151
|
Gębarowska K, Mroczek A, Kowalczyk JR, Lejman M. MicroRNA as a Prognostic and Diagnostic Marker in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:5317. [PMID: 34070107 PMCID: PMC8158355 DOI: 10.3390/ijms22105317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/14/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a biologically and genetically heterogeneous disease with a poor prognosis overall and several subtypes. The neoplastic transformation takes place through the accumulation of numerous genetic and epigenetic abnormalities. There are only a few prognostic factors in comparison to B cell precursor acute lymphoblastic leukemia, which is characterized by a lower variability and more homogeneous course. The microarray and next-generation sequencing (NGS) technologies exploring the coding and non-coding part of the genome allow us to reveal the complexity of the genomic and transcriptomic background of T-ALL. miRNAs are a class of non-coding RNAs that are involved in the regulation of cellular functions: cell proliferations, apoptosis, migrations, and many other processes. No miRNA has become a significant prognostic and diagnostic factor in T-ALL to date; therefore, this topic of investigation is extremely important, and T-ALL is the subject of intensive research among scientists. The altered expression of many genes in T-ALL might also be caused by wide miRNA dysregulation. The following review focuses on summarizing and characterizing the microRNAs of pediatric patients with T-ALL diagnosis and their potential future use as predictive factors.
Collapse
Affiliation(s)
- Katarzyna Gębarowska
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Mroczek
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.R.K.)
| | - Jerzy R. Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.R.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
152
|
Large-scale circular RNA deregulation in T-ALL: unlocking unique ectopic expression of molecular subtypes. Blood Adv 2021; 4:5902-5914. [PMID: 33259601 DOI: 10.1182/bloodadvances.2020002337] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (circRNAs) are stable RNA molecules that can drive cancer through interactions with microRNAs and proteins and by the expression of circRNA encoded peptides. The aim of the study was to define the circRNA landscape and potential impact in T-cell acute lymphoblastic leukemia (T-ALL). Analysis by CirComPara of RNA-sequencing data from 25 T-ALL patients, immature, HOXA overexpressing, TLX1, TLX3, TAL1, or LMO2 rearranged, and from thymocyte populations of human healthy donors disclosed 68 554 circRNAs. Study of the top 3447 highly expressed circRNAs identified 944 circRNAs with significant differential expression between malignant T cells and normal counterparts, with most circRNAs displaying increased expression in T-ALL. Next, we defined subtype-specific circRNA signatures in molecular genetic subgroups of human T-ALL. In particular, circZNF609, circPSEN1, circKPNA5, and circCEP70 were upregulated in immature, circTASP1, circZBTB44, and circBACH1 in TLX3, circHACD1, and circSTAM in HOXA, circCAMSAP1 in TLX1, and circCASC15 in TAL-LMO. Backsplice sequences of 14 circRNAs ectopically expressed in T-ALL were confirmed, and overexpression of circRNAs in T-ALL with specific oncogenic lesions was substantiated by quantification in a panel of 13 human cell lines. An oncogenic role of circZNF609 in T-ALL was indicated by decreased cell viability upon silencing in vitro. Furthermore, functional predictions identified circRNA-microRNA gene axes informing modes of circRNA impact in molecular subtypes of human T-ALL.
Collapse
|
153
|
T-cell lymphoblastic lymphoma and leukemia: different diseases from a common premalignant progenitor? Blood Adv 2021; 4:3466-3473. [PMID: 32722786 DOI: 10.1182/bloodadvances.2020001822] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) and lymphoblastic leukemia (T-ALL) represent malignancies that arise from the transformation of immature precursor T cells. Similarities in T-LBL and T-ALL have raised the question whether these entities represent 1 disease or reflect 2 different diseases. The genetic profiles of T-ALL have been thoroughly investigated over the last 2 decades, whereas fairly little is known about genetic driver mutations in T-LBL. Nevertheless, the comparison of clinical, immunophenotypic, and molecular observations from independent T-LBL and T-ALL studies lent strength to the theory that T-LBL and T-ALL reflect different presentations of the same disease. Alternatively, T-LBL and T-ALL may simultaneously evolve from a common malignant precursor cell, each having their own specific pathogenic requirements or cellular dependencies that differ among stroma-embedded blasts in lymphoid tissues compared with solitary leukemia cells. This review aims to cluster recent findings with regard to clinical presentation, genetic predisposition, and the acquisition of additional mutations that may give rise to differences in gene expression signatures among T-LBL and T-ALL patients. Improved insight in T-LBL in relation to T-ALL may further help to apply confirmed T-ALL therapies to T-LBL patients.
Collapse
|
154
|
Single-cell RNA-seq reveals developmental plasticity with coexisting oncogenic states and immune evasion programs in ETP-ALL. Blood 2021; 137:2463-2480. [PMID: 33227818 DOI: 10.1182/blood.2019004547] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Lineage plasticity and stemness have been invoked as causes of therapy resistance in cancer, because these flexible states allow cancer cells to dedifferentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) carrying activating NOTCH1 mutations via full-length single-cell RNA sequencing (scRNA-seq) of malignant and microenvironmental cells. We identified 2 highly distinct stem-like states that critically differed with regard to cell cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrated Notch activation and were effectively eliminated in patients by Notch inhibition, whereas slow-cycling stem-like cells were Notch independent and rather relied on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we found that both stem-like states could differentiate into a more mature leukemia state with prominent immunomodulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promoted an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that expressed HAVCR2, the cognate receptor for LGALS9. Our study identified complex interactions between signaling programs, cellular plasticity, and immune programs that characterize ETP-ALL, illustrating the multidimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem seem most promising to successfully eliminate tumor cells that escape treatment through coexisting transcriptional programs.
Collapse
|
155
|
Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures. Nat Commun 2021; 12:2507. [PMID: 33947863 PMCID: PMC8097059 DOI: 10.1038/s41467-021-22787-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Notch1 is a crucial oncogenic driver in T-cell acute lymphoblastic leukemia (T-ALL), making it an attractive therapeutic target. However, the success of targeted therapy using γ-secretase inhibitors (GSIs), small molecules blocking Notch cleavage and subsequent activation, has been limited due to development of resistance, thus restricting its clinical efficacy. Here, we systematically compare GSI resistant and sensitive cell states by quantitative mass spectrometry-based phosphoproteomics, using complementary models of resistance, including T-ALL patient-derived xenografts (PDX) models. Our datasets reveal common mechanisms of GSI resistance, including a distinct kinase signature that involves protein kinase C delta. We demonstrate that the PKC inhibitor sotrastaurin enhances the anti-leukemic activity of GSI in PDX models and completely abrogates the development of acquired GSI resistance in vitro. Overall, we highlight the potential of proteomics to dissect alterations in cellular signaling and identify druggable pathways in cancer. NOTCH1 is a driver of T-cell acute lymphoblastic leukemia that can be inhibited by γ-secretase inhibitors (GSIs), but their clinical efficacy is limited. Here, the authors compare the phosphoproteomes of GSI resistant and sensitive models, and identify potential kinase targets to overcome GSI resistance.
Collapse
|
156
|
Belver L, Albero R, Ferrando AA. Deregulation of enhancer structure, function, and dynamics in acute lymphoblastic leukemia. Trends Immunol 2021; 42:418-431. [PMID: 33858773 PMCID: PMC8091164 DOI: 10.1016/j.it.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Enhancers control dynamic changes in gene expression and orchestrate the tightly controlled transcriptional circuitries that direct and coordinate cell growth, proliferation, survival, lineage commitment, and differentiation during lymphoid development. Enhancer hijacking and neoenhancer formation at oncogene loci, as well as aberrant activation of oncogene-associated enhancers, can induce constitutive activation of self-perpetuating oncogenic transcriptional circuitries, and contribute to the malignant transformation of immature lymphoid progenitors in acute lymphoblastic leukemia (ALL). In this review, we present recent discoveries of the role of enhancer dynamics in mouse and human lymphoid development, and discuss how genetic and epigenetic alterations of enhancer function can promote leukemogenesis, and potential strategies for targeting the enhancer machinery in the treatment of ALL.
Collapse
Affiliation(s)
- Laura Belver
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA; Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, 08916, Spain
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA; Department of Systems Biology, Columbia University, New York, NY, 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA; Department of Pathology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
157
|
Integrated omics approaches to predict T-LBL relapse risk. Blood 2021; 137:2280-2282. [PMID: 33914078 DOI: 10.1182/blood.2020009599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
158
|
Lato MW, Przysucha A, Grosman S, Zawitkowska J, Lejman M. The New Therapeutic Strategies in Pediatric T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22094502. [PMID: 33925883 PMCID: PMC8123476 DOI: 10.3390/ijms22094502] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Childhood acute lymphoblastic leukemia is a genetically heterogeneous cancer that accounts for 10–15% of T-cell acute lymphoblastic leukemia (T-ALL) cases. The T-ALL event-free survival rate (EFS) is 85%. The evaluation of structural and numerical chromosomal changes is important for a comprehensive biological characterization of T-ALL, but there are currently no genetic prognostic markers. Despite chemotherapy regimens, steroids, and allogeneic transplantation, relapse is the main problem in children with T-ALL. Due to the development of high-throughput molecular methods, the ability to define subgroups of T-ALL has significantly improved in the last few years. The profiling of the gene expression of T-ALL has led to the identification of T-ALL subgroups, and it is important in determining prognostic factors and choosing an appropriate treatment. Novel therapies targeting molecular aberrations offer promise in achieving better first remission with the hope of preventing relapse. The employment of precisely targeted therapeutic approaches is expected to improve the cure of the disease and quality of life of patients. These include therapies that inhibit Notch1 activation (bortezomib), JAK inhibitors in ETP-ALL (ruxolitinib), BCL inhibitors (venetoclax), and anti-CD38 therapy (daratumumab). Chimeric antigen receptor T-cell therapy (CAR-T) is under investigation, but it requires further development and trials. Nelarabine-based regimens remain the standard for treating the relapse of T-ALL.
Collapse
Affiliation(s)
- Marta Weronika Lato
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.L.); (A.P.); (S.G.)
| | - Anna Przysucha
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.L.); (A.P.); (S.G.)
| | - Sylwia Grosman
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.L.); (A.P.); (S.G.)
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
159
|
Shahjahani M, Abroun A, Saki N, Bagher Mohammadi SM, Rezaeeyan H. STAT5: From Pathogenesis Mechanism to Therapeutic Approach in Acute Leukemia. Lab Med 2021; 51:345-351. [PMID: 31860086 DOI: 10.1093/labmed/lmz074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Based on the results of multiple studies, multiple signaling pathways is a major cause of resistence to chemotherapy in leukemia cells. Signal transducer and activator of transcription 5 (STAT5) is among these factors; it plays an essential role in proliferation of leukemic cells. METHODS We obtained the materials used in our study via PubMed search from 1996 through 2019. The key search terms included "STAT5," "acute leukemia," "leukemogenesis," and "mutation." RESULTS On activation, STAT5 not only inhibits apoptosis of leukemic cells via activating the B-cell lymphoma 2 (BCL-2) gene but also inhibits resistance to chemotherapy by enhancing human telomerase reverse transcriptase (hTERT) expression and maintaining telomere length in cells. It has also been shown that a number of mutations in the STAT5 gene and in related genes alter the expression of STAT5. CONCLUSION The identification of STAT5 and the factors activated in its up- or downstream expression, affecting its function, contribute to better treatments such as targeted therapy rather than chemotherapy, improving the quality of life patients.
Collapse
Affiliation(s)
- Mohammad Shahjahani
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirreza Abroun
- Royan Stem Cell Technology Company, Royan Institute Tehran, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
160
|
A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia. Blood 2021; 138:1317-1330. [PMID: 33876224 DOI: 10.1182/blood.2020008955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and metabolite depletion, which severely impaired nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted AMPK activation and downregulation of mTOR signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring either murine NOTCH1-induced primary leukemias or human T-ALL PDXs led to potent antileukemic effects with a significant extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.
Collapse
|
161
|
Roy U, Raghavan SC. Deleterious point mutations in T-cell acute lymphoblastic leukemia: Mechanistic insights into leukemogenesis. Int J Cancer 2021; 149:1210-1220. [PMID: 33634864 DOI: 10.1002/ijc.33527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by the leukemogenic transformation of immature T cells, which accumulate an array of genetic and epigenetic lesions, leading to a sustained proliferation of abnormal T cells. Genetic alterations in the DNA repair genes, protooncogenes, transcription factors, and epigenetic modifiers have been studied in the past decade using next-generation sequencing and high-resolution copy number arrays. While other genomic lesions like chromosomal rearrangements, inversions, insertions, and gene fusions have been well studied at functional level, the mechanism of generation of driver mutations in T-ALL is the subject of current investigation. Novel oncogenic mutations in the TP53, BRCA2, PTEN, IL7R, RAS, NOTCH1, ETV6, BCL11B, WT1, DNMT3A, PRC2, PHF6, USP7, KDM6A and an array of other genes disrupt the genetic and epigenetic homeostasis in T-ALL. In this review, we have summarized the mechanistic role of deleterious driver mutations in T-ALL initiation and progression. We speculate that the formation of non-B DNA structures could be one of the primary reasons for the occurrence of different genomic lesions seen in T-ALL, which warrants further investigation. Understanding the mechanism behind the genesis of oncogenic mutations will pave the way to develop targeted therapies that can improve the overall survival and treatment outcome.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
162
|
LINC00511 exacerbated T-cell acute lymphoblastic leukemia via miR-195-5p/LRRK1 axis. Biosci Rep 2021; 40:222566. [PMID: 32242897 PMCID: PMC7953487 DOI: 10.1042/bsr20193631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant disease arising from the abnormal proliferation of T lymphocyte in marrow. Long non-coding RNAs (lncRNAs) are one kind of non-coding RNAs (ncRNAs), which were reported to modulate the initiation or progression of diverse cancers. However, the role of LINC00511 in T-ALL was unknown. To figure out the function and mechanism of LINC00511 in T-ALL, a series of experiments were carried out. Based on the experimental results, we discovered that LINC00511 boosted cell proliferation and invasion, but hindered cell apoptosis in T-ALL cells. Besides, based on bio-informatics tool, miR-195-5p was selected for further exploration. Then, miR-195-5p was validated to bind with LINC00511. Hereafter, LRRK1 was testified to serve as a target gene of miR-195-5p. At last, rescue assays suggested that LRRK1 overexpression restored sh-LINC00511#1-mediated effects on cell proliferation and apoptosis. All in all, LINC00511 exacerbated T-ALL progression via miR-195-5p/LRRK1 axis, implying a potential therapeutic clue for the patients with T-ALL.
Collapse
|
163
|
Bardelli V, Arniani S, Pierini V, Pierini T, Di Giacomo D, Gorello P, Moretti M, Pellanera F, Elia L, Vitale A, Storlazzi CT, Tolomeo D, Mastrodicasa E, Caniglia M, Chiaretti S, Ruggeri L, Roti G, Schwab C, Harrison CJ, Almeida A, Pieters T, Van Vlierberghe P, Mecucci C, La Starza R. MYB rearrangements and over-expression in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021; 60:482-488. [PMID: 33611795 DOI: 10.1002/gcc.22943] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated MYB rearrangements (MYB-R) and the levels of MYB expression, in 331 pediatric and adult patients with T-cell acute lymphoblastic leukemia (T-ALL). MYB-R were detected in 17 cases and consisted of MYB tandem duplication (tdup) (= 14) or T cell receptor beta locus (TRB)-MYB (= 3). As previously reported, TRB-MYB was found only in children (1.6%) while MYB tdup occurred in both age groups, although it was slightly more frequent in children (5.2% vs 2.8%). Shared features of MYB-R T-ALL were a non-early T-cell precursor (ETP) phenotype, a high incidence of NOTCH1/FBXW7 mutations (81%) and CDKN2AB deletions (70.5%). Moreover, they mainly belonged to HOXA (=8), NKX2-1/2-2/TLX1 (=4), and TLX3 (=3) homeobox-related subgroups. Overall, MYB-R cases had significantly higher levels of MYB expression than MYB wild type (MYB-wt) cases, although high levels of MYB were detected in ~ 30% of MYB-wt T-ALL. Consistent with the transcriptional regulatory networks, cases with high MYB expression were significantly enriched within the TAL/LMO subgroup (P = .017). Interestingly, analysis of paired diagnosis/remission samples demonstrated that a high MYB expression was restricted to the leukemic clone. Our study has indicated that different mechanisms underlie MYB deregulation in 30%-40% of T-ALL and highlighted that, MYB has potential as predictive/prognostic marker and/or target for tailored therapy.
Collapse
Affiliation(s)
- Valentina Bardelli
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Tiziana Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Paolo Gorello
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Martina Moretti
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonella Vitale
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Mastrodicasa
- Department of pediatric and gynecology, Pediatric Onco-hematology, Perugia Regional hospital, Perugia, Italy
| | - Maurizio Caniglia
- Department of pediatric and gynecology, Pediatric Onco-hematology, Perugia Regional hospital, Perugia, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Loredana Ruggeri
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Giovanni Roti
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claire Schwab
- Leukaemia Research Cytogenetic Group, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetic Group, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
164
|
Ldb1 is required for Lmo2 oncogene-induced thymocyte self-renewal and T-cell acute lymphoblastic leukemia. Blood 2021; 135:2252-2265. [PMID: 32181817 DOI: 10.1182/blood.2019000794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Prolonged or enhanced expression of the proto-oncogene Lmo2 is associated with a severe form of T-cell acute lymphoblastic leukemia (T-ALL), designated early T-cell precursor ALL, which is characterized by the aberrant self-renewal and subsequent oncogenic transformation of immature thymocytes. It has been suggested that Lmo2 exerts these effects by functioning as component of a multi-subunit transcription complex that includes the ubiquitous adapter Ldb1 along with b-HLH and/or GATA family transcription factors; however, direct experimental evidence for this mechanism is lacking. In this study, we investigated the importance of Ldb1 for Lmo2-induced T-ALL by conditional deletion of Ldb1 in thymocytes in an Lmo2 transgenic mouse model of T-ALL. Our results identify a critical requirement for Ldb1 in Lmo2-induced thymocyte self-renewal and thymocyte radiation resistance and for the transition of preleukemic thymocytes to overt T-ALL. Moreover, Ldb1 was also required for acquisition of the aberrant preleukemic ETP gene expression signature in immature Lmo2 transgenic thymocytes. Co-binding of Ldb1 and Lmo2 was detected at the promoters of key upregulated T-ALL driver genes (Hhex, Lyl1, and Nfe2) in preleukemic Lmo2 transgenic thymocytes, and binding of both Ldb1 and Lmo2 at these sites was reduced following Cre-mediated deletion of Ldb1. Together, these results identify a key role for Ldb1, a nonproto-oncogene, in T-ALL and support a model in which Lmo2-induced T-ALL results from failure to downregulate Ldb1/Lmo2-nucleated transcription complexes which normally function to enforce self-renewal in bone marrow hematopoietic progenitors.
Collapse
|
165
|
Yuan L, Sun L, Yang S, Chen X, Wang J, Jing H, Zhao Y, Ke X. B7-H6 is a new potential biomarker and therapeutic target of T-lymphoblastic lymphoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:328. [PMID: 33708955 PMCID: PMC7944329 DOI: 10.21037/atm-20-5308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background B7-H6 is a novel co-stimulatory protein exclusively expressed on a variety of cancer cells and associated with poor prognosis. T-cell lymphoblastic lymphoma (T-LBL) is a highly aggressive hematological malignancy whose treatment requires reliable prognostic biomarkers and therapeutic targets. However, the rare nature and delayed progression of T-LBL have limited its clinical management. Methods The expression of B7-H6 was analyzed by immunohistochemistry (IHC) in 65 T-LBL samples; the association with the clinicopathological characteristics and prognosis was also investigated. B7-H6-depleted Jurkat cells were also generated to investigate the effect of B7-H6 on cell proliferation, migration, and invasion. RNA sequencing was used to explore differentially expressed genes. Results B7-H6 was expressed in 61.5% (40/65) of T-LBL patients; of note, 38.5% (25/65) of patients showed membrane/cytoplasmic expression of B7-H6. Although the expression of B7-H6 varied across samples and did not correlate with patient survival, it was significantly associated with B symptoms, high ECOG scores (3 to 4), elevated serum lactate dehydrogenase level, and reduced complete remission at interim evaluation. B7-H6 underwent translocation into the nucleus of T-LBL cells, showing a specific nuclear localization sequence in the C-terminus. Moreover, the depletion of B7-H6 in Jurkat cells impaired cell proliferation, migration, and invasion. RNAseq showed the differential expression of RAG-1, which may be involved in the tumorigenesis of T-LBL. Conclusions B7-H6 may serve as a novel prognostic biomarker and therapeutic target of T-LBL.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lu Sun
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yu Zhao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
166
|
Maćkowska N, Drobna-Śledzińska M, Witt M, Dawidowska M. DNA Methylation in T-Cell Acute Lymphoblastic Leukemia: In Search for Clinical and Biological Meaning. Int J Mol Sci 2021; 22:ijms22031388. [PMID: 33573325 PMCID: PMC7866817 DOI: 10.3390/ijms22031388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
Distinct DNA methylation signatures, related to different prognosis, have been observed across many cancers, including T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological neoplasm. By global methylation analysis, two major phenotypes might be observed in T-ALL: hypermethylation related to better outcome and hypomethylation, which is a candidate marker of poor prognosis. Moreover, DNA methylation holds more than a clinical meaning. It reflects the replicative history of leukemic cells and most likely different mechanisms underlying leukemia development in these T-ALL subtypes. The elucidation of the mechanisms and aberrations specific to (epi-)genomic subtypes might pave the way towards predictive diagnostics and precision medicine in T-ALL. We present the current state of knowledge on the role of DNA methylation in T-ALL. We describe the involvement of DNA methylation in normal hematopoiesis and T-cell development, focusing on epigenetic aberrations contributing to this leukemia. We further review the research investigating distinct methylation phenotypes in T-ALL, related to different outcomes, pointing to the most recent research aimed to unravel the biological mechanisms behind differential methylation. We highlight how technological advancements facilitated broadening the perspective of the investigation into DNA methylation and how this has changed our understanding of the roles of this epigenetic modification in T-ALL.
Collapse
|
167
|
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2021; 22:E808. [PMID: 33467425 PMCID: PMC7829804 DOI: 10.3390/ijms22020808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is a relevant form of childhood neoplasm, as it accounts for over 80% of all leukaemia cases. T-cell ALL constitutes a genetically heterogeneous cancer derived from T-lymphoid progenitors. The diagnosis of T-ALL is based on morphologic, immunophenotypic, cytogenetic, and molecular features, thus the results are used for patient stratification. Due to the expression of surface and intracellular antigens, several subtypes of T-ALL can be distinguished. Although the aetiology of T-ALL remains unclear, a wide spectrum of rearrangements and mutations affecting crucial signalling pathways has been described so far. Due to intensive chemotherapy regimens and supportive care, overall cure rates of more than 80% in paediatric T-ALL patients have been accomplished. However, improved knowledge of the mechanisms of relapse, drug resistance, and determination of risk factors are crucial for patients in the high-risk group. Even though some residual disease studies have allowed the optimization of therapy, the identification of novel diagnostic and prognostic markers is required to individualize therapy. The following review summarizes our current knowledge about genetic abnormalities in paediatric patients with T-ALL. As molecular biology techniques provide insights into the biology of cancer, our study focuses on new potential therapeutic targets and predictive factors which may improve the outcome of young patients with T-ALL.
Collapse
Affiliation(s)
- Anna Mroczek
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Jerzy Kowalczyk
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
168
|
Early T-Cell Precursor Leukemia Has a Higher Risk of Induction-Related Infection among T-Cell Acute Lymphoblastic Leukemia in Adult. Mediators Inflamm 2021; 2020:8867760. [PMID: 33424437 PMCID: PMC7775137 DOI: 10.1155/2020/8867760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background Infections are an important cause of morbidity and mortality for acute lymphoblastic leukemia (ALL). However, the reports regarding risk factors of induction-related infection are roughly unknown/limited in adult T-ALL during induction chemotherapy. Methods We performed a retrospective cohort study for the prevalence and risk predictors of induction-related infection among consecutive T-ALL patients (N = 97) enrolled in a PDT-ALL-LBL clinical trial. Of 97 patients with T-ALL enrolled in the trial, 46 were early T-cell precursor (ETP) ALL and 51 were non-ETP ALL. Results When compared with non-ETP, ETP ALL subtype was characterized with lower neutrophil count (1.35 × 109/L vs. 8.7 × 109/L, P < 0.001) and lower myeloid percentage in the bone marrow (13.35% vs. 35.31%, P = 0.007). Additionally, ETP ALL had longer neutropenia before diagnosis (P < 0.001), as well as during induction chemotherapy (P < 0.001). Notably, the ETP cohort experienced higher cumulative incidence of clinically documented infections (CDI; 33.33%, P = 0.001), microbiologically documented infections (MDI; 45.24%, P = 0.006), resistant infection (11.9%, P = 0.013), and mixed infection (21.43%, P = 0.003), respectively, than those of the non-ETP cohort. Furthermore, multivariable analysis revealed that T-ALL mixed infection was more likely related to chemotherapy response (OR, 0.025; 95% CI 0.127-0.64; P = 0.012) and identified myeloid percentage as a predictor associated with ETP-ALL mixed infection (OR, 0.915; 95% CI 0.843-0.993; P = 0.033), with ROC-defined cut-off value of 2.24% in ETP cohorts. Conclusions Our data for the first time demonstrated that ETP-ALL characterized with impaired myelopoiesis were more susceptible to induction-related infection among T-ALL populations.
Collapse
|
169
|
Targeted sequencing to identify genetic alterations and prognostic markers in pediatric T-cell acute lymphoblastic leukemia. Sci Rep 2021; 11:769. [PMID: 33436855 PMCID: PMC7804301 DOI: 10.1038/s41598-020-80613-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is caused by the accumulation of multiple genetic alterations. To determine the frequency of common genetic mutations and possible prognostic markers in childhood T-ALL, we performed targeted sequencing of 67 genes across 64 cases treated according to Taiwan Pediatric Oncology Group protocols between January 2002 and December 2015. Together, 302 variants were identified in 60 genes including 233 single nucleotide variants and 69 indels. Sixty-four samples had a median number of six genetic lesions each (range 1–17). Thirteen genes had mutation frequencies > 10%, and 5 were > 20%, with the highest being NOTCH1 (70.31%). Protocadherins FAT1 (32.81%) and FAT3 (17.19%), and the ubiquitin ligase component FBXW7 (28.13%) had higher mutation frequencies than previously reported. Other mutation frequencies (PHF6, DNM2, DNMT3A, CNOT3, and WT1) were within previously reported ranges. Three epigenetic-related genes (KMT2D, DNMT3A, and EZH2) were mutated in our cohort. JAK-STAT signaling pathway genes had mutation frequencies of 3–13% and were observed in 23 cases (35.94%). Changes to genes in the ErbB signaling pathway were detected in 20 cases (31.25%). Patients with NOTCH1/FBXW7 mutations and RAS/PTEN germline exhibited better 5-year overall survival rates.
Collapse
|
170
|
Plant homeodomain finger protein 6 in the regulation of normal and malignant hematopoiesis. Curr Opin Hematol 2021; 27:248-253. [PMID: 32398456 DOI: 10.1097/moh.0000000000000588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Even though an increasing amount of sequencing data on the leukemia genome has highlighted a tumor-suppressive function for plant homeodomain finger protein 6 (PHF6), its role in the hematopoietic system remained elusive until recently. The purpose of this review is to describe the role of PHF6 in normal hematopoiesis and leukemogenesis based on recent findings from knockout mouse models. RECENT FINDINGS In a mouse model, the loss of Phf6 enhanced the bone marrow repopulating capacity of hematopoietic stem cells (HSCs) during serial transplantations without transforming hematopoietic cells, whereas donor mice, which lacked Phf6 expression in the hematopoietic system, did not show any apparent phenotypes in the steady-state. Mechanistically, Phf6 activates effectors in the tumor necrosis factor α (Tnfα) pathway. Therefore, a Phf6 deficiency attenuates the expression of the effectors and confers resistance against Tnfα-mediated growth inhibition to HSCs. Moreover, the loss of Phf6 promoted the development of leukemia induced by aberrant TLX3 expression or an active NOTCH mutation. SUMMARY Phf6 restricts the self-renewal of HSCs by governing the Tnfα pathway. Phf6 fulfills a tumor-suppressive function, and its loss synergizes with leukemic lesions to promote the onset of hematological malignancies.
Collapse
|
171
|
Xiong H, Mancini M, Gobert M, Shen S, Furtado GC, Lira SA, Parkhurst CN, Garambois V, Brengues M, Tadokoro CE, Trimarchi T, Gómez-López G, Singh A, Khiabanian H, Minuzzo S, Indraccolo S, Lobry C, Aifantis I, Herranz D, Lafaille JJ, Maraver A. Spleen plays a major role in DLL4-driven acute T-cell lymphoblastic leukemia. Theranostics 2021; 11:1594-1608. [PMID: 33408769 PMCID: PMC7778594 DOI: 10.7150/thno.48067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/12/2020] [Indexed: 01/20/2023] Open
Abstract
The Notch pathway is highly active in almost all patients with T-cell acute lymphoblastic leukemia (T-ALL), but the implication of Notch ligands in T-ALL remains underexplored. Methods: We used a genetic mouse model of Notch ligand delta like 4 (DLL4)-driven T-ALL and performed thymectomies and splenectomies in those animals. We also used several patient-derived T-ALL (PDTALL) models, including one with DLL4 expression on the membrane and we treated PDTALL cells in vitro and in vivo with demcizumab, a blocking antibody against human DLL4 currently being tested in clinical trials in patients with solid cancer. Results: We show that surgical removal of the spleen abrogated T-ALL development in our preclinical DLL4-driven T-ALL mouse model. Mechanistically, we found that the spleen, and not the thymus, promoted the accumulation of circulating CD4+CD8+ T cells before T-ALL onset, suggesting that DLL4-driven T-ALL derives from these cells. Then, we identified a small subset of T-ALL patients showing higher levels of DLL4 expression. Moreover, in mice xenografted with a DLL4-positive PDTALL model, treatment with demcizumab had the same therapeutic effect as global Notch pathway inhibition using the potent γ-secretase inhibitor dibenzazepine. This result demonstrates that, in this PDTALL model, Notch pathway activity depends on DLL4 signaling, thus validating our preclinical mouse model. Conclusion: DLL4 expression in human leukemic cells can be a source of Notch activity in T-ALL, and the spleen plays a major role in a genetic mouse model of DLL4-driven T-ALL.
Collapse
|
172
|
Wang H, Cui B, Sun H, Zhang F, Rao J, Wang R, Zhao S, Shen S, Liu Y. Aberrant GATA2 Activation in Pediatric B-Cell Acute Lymphoblastic Leukemia. Front Pediatr 2021; 9:795529. [PMID: 35087776 PMCID: PMC8787225 DOI: 10.3389/fped.2021.795529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
GATA2 is a transcription factor that is critical for the generation and survival of hematopoietic stem cells (HSCs). It also plays an important role in the regulation of myeloid differentiation. Accordingly, GATA2 expression is restricted to HSCs and hematopoietic progenitors as well as early erythroid cells and megakaryocytic cells. Here we identified aberrant GATA2 expression in B-cell acute lymphoblastic leukemia (B-ALL) by analyzing transcriptome sequencing data obtained from St. Jude Cloud. Differentially expressed genes upon GATA2 activation showed significantly myeloid-like transcription signature. Further analysis identified several tumor-associated genes as targets of GATA2 activation including BAG3 and EPOR. In addition, the correlation between KMT2A-USP2 fusion and GATA2 activation not only indicates a potential trans-activating mechanism of GATA2 but also suggests that GATA2 is a target of KMT2A-USP2. Furthermore, by integrating whole-genome and transcriptome sequencing data, we showed that GATA2 is also cis activated. A somatic focal deletion located in the GATA2 neighborhood that disrupts the boundaries of topologically associating domains was identified in one B-ALL patient with GATA2 activation. These evidences support the hypothesis that GATA2 could be involved in leukemogenesis of B-ALL and can be transcriptionally activated through multiple mechanisms. The findings of aberrant activation of GATA2 and its molecular function extend our understanding of transcriptional factor dysregulation in B-ALL.
Collapse
Affiliation(s)
- Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
173
|
Axitinib in Ponatinib-Resistant B-Cell Acute Lymphoblastic Leukemia Harboring a T315L Mutation. Int J Mol Sci 2020; 21:ijms21249724. [PMID: 33419251 PMCID: PMC7765866 DOI: 10.3390/ijms21249724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Adult acute lymphoblastic leukemia (ALL) with BCR-ABL1 rearrangement (Philadelphia chromosome, Ph) is a hematological aggressive disease with a fatal outcome in more than 50% of cases. Tyrosine kinase inhibitors (TKIs) targeting the activity of BCR-ABL1 protein have improved the prognosis; however, relapses are frequent because of acquired somatic mutations in the BCR-ABL1 kinase domain causing resistance to first, second and third generation TKIs. Axitinib has shown in vitro and ex vivo activity in blocking ABL1; however, clinical trials exploring its efficacy in ALL are missing. Here, we presented a 77-year-old male with a diagnosis of Ph positive ALL resistant to ponatinib and carrying a rare threonine to leucine (T315L) mutation on BCR-ABL1 gene. The patient was treated with axitinib at 5 mg/twice daily as salvage therapy showing an immediate although transient benefit with an overall survival of 9.3 months. Further dose-finding and randomized clinical trials are required to assess the real efficacy of axitinib for adult Ph positive ALL resistant to third generation TKIs.
Collapse
|
174
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
175
|
Tottone L, Lancho O, Loh JW, Singh A, Kimura S, Roels J, Kuchmiy A, Strubbe S, Lawlor MA, da Silva-Diz V, Luo S, Gachet S, García-Prieto CA, Hagelaar R, Esteller M, Meijerink JPP, Soulier J, Taghon T, Van Vlierberghe P, Mullighan CG, Khiabanian H, Rocha PP, Herranz D. A Tumor Suppressor Enhancer of PTEN in T-cell development and leukemia. Blood Cancer Discov 2020; 2:92-109. [PMID: 33458694 DOI: 10.1158/2643-3230.bcd-20-0201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-range oncogenic enhancers play an important role in cancer. Yet, whether similar regulation of tumor suppressor genes is relevant remains unclear. Loss of expression of PTEN is associated with the pathogenesis of various cancers, including T-cell leukemia (T-ALL). Here, we identify a highly conserved distal enhancer (PE) that interacts with the PTEN promoter in multiple hematopoietic populations, including T-cells, and acts as a hub of relevant transcription factors in T-ALL. Consistently, loss of PE leads to reduced PTEN levels in T-ALL cells. Moreover, PE-null mice show reduced Pten levels in thymocytes and accelerated development of NOTCH1-induced T-ALL. Furthermore, secondary loss of PE in established leukemias leads to accelerated progression and a gene expression signature driven by Pten loss. Finally, we uncovered recurrent deletions encompassing PE in T-ALL, which are associated with decreased PTEN levels. Altogether, our results identify PE as the first long-range tumor suppressor enhancer directly implicated in cancer.
Collapse
Affiliation(s)
- Luca Tottone
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Olga Lancho
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Jui-Wan Loh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Anna Kuchmiy
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Steven Strubbe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Matthew A Lawlor
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Victoria da Silva-Diz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shirley Luo
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Stéphanie Gachet
- INSERM U944 and University de Paris, Hopital Saint-Louis, Paris, France
| | - Carlos A García-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Catalonia, Spain
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | | | - Jean Soulier
- INSERM U944 and University de Paris, Hopital Saint-Louis, Paris, France
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
176
|
Sentís I, Gonzalez S, Genescà E, García-Hernández V, Muiños F, Gonzalez C, López-Arribillaga E, Gonzalez J, Fernandez-Ibarrondo L, Mularoni L, Espinosa L, Bellosillo B, Ribera JM, Bigas A, Gonzalez-Perez A, Lopez-Bigas N. The evolution of relapse of adult T cell acute lymphoblastic leukemia. Genome Biol 2020; 21:284. [PMID: 33225950 PMCID: PMC7682094 DOI: 10.1186/s13059-020-02192-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adult T cell acute lymphoblastic leukemia (T-ALL) is a rare disease that affects less than 10 individuals in one million. It has been less studied than its cognate pediatric malignancy, which is more prevalent. A higher percentage of the adult patients relapse, compared to children. It is thus essential to study the mechanisms of relapse of adult T-ALL cases. RESULTS We profile whole-genome somatic mutations of 19 primary T-ALLs from adult patients and the corresponding relapse malignancies and analyze their evolution upon treatment in comparison with 238 pediatric and young adult ALL cases. We compare the mutational processes and driver mutations active in primary and relapse adult T-ALLs with those of pediatric patients. A precise estimation of clock-like mutations in leukemic cells shows that the emergence of the relapse clone occurs several months before the diagnosis of the primary T-ALL. Specifically, through the doubling time of the leukemic population, we find that in at least 14 out of the 19 patients, the population of relapse leukemia present at the moment of diagnosis comprises more than one but fewer than 108 blasts. Using simulations, we show that in all patients the relapse appears to be driven by genetic mutations. CONCLUSIONS The early appearance of a population of leukemic cells with genetic mechanisms of resistance across adult T-ALL cases constitutes a challenge for treatment. Improving early detection of the malignancy is thus key to prevent its relapse.
Collapse
Affiliation(s)
- Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Santiago Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Eulalia Genescà
- Hematology Departments, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Violeta García-Hernández
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Celia Gonzalez
- Hematology Departments, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Erika López-Arribillaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jessica Gonzalez
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | | | - Loris Mularoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CMR[B] Center of Regenerative Medicine, Barcelona, Spain
| | - Lluís Espinosa
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Beatriz Bellosillo
- Pathology Department, CIBERONC, Hospital del Mar, IMIM, Barcelona, Spain
| | - Josep-Maria Ribera
- Hematology Departments, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
177
|
López-Nieva P, González-Sánchez L, Cobos-Fernández MÁ, Córdoba R, Santos J, Fernández-Piqueras J. More Insights on the Use of γ-Secretase Inhibitors in Cancer Treatment. Oncologist 2020; 26:e298-e305. [PMID: 33191568 PMCID: PMC7873333 DOI: 10.1002/onco.13595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
The NOTCH1 gene encodes a transmembrane receptor protein with activating mutations observed in many T‐cell acute lymphoblastic leukemias (T‐ALLs) and lymphomas, as well as in other tumor types, which has led to interest in inhibiting NOTCH1 signaling as a therapeutic target in cancer. Several classes of Notch inhibitors have been developed, including monoclonal antibodies against NOTCH receptors or ligands, decoys, blocking peptides, and γ‐secretase inhibitors (GSIs). GSIs block a critical proteolytic step in NOTCH activation and are the most widely studied. Current treatments with GSIs have not successfully passed clinical trials because of side effects that limit the maximum tolerable dose. Multiple γ‐secretase–cleavage substrates may be involved in carcinogenesis, indicating that there may be other targets for GSIs. Resistance mechanisms may include PTEN inactivation, mutations involving FBXW7, or constitutive MYC expression conferring independence from NOTCH1 inactivation. Recent studies have suggested that selective targeting γ‐secretase may offer an improved efficacy and toxicity profile over the effects caused by broad‐spectrum GSIs. Understanding the mechanism of GSI‐induced cell death and the ability to accurately identify patients based on the activity of the pathway will improve the response to GSI and support further investigation of such compounds for the rational design of anti‐NOTCH1 therapies for the treatment of T‐ALL. Implications for Practice γ‐secretase has been proposed as a therapeutic target in numerous human conditions, including cancer. A better understanding of the structure and function of the γ‐secretase inhibitor (GSI) would help to develop safe and effective γ‐secretase–based therapies. The ability to accurately identify patients based on the activity of the pathway could improve the response to GSI therapy for the treatment of cancer. Toward these ends, this study focused on γ‐secretase inhibitors as a potential therapeutic target for the design of anti‐NOTCH1 therapies for the treatment of T‐cell acute lymphoblastic leukemias and lymphomas. Understanding the mechanism of γ‐secretase inhibitor (GSI)–induced cell death and the ability to accurately identify patients based on the activity of the pathway could improve the response to GSI therapy for the treatment of cancer. This article focuses on γ‐secretase inhibitors as a potential therapeutic target to treat T‐cell acute lymphoblastic leukemias and lymphomas.
Collapse
Affiliation(s)
- Pilar López-Nieva
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura González-Sánchez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - María Ángeles Cobos-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain
| | | | - Javier Santos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José Fernández-Piqueras
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
178
|
Bonnet R, Nebout M, Brousse C, Reinier F, Imbert V, Rohrlich PS, Peyron JF. New Drug Repositioning Candidates for T-ALL Identified Via Human/Murine Gene Signature Comparison. Front Oncol 2020; 10:557643. [PMID: 33240808 PMCID: PMC7680901 DOI: 10.3389/fonc.2020.557643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) is an aggressive subtype of leukemia for which important progress in treatment efficiency have been made in the past decades to reach a cure rate of 75%-80% nowadays. It is nevertheless mandatory to find new targets and active molecules for innovative therapeutic strategies as relapse is associated with a very dismal outcome. We designed an experimental workflow to highlight the conserved core pathways associated with leukemogenesis by confronting the gene expression profiles (GEPs) of human T-ALL cases to the GEP of a murine T-ALL representative model, generated by the conditional deletion of the PTEN tumor suppressor gene in T cell precursors (tPTEN-/-). We identified 844 differentially expressed genes, common GEPs (cGEP) that were conserved between human T-ALL and murine signatures, and also similarly differentially expressed, compared to normal T cells. Using bioinformatic tools we highlighted in cGEPan upregulation of E2F, MYC and mTORC1. Next, using Connectivity Map (CMAP) and CMAPViz a visualization procedure for CMAP data that we developed, we selected in silico three FDA-approved, bioactive molecule candidates: α-estradiol (α-E), nordihydroguaiaretic acid (NDGA) and prochlorperazine dimaleate (PCZ). At a biological level, we showed that the three drugs triggered an apoptotic cell death in a panel of T-ALL cell lines, activated a DNA damage response and interfered with constitutive mTORC1 activation and c-MYC expression. This analysis shows that the investigation of conserved leukemogenesis pathways could be a strategy to reveal new avenues for pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Pierre Simon Rohrlich
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Pediatric Hematology-Oncology, CHU de Nice, Nice, France
| | | |
Collapse
|
179
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
180
|
Wang J, Xiong Y. HSH2D contributes to methotrexate resistance in human T‑cell acute lymphoblastic leukaemia. Oncol Rep 2020; 44:2121-2129. [PMID: 33000278 PMCID: PMC7551555 DOI: 10.3892/or.2020.7772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is a malignant proliferative disease that originates from B-lineage or T-lineage lymphoid progenitor cells. Resistance to chemotherapy remains an important factor for treatment failure. The aim of the present study was to investigate drug resistance in T-cell ALL (T-ALL). Bioinformatics analysis of Oncomine and Gene Expression Omnibus data was performed to evaluate the expression of haematopoietic SH2 domain containing (HSH2D) in various lymphomas. HuT-78 cells with HSH2D overexpression and or knockdown were constructed, and the effect on related downstream signalling molecules was detected. To study the effect of HSH2D on methotrexate (MTX) resistance, cell cycle and apoptosis analyses were conducted using flow cytometry, and MTT and EdU assays were used to detect the effect of MTX resistance and HSH2D gene expression on the biological function of HuT-78 cells. Via the analysis of the data sets, it was identified that the expression of HSH2D was downregulated in T-ALL compared with B-cell ALL. Western blotting and reverse transcription-quantitative PCR demonstrated that the overexpression of HSH2 resulted in the inhibition of CD28-mediated IL-2 activation. In related experiments with drug-resistant cell lines, it was determined that HSH2D expression is necessary for HuT-78 cells to be resistant to MTX. In conclusion, the results suggested that HSH2D serves an important role in the resistance of T-ALL to MTX, which provides a potential research target for the study of drug resistance of T-ALL.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yiying Xiong
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
181
|
Co-operation of ABT-199 and gemcitabine in impeding DNA damage repair and inducing cell apoptosis for synergistic therapy of T-cell acute lymphoblastic leukemia. Anticancer Drugs 2020; 30:138-148. [PMID: 30320607 DOI: 10.1097/cad.0000000000000702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia with limited therapeutic options available. Here, we evaluated the therapeutic potential of the combination of the Bcl-2 antagonist ABT-199 and cytotoxic agent gemcitabine in T-ALL cell lines. Our results showed that the combination of ABT-199 and gemcitabine exhibited synergistic cytotoxicity and induced significant apoptosis in human T-ALL cell lines (Jurkat and Molt4). The augmented apoptosis induced by combination treatment was accompanied by the greater extent of mitochondrial depolarization and enhanced DNA damage. Importantly, single agent induced DNA damage alone but did not inhibit RAD51/BRCA1-mediated repair for DNA double-strand breaks. In contrast, the combination of ABT-199 and gemcitabine disrupted RAD51/BRCA1-dependent DNA repair and remarkably activated caspase-3 and PARP to trigger apoptosis. Moreover, ABT-199 exerted an antagonistic action towards Bcl-2 and Bcl-xL, but to a certain extent moderately increased Mcl-1 level that could be compromised by gemcitabine. In conclusion, our study showed that the combination of ABT-199 and gemcitabine exhibited synergistic cytotoxicity in T-ALL cells by cooperatively targeting DNA damage repair pathway and Bcl-2 family proteins.
Collapse
|
182
|
Bongiovanni D, Tosello V, Saccomani V, Dalla Santa S, Amadori A, Zanovello P, Piovan E. Crosstalk between Hedgehog pathway and the glucocorticoid receptor pathway as a basis for combination therapy in T-cell acute lymphoblastic leukemia. Oncogene 2020; 39:6544-6555. [PMID: 32917954 DOI: 10.1038/s41388-020-01453-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Notwithstanding intensified therapy, a considerable fraction of T-cell acute lymphoblastic leukemia (T-ALL) patients face a dismal prognosis due to primary resistance to treatment and relapse, raising the need for more efficient and targeted therapies. Hedgehog (HH) signaling is a major developmental pathway frequently deregulated in cancer, for which a role in T-ALL is emerging. Mounting evidence suggests that ligand-independent activation of HH pathway occurs in cancer including T-ALL, emphasizing the necessity of dissecting the complex interplay between HH and other signaling pathways regulating activation. In this work, we present a therapeutically relevant crosstalk between HH signaling and the glucocorticoid receptor (NR3C1) pathway acting at the level of GLI1 transcription factor. GLI inhibitor GANT61 and dexamethasone were shown to exert a synergistic anti-leukemic effect in vitro in T-ALL cell lines and patient-derived xenografts. Mechanistically, dexamethasone-activated NR3C1 impaired GLI1 function by dynamically modulating the recruitment of PCAF acetyltransferase and HDAC1 deacetylase. Increased GLI1 acetylation was associated with compromised transcriptional activity and reduced protein stability. In summary, our study identifies a novel crosstalk between GLI1 and NR3C1 signaling pathway which could be exploited in HH-dependent malignancies to increase therapeutic efficacy.
Collapse
Affiliation(s)
- Deborah Bongiovanni
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Valentina Saccomani
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - Silvia Dalla Santa
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - Alberto Amadori
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy.,UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Paola Zanovello
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy. .,UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.
| |
Collapse
|
183
|
Preclinical efficacy of humanized, non–FcγR-binding anti-CD3 antibodies in T-cell acute lymphoblastic leukemia. Blood 2020; 136:1298-1302. [DOI: 10.1182/blood.2019003801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/04/2020] [Indexed: 01/11/2023] Open
Abstract
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy that accounts for ∼20% of ALL cases. Intensive chemotherapy regimens result in cure rates >85% in children and <50% in adults, warranting a search of novel therapeutic strategies. Although immune-based therapies have tremendously improved the treatment of B-ALL and other B-cell malignancies, they are not yet available for T-ALL. We report here that humanized, non–Fcγ receptor (FcγR)–binding monoclonal antibodies (mAbs) to CD3 have antileukemic properties in xenograft (PDX) models of CD3+ T-ALL, resulting in prolonged host survival. We also report that these antibodies cooperate with chemotherapy to enhance antileukemic effects and host survival. Because these antibodies show only minor, manageable adverse effects in humans, they offer a new therapeutic option for the treatment of T-ALL. Our results also show that the antileukemic properties of anti-CD3 mAbs are largely independent of FcγR-mediated pathways in T-ALL PDXs.
Collapse
|
184
|
TBL1XR1-JAK2: a novel fusion in a pediatric T cell acute lymphoblastic leukemia patient with increased absolute eosinophil count. J Hematop 2020. [DOI: 10.1007/s12308-020-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
185
|
Xu W, Chen S, Wang X, Tanaka S, Onda K, Sugiyama K, Yamada H, Hirano T. Molecular mechanisms and therapeutic implications of tetrandrine and cepharanthine in T cell acute lymphoblastic leukemia and autoimmune diseases. Pharmacol Ther 2020; 217:107659. [PMID: 32800789 DOI: 10.1016/j.pharmthera.2020.107659] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 02/08/2023]
Abstract
Inappropriately activated T cells mediate autoimmune diseases and T cell acute lymphoblastic leukemia (T-ALL). Glucocorticoid and chemotherapeutic agents have largely extended lives of these patients. However, serious side effects and drug resistance often limit the prognosis of considerable number of the patients. The efficient treatment of autoimmune diseases or T-ALL with drug resistance remains an important unmet demand clinically. Bisbenzylisoquinoline alkaloids tetrandrine and cepharanthine have been applied for the treatment of certain types of autoimmune diseases and cancers, while studies on their action mechanisms and their further applications combined with glucocorticoids or chemotherapeutic agents remains to be expanded. This review introduced molecular mechanisms of tetrandrine and cepharanthine in T cells, including their therapeutic implications. Both tetrandrine and cepharnthine influence the growth of activated T cells via several kinds of signaling pathways, such as NF-κB, caspase cascades, cell cycle, MAPK, and PI3K/Akt/mTOR. According to recent preclinical and clinical studies, P-glycoprotein inhibitory effect of tetrandrine and cepharnthine could play a significant role on T cell-involved refractory diseases. Therefore, tetrandrine or cepharanthine combined with glucocorticoid or other anti-leukemia drugs would bring a new hope for patients with glucocorticoid-resistant autoimmune disease or refractory T-ALL accompanied with functional P-glycoprotein. In conclusion, bisbenzylisoquinoline alkaloids tetrandrine and cepharanthine can regulate several signaling pathways in abnormally activated T cells with low toxicity. Bisbenzylisoquinoline alkaloids deserve to be paid more attention as a lead compound to develop new drugs for the treatment of T cell-involved diseases in the future.
Collapse
Affiliation(s)
- Wencheng Xu
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China; Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Shuhe Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China; Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China.
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Onda
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kentaro Sugiyama
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruki Yamada
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
186
|
Xu W, Wu H, Chen S, Wang X, Tanaka S, Sugiyama K, Yamada H, Hirano T. Cytotoxic effects of vitamins K1, K2, and K3 against human T lymphoblastoid leukemia cells through apoptosis induction and cell cycle arrest. Chem Biol Drug Des 2020; 96:1134-1147. [PMID: 32305047 DOI: 10.1111/cbdd.13696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
The present study was undertaken to evaluate cytotoxic effects of vitamin K1 (phylloquinone), vitamin K2 (menaquinones), and vitamin K3 (menadione) against human T lymphoblastoid leukemia cells, Jurkat T cells, MOLT-4 cells, and P-glycoprotein-expressing multidrug-resistant MOLT-4/DNR cells. Vitamins K2 and K3, but not vitamin K1, reduced viabilities of Jurkat, MOLT-4, and MOLT-4/DNR cells. The influence potency of vitamin K3 was larger than that of vitamin K2 in all of the three cell lines. MOLT-4/DNR cells seemed to be more sensitive toward the effects of vitamins K2 and K3. The cytotoxicity of vitamins K2 and K3 on these leukemia cells seems to be related to apoptosis induction and cell cycle arrest. Vitamin K2 and K3 treatment induced cleavage of PARP obviously. Moreover, vitamins K2 and K3 specifically down-regulated the expressions of cyclin A2 in all of the three cell lines. However, the effects of vitamins K2 and K3 on the cell cycle profiling in Jurkat, MOLT-4, and MOLT-4/DNR cells varied with the cell type. Vitamins K2 and K3 also decreased the viability of mitogen-activated human peripheral blood mononuclear cells. Our observations suggest that vitamins K2 and K3 have bilateral cytotoxic effects on activated human peripheral lymphocytes and the human leukemic T cells.
Collapse
Affiliation(s)
- Wencheng Xu
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hongguang Wu
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shuhe Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xiaoqin Wang
- Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China.,Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kentaro Sugiyama
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Haruki Yamada
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
187
|
Forgione MO, McClure BJ, Yeung DT, Eadie LN, White DL. MLLT10 rearranged acute leukemia: Incidence, prognosis, and possible therapeutic strategies. Genes Chromosomes Cancer 2020; 59:709-721. [PMID: 32720323 DOI: 10.1002/gcc.22887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rearrangements of the MLLT10 gene occur in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), most commonly T-lineage ALL (T-ALL), in patients of all ages. MLLT10 rearranged (MLLT10r) acute leukemia presents a complex diagnostic and therapeutic challenge due to frequent presentation of immature or mixed phenotype, and a lack of consensus regarding optimal therapy. Cases of MLLT10r AML or T-ALL bearing immature phenotype are at high risk of poor outcome, but the underlying molecular mechanisms and sensitivity to targeted therapies remain poorly characterized. This review addresses the incidence and prognostic significance of MLLT10r in acute leukemia, and how the aberrant gene expression profile of this disease can inform potential targeted therapeutic strategies. Understanding the underlying genomics of MLLT10r acute leukemia, both clinically and molecularly, will improve prognostic stratification and accelerate the development of targeted therapeutic strategies, to improve patient outcomes.
Collapse
Affiliation(s)
- Michelle O Forgione
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Hudson Institute, Clayton, Victoria, Australia
| |
Collapse
|
188
|
Aref S, El Agdar M, Salama O, Zeid TA, Sabry M. Significance of NOTCH1 mutations détections in T-acute lymphoblastic leukemia patients. Cancer Biomark 2020; 27:157-162. [PMID: 31796666 DOI: 10.3233/cbm-190967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study aimed to determine the prevalence and clinical impact of neurogenic locus notch homolog protein 1 (NOTCH1) mutations among patients with T cell acute lymphoblastic leukemia (T-ALL). PATIENT AND METHODS A cohort of 60 T-ALL cases was included in this study. Sanger sequencing were done for NOTCH1 exon 26, 27, and distal part of exon 34 expanding the sequences encoding transcription activation domain (TAD) and a peptide sequence rich in proline, glutamic acid, serine, threonine (PEST) domains in all studied T ALL patients at diagnosis. RESULTS NOTCH1 mutations was detected in 40 out of 60 T-ALL patients (66%). Mutations in T-ALL patients are deletions (22 mutations) and point mutation (10 mutations). NOTCH1 mutations was found to have no significant impact on clinical outcome and prognosis in T-ALL including overall survival, progression free survival, relapse and mortality (P> 0.05 for all). CONCLUSION NOTCH1 mutations were frequently detected in T All patients; however, these mutations did not affect the T ALL patient's outcome. The high prevalence of NOTCH1 mutations at diagnosis could be used for detection of minimal residual disease in T ALL.
Collapse
|
189
|
A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis. Leukemia 2020; 35:724-736. [PMID: 32655144 PMCID: PMC7932917 DOI: 10.1038/s41375-020-0965-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1a−CD7− subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options.
Collapse
|
190
|
Liu Y, Li C, Shen S, Chen X, Szlachta K, Edmonson MN, Shao Y, Ma X, Hyle J, Wright S, Ju B, Rusch MC, Liu Y, Li B, Macias M, Tian L, Easton J, Qian M, Yang JJ, Hu S, Look AT, Zhang J. Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X. Nat Genet 2020; 52:811-818. [PMID: 32632335 PMCID: PMC7679232 DOI: 10.1038/s41588-020-0659-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
We developed cis-X, a computational method for discovering regulatory noncoding variants in cancer by integrating whole-genome and transcriptome sequencing data from a single cancer sample. cis-X first finds aberrantly cis-activated genes that exhibit allele-specific expression accompanied by an elevated outlier expression. It then searches for causal noncoding variants that may introduce aberrant transcription factor binding motifs or enhancer hijacking by structural variations. Analysis of 13 T-lineage acute lymphoblastic leukemias identified a recurrent intronic variant predicted to cis-activate the TAL1 oncogene, a finding validated in vivo by chromatin immunoprecipitation sequencing of a patient-derived xenograft. Candidate oncogenes include the prolactin receptor PRLR activated by a focal deletion that removes a CTCF-insulated neighborhood boundary. cis-X may be applied to pediatric and adult solid tumors that are aneuploid and heterogeneous. In contrast to existing approaches, which require large sample cohorts, cis-X enables the discovery of regulatory noncoding variants in individual cancer genomes.
Collapse
Affiliation(s)
- Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Karol Szlachta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benshang Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Macias
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaoyan Hu
- Children's Hospital of Soochow University, Suzhou, China
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
191
|
Abstract
PURPOSE OF REVIEW Patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) have limited therapeutic options and a poor prognosis. Although a variety of salvage chemotherapy regimens may be used, response rates are unsatisfactory. This article summarizes current approaches and promising emerging strategies for the treatment of relapsed T-ALL. RECENT FINDINGS Although nelarabine is the only agent approved specifically for T-ALL, recent studies have identified a variety of genetic alterations and signaling pathways that are critical in its pathogenesis. Based on these findings, a number of small-molecule inhibitors and other targeted therapies are being studied for relapsed T-ALL, including gamma-secretase inhibitors, BCL-2 inhibitors, cyclin-dependent kinase inhibitors, and mTOR inhibitors. In addition, pre-clinical studies of chimeric antigen receptor T cells targeting CD5 and CD7 as well as the monoclonal antibody daratumumab have shown promising results for T-ALL. Relapsed T-ALL currently remains challenging to treat, but recent pre-clinical studies of targeted and immunotherapeutic agents have shown encouraging results. A number of clinical trials investigating these approaches for T-ALL are currently underway.
Collapse
Affiliation(s)
- Christine M McMahon
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Selina M Luger
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Perelman Center for Advanced Medicine, 12th Floor South Extension, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
192
|
Garcia EG, Veloso A, Oliveira ML, Allen JR, Loontiens S, Brunson D, Do D, Yan C, Morris R, Iyer S, Garcia SP, Iftimia N, Van Loocke W, Matthijssens F, McCarthy K, Barata JT, Speleman F, Taghon T, Gutierrez A, Van Vlierberghe P, Haas W, Blackburn JS, Langenau DM. PRL3 enhances T-cell acute lymphoblastic leukemia growth through suppressing T-cell signaling pathways and apoptosis. Leukemia 2020; 35:679-690. [PMID: 32606318 PMCID: PMC8009053 DOI: 10.1038/s41375-020-0937-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes and is largely driven by the NOTCH/MYC pathway. Yet, additional oncogenic drivers are required for transformation. Here, we identify protein tyrosine phosphatase type 4 A3 (PRL3) as a collaborating oncogenic driver in T-ALL. PRL3 is expressed in a large fraction of primary human T-ALLs and is commonly co-amplified with MYC. PRL3 also synergized with MYC to initiate early-onset ALL in transgenic zebrafish and was required for human T-ALL growth and maintenance. Mass spectrometry phosphoproteomic analysis and mechanistic studies uncovered that PRL3 suppresses downstream T cell phosphorylation signaling pathways, including those modulated by VAV1, and subsequently suppresses apoptosis in leukemia cells. Taken together, our studies have identified new roles for PRL3 as a collaborating oncogenic driver in human T-ALL and suggest that therapeutic targeting of the PRL3 phosphatase will likely be a useful treatment strategy for T-ALL.
Collapse
Affiliation(s)
- E G Garcia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - A Veloso
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - M L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - J R Allen
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S Loontiens
- Cancer Research Institute Ghent, Ghent, Belgium
| | - D Brunson
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - D Do
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - C Yan
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - R Morris
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - S Iyer
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S P Garcia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - N Iftimia
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - W Van Loocke
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - F Matthijssens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - K McCarthy
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J T Barata
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - F Speleman
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - T Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - A Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, USA
| | - P Van Vlierberghe
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Biomolecular Medicine and Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - W Haas
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA.,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Harvard Stem Cell Institute, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J S Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - D M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, 02114, USA. .,Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA. .,Harvard Stem Cell Institute, Boston, MA, 02114, USA. .,Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
193
|
Kimura S, Mullighan CG. Molecular markers in ALL: Clinical implications. Best Pract Res Clin Haematol 2020; 33:101193. [PMID: 33038982 DOI: 10.1016/j.beha.2020.101193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and remains a main cause of death in children despite recent improvements in cure rates. In the past decade, development of massively parallel sequencing has enabled large scale genome profiling studies of ALL, which not only led to identification of new subtypes in both B-cell precursor ALL (BCP-ALL) and T-cell ALL (T-ALL), but has also identified potential new therapeutic approaches to target vulnerabilities of many subtypes. Several of these approaches have been validated in preclinical models and are now being formally evaluated in prospective clinical trials. In this review, we provide an overview of the recent advances in our knowledge of genomic bases of BCP-ALL, T-ALL, and relapsed ALL, and discuss their clinical implications.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, 38105, TN, USA
| | - Charles G Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, 38105, TN, USA.
| |
Collapse
|
194
|
Mei E, Wei X, Gao J, Tian X, Li W, Liu L, Qian C. Association of TLX1 gene polymorphisms with the risk of acute lymphoblastic leukemia and B lineage acute lymphoblastic leukemia in Han Chinese children. J Clin Lab Anal 2020; 34:e23414. [PMID: 32488880 PMCID: PMC7521250 DOI: 10.1002/jcla.23414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Studies on gene polymorphism association are centered on childhood acute lymphoblastic leukemia (ALL), a common hematological malignancy in children younger than 16 years. Single‐nucleotide polymorphisms (SNPs) in some genes, such as ARID5B and CDKN2B, are associated with the risk of childhood ALL. T‐cell leukemia homeobox 1 (TLX1), a member of the HOX gene family, was identified based on its abnormal expression in T‐lineage leukemia. This study aimed to determine whether TLX1 is associated with B‐ALL and which SNP plays a significant role in ALL. Methods A total of 217 cases of ALL and 241 controls were included in this study. Six tag SNPs (rs75329544, rs946328, rs12415670, rs2075879, rs17113735, and rs1051723) were selected, and genotyping was carried out on Sequenom MassARRAY platform. Results Rs17113735 was possibly the risk locus associated with increased risk for ALL, whereas rs946328 was possibly associated with decreased risk for ALL. Moreover, rs17113735 was likely to be the risk locus for B‐cell ALL (B‐ALL), and rs2075879 was associated with decreased risk for B‐ALL (P < .05). All SNPs in the two sample types (ALL and B‐ALL samples) demonstrated linkage disequilibrium except between rs75329544 and rs2075879. Haplotype analysis showed no significant difference between the cases and controls in the two sample types. Conclusion TLX1 gene polymorphisms are associated with ALL (rs17113735 and rs946328) and possibly play a significant role in B‐ALL (rs17113735 and rs2075879). This work provides a reference for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Endian Mei
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Xubin Wei
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Jiadong Gao
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Xiaolong Tian
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Wei Li
- Department of Clinical Laboratory, School of Medicine, Children's Hospital, Zhejiang University, Hangzhou, China
| | - Li Liu
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| | - Cheng Qian
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University. Hangzhou, Zhejiang, China
| |
Collapse
|
195
|
Panagopoulos I, Gorunova L, Johannsdottir IMR, Andersen K, Holth A, Beiske K, Heim S. Chromosome Translocation t(14;21)(q11;q22) Activates Both OLIG1 and OLIG2 in Pediatric T-cell Lymphoblastic Malignancies and May Signify Adverse Prognosis. Cancer Genomics Proteomics 2020; 17:41-48. [PMID: 31882550 DOI: 10.21873/cgp.20166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM The chromosome translocation t(14;21)(q11;q22) was reported in four pediatric T-cell lymphoblastic leukemias and was shown to activate the OLIG2 gene. MATERIALS AND METHODS A pediatric T-cell lymphoblastic lymphoma was investigated using G-banding chromosome analysis, fluorescence in situ hybridization (FISH), and immunocytochemistry. RESULTS The malignant cells carried a t(14;21)(q11;q22) aberration. The translocation moves the enhancer elements of TRA/TRD from band 14q11 to 21q22, a few thousands kbp downstream of OLIG1 and OLIG2, resulting in the production of both OLIG1 and OLIG2 proteins. CONCLUSION The translocation t(14;21)(q11;q22) occurs in some pediatric T-cell lymphoblastic malignancies. Activation of both OLIG1 and OLIG2 by t(14;21)(q11;q22) in T-lymphoblasts and the ensuing deregulation of thousands of genes could explain the highly malignant disease and resistance to treatment that has characterized this small group of patients.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Inga Maria Rinvoll Johannsdottir
- Department of Pediatric Cancer and Blood Disorders, Oslo University Hospital, Oslo, Norway.,National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Arild Holth
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Klaus Beiske
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
196
|
Bonaccorso P, Bugarin C, Buracchi C, Fazio G, Biondi A, Lo Nigro L, Gaipa G. Single‐cell profiling of pediatric T‐cell acute lymphoblastic leukemia: Impact of
PTEN
exon 7 mutation on
PI3K
/
Akt
and
JAK–STAT
signaling pathways. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:491-503. [DOI: 10.1002/cyto.b.21882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Paola Bonaccorso
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
- Center of Pediatric Hematology Oncology Azienda Policlinico‐OVE, University of Catania Catania Italy
| | - Cristina Bugarin
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Chiara Buracchi
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Grazia Fazio
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Andrea Biondi
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
- Pediatric Clinic University of Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo Monza Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology Azienda Policlinico‐OVE, University of Catania Catania Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| |
Collapse
|
197
|
Patel AA, Thomas J, Rojek AE, Stock W. Biology and Treatment Paradigms in T Cell Acute Lymphoblastic Leukemia in Older Adolescents and Adults. Curr Treat Options Oncol 2020; 21:57. [PMID: 32468488 DOI: 10.1007/s11864-020-00757-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OPINION STATEMENT T cell acute lymphoblastic leukemia (T-ALL) occurs in approximately 25-30% of adult ALL diagnoses. Historically, B cell ALL (B-ALL) and T-ALL have been treated in the same fashion despite differences in the biology of disease. Outcomes in the adolescent/young adult (AYA) population have improved significantly with the utilization of pediatric-based regimens. In addition, there may now be a role for the addition of nelarabine to frontline treatment in the AYA population. In older adults, choices in which regimen to pursue should account for the potential toxicities associated with pediatric-based regimens. Measurable residual disease (MRD) has taken on increasing prognostic value in T-ALL and may help to identify which patients should receive an allogeneic stem cell transplant. T cell lymphoblastic lymphoma (T-LBL) has traditionally been treated similarly to T-ALL, but additional management questions must be considered. Mediastinal irradiation does not seem to clearly improve outcomes, and there is considerable heterogeneity in the central nervous system (CNS) prophylaxis strategy used in prospective trials. CNS prophylaxis in AYA patients with T-ALL, on the other hand, can be safely achieved with intrathecal chemotherapy alone. Prospective data regarding CNS prophylaxis strategies in older adults are currently not available. Nelarabine-based regimens currently remain the standard in relapsed/refractory T-ALL; however, novel therapies targeting molecular aberrations in T-ALL are actively being investigated.
Collapse
Affiliation(s)
- Anand A Patel
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA
| | - Joseph Thomas
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Wendy Stock
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
198
|
Zhuang M, Chaolumen Q, Li L, Chen B, Su Q, Yang Y, Zhang X. MiR-29b-3p cooperates with miR-29c-3p to affect the malignant biological behaviors in T-cell acute lymphoblastic leukemia via TFAP2C/GPX1 axis. Biochem Biophys Res Commun 2020; 527:511-517. [PMID: 32423796 DOI: 10.1016/j.bbrc.2020.03.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 01/09/2023]
Abstract
Mounting evidence has illustrated the tumor regulatory roles of microRNAs (miRNAs) in T-cell acute lymphoblastic leukemia (T-ALL), a malignant carcinoma originated from T-cell precursors. However, the possible regulation mechanisms underlying miR-29b/29c-3p in T-ALL have not been interrogated yet. The aim of our study was to probe the association and possible molecular mechanism of miR-29b/29c-3p and Glutathione Peroxidase 1 (GPX1), a predicted highly expressed gene in acute myeloid leukemia (LAML) tissues on the cancer genome atlas (TCGA) website. In our paper, it was observed that GPX1 was relatively overexpressed in T-ALL cells, compared with normal T cells. Loss-of-function assays demonstrated that GPX1 knockdown inhibited the proliferation and activated the apoptosis in T-ALL cells. Then miR-29b/29c-3p was confirmed to regulate GPX1 mRNA and protein expression via decreasing Transcription Factor AP-2 Gamma (TFAP2C) expression. In summary, miR-29b-3p and miR-29c-3p targeted TFAP2C so as to repress GPX1 transcription, thereafter inhibiting GPXA expression. In the end, rescue experiments proved the whole regulation mechanism of miR-29b/29c-3p in T-ALL. Overall, the miR-29b/29c-3p -TFAP2C-GPX1 axis helped us to have a better understanding of T-ALL pathogenesis.
Collapse
Affiliation(s)
- Mengli Zhuang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, NO.1 Gangdao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Qiqige Chaolumen
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, NO.1 Gangdao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Linlin Li
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, NO.1 Gangdao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Baiyu Chen
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, NO.1 Gangdao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Qin Su
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, NO.1 Gangdao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Yinan Yang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, NO.1 Gangdao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Xiaomeng Zhang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, NO.1 Gangdao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
199
|
SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 2020; 35:377-388. [PMID: 32382081 PMCID: PMC7647950 DOI: 10.1038/s41375-020-0845-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Folate metabolism enables cell growth by providing one-carbon (1C) units for nucleotide biosynthesis. The 1C units are carried by tetrahydrofolate (THF), whose production by the enzyme DHFR is targeted by the important anticancer drug methotrexate. 1C units come largely from serine catabolism by the enzyme SHMT, whose mitochondrial isoform is strongly upregulated in cancer. Here we report the SHMT inhibitor SHIN2 and demonstrate its in vivo target engagement with 13C-serine tracing. As methotrexate is standard treatment for T-cell acute lymphoblastic leukemia (T-ALL), we explored the utility of SHIN2 in this disease. SHIN2 increases survival in NOTCH1-driven mouse primary T-ALL in vivo. Low dose methotrexate sensitizes Molt4 human T-ALL cells to SHIN2, and cells rendered methotrexate resistant in vitro show enhanced sensitivity to SHIN2. Finally, SHIN2 and methotrexate synergize in mouse primary T-ALL and in a human patient-derived xenograft in vivo, increasing survival. Thus, SHMT inhibition offers a complementary strategy in the treatment of T-ALL.
Collapse
|
200
|
hsa-miR-20b-5p and hsa-miR-363-3p Affect Expression of PTEN and BIM Tumor Suppressor Genes and Modulate Survival of T-ALL Cells In Vitro. Cells 2020; 9:cells9051137. [PMID: 32380791 PMCID: PMC7290785 DOI: 10.3390/cells9051137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy arising from T lymphocyte precursors. We have previously shown by miRNA-seq, that miRNAs from the mir-106a-363 cluster are overexpressed in pediatric T-ALL. In silico analysis indicated their potential involvement in the regulation of apoptosis. Here, we aimed to test the hypothesis on the pro-tumorigenic roles of these miRNAs in T-ALL cells in vitro. We demonstrate, for the first time, that hsa-miR-20b-5p and hsa-miR-363-3p from the mir-106a-363 cluster, when upregulated in T-ALL cells in vitro, protect leukemic cells from apoptosis, enhance proliferation, and contribute to growth advantage. We show, using dual luciferase reporter assays, Ago2-RNA immunoprecipitation, RT-qPCR, and Western blots, that the oncogenic effects of these upregulated miRNAs might, at least in part, be mediated by the downregulation of two important tumor suppressor genes, PTEN and BIM, targeted by both miRNAs. Additionally, we demonstrate the cooperative effects of these two miRNAs by simultaneous inhibition of both miRNAs as compared to the inhibition of single miRNAs. We postulate that hsa-miR-20b-5p and hsa-miR-363-3p from the mir-106a-363 cluster might serve as oncomiRs in T-ALL, by contributing to post-transcriptional repression of key tumor suppressors, PTEN and BIM.
Collapse
|