into the sequence of amino acids that comprise a protein. Bacterial ribosomes each have one large and one small subunit: the 50S and 30S subunits. Initiation of translation entails selection of an mRNA, identification of the correct starting point from which to read its code, and engagement of the initial amino acid carrier (tRNA). These events take place in the 30S subunit and require the presence of three initiation factors (IF1, IF2, IF3). Formation of this 30S initiation complex precedes joining with the 50S subunit to assemble the functional ribosome. By using a cryo-electron microscopy approach to visualize the structures without fixation or staining, we have determined the structure of a complete 30S initiation complex and identified the positions and orientations of the tRNA and all three initiation factors. We found that the presence of the initiation factors and tRNA induces rotation of the head relative to the body of the 30S subunit, which may be essential for rapid binding to the 50S subunit and for regulating selection of the mRNA. IF3 had not been seen previously in the context of the 30S structure and its visualization gives insight into a potential role in preventing association of the two ribosomal subunits. These findings are important for understanding how the interplay of elements during the early stages of translation selects the mRNA and regulates formation of functional ribosomes.
Collapse
Affiliation(s)
- Patricia Julián
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Pohl Milon
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xabier Agirrezabala
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gorka Lasso
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - David Gil
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
| | - Marina V. Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
- * E-mail:
| |
Collapse
|