151
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
152
|
Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014; 345:1184-1188. [PMID: 25123483 DOI: 10.1126/science.1254445] [Citation(s) in RCA: 497] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited X-linked disease caused by mutations in the gene encoding dystrophin, a protein required for muscle fiber integrity. DMD is characterized by progressive muscle weakness and a shortened life span, and there is no effective treatment. We used clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9)-mediated genome editing to correct the dystrophin gene (Dmd) mutation in the germ line of mdx mice, a model for DMD, and then monitored muscle structure and function. Genome editing produced genetically mosaic animals containing 2 to 100% correction of the Dmd gene. The degree of muscle phenotypic rescue in mosaic mice exceeded the efficiency of gene correction, likely reflecting an advantage of the corrected cells and their contribution to regenerating muscle. With the anticipated technological advances that will facilitate genome editing of postnatal somatic cells, this strategy may one day allow correction of disease-causing mutations in the muscle tissue of patients with DMD.
Collapse
Affiliation(s)
- Chengzu Long
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R McAnally
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex A Mireault
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
153
|
Strimpakos G, Corbi N, Pisani C, Di Certo MG, Onori A, Luvisetto S, Severini C, Gabanella F, Monaco L, Mattei E, Passananti C. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice. J Cell Physiol 2014; 229:1283-91. [PMID: 24469912 PMCID: PMC4303978 DOI: 10.1002/jcp.24567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/24/2014] [Indexed: 01/28/2023]
Abstract
Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor “Jazz” that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. J. Cell. Physiol. 229: 1283–1291, 2014. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Georgios Strimpakos
- Institute of Cell Biology and Neurobiology CNR, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Hathout Y, Marathi RL, Rayavarapu S, Zhang A, Brown KJ, Seol H, Gordish-Dressman H, Cirak S, Bello L, Nagaraju K, Partridge T, Hoffman EP, Takeda S, Mah JK, Henricson E, McDonald C. Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients. Hum Mol Genet 2014; 23:6458-69. [PMID: 25027324 DOI: 10.1093/hmg/ddu366] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yetrib Hathout
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA,
| | - Ramya L Marathi
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sree Rayavarapu
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Aiping Zhang
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Kristy J Brown
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Haeri Seol
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Heather Gordish-Dressman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sebahattin Cirak
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Luca Bello
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Terry Partridge
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawa-higashi, Kodaira Tokyo 187-0031, Japan
| | - Jean K Mah
- Department of Pediatrics, Alberta Children's Hospital, Calgary, AB, Canada T3B 6A8 and
| | - Erik Henricson
- Department of Physical Medicine and Rehabilitation, University of California, Davis School of Medicine, Davis, CA 95618, USA
| | - Craig McDonald
- Department of Physical Medicine and Rehabilitation, University of California, Davis School of Medicine, Davis, CA 95618, USA
| |
Collapse
|
155
|
Abstract
Gene therapy is a widespread and promising treatment of many diseases resulting from genetic disorders, infections and cancer. The feasibility of the gene therapy is mainly depends on the development of appropriate method and suitable vectors. For an efficient gene delivery, it is very important to use a carrier that is easy to produce, stable, non-oncogenic and non-immunogenic. Currently most of the vectors actually suffer from many problems. Therefore, the ideal gene therapy delivery system should be developed that can be easily used for highly efficient delivery and able to maintain long-term gene expression, and can be applicable to basic research as well as clinical settings. This article provides a brief over view on the concept and aim of gene delivery, the different gene delivery systems and use of different materials as a carrier in the area of gene therapy.
Collapse
|
156
|
Complementary and alternative medicine for Duchenne and Becker muscular dystrophies: characteristics of users and caregivers. Pediatr Neurol 2014; 51:71-7. [PMID: 24785967 PMCID: PMC4467767 DOI: 10.1016/j.pediatrneurol.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Complementary and alternative medicine is frequently used in the management of chronic pediatric diseases, but little is known about its use by those with Duchenne or Becker muscular dystrophy. METHODS Complementary and alternative medicine use by male patients with Duchenne or Becker muscular dystrophy and associations with characteristics of male patients and their caregivers were examined through interviews with 362 primary caregivers identified from the Muscular Dystrophy Surveillance, Tracking, and Research Network. RESULTS Overall, 272 of the 362 (75.1%) primary caregivers reported that they had used any complementary and alternative medicine for the oldest Muscular Dystrophy Surveillance, Tracking, and Research Network male in their family. The most commonly reported therapies were from the mind-body medicine domain (61.0%) followed by those from the biologically based practice (39.2%), manipulative and body-based practice (29.3%), and whole medical system (6.9%) domains. Aquatherapy, prayer and/or blessing, special diet, and massage were the most frequently used therapies. Compared with nonusers, male patients who used any therapy were more likely to have an early onset of symptoms and use a wheel chair; their caregivers were more likely to be non-Hispanic white. Among domains, associations were observed with caregiver education and family income (mind-body medicines [excluding prayer and/or blessing only] and whole medical systems) and Muscular Dystrophy Surveillance, Tracking, and Research Network site (biologically based practices and mind-body medicines [excluding prayer and/or blessing only]). CONCLUSIONS Complementary and alternative medicine use was common in the management of Duchenne and Becker muscular dystrophies among Muscular Dystrophy Surveillance, Tracking, and Research Network males. This widespread use suggests further study to evaluate the efficacy of integrating complementary and alternative medicine into treatment regimens for Duchenne and Becker muscular dystrophies.
Collapse
|
157
|
Banks GB, Combs AC, Odom GL, Bloch RJ, Chamberlain JS. Muscle structure influences utrophin expression in mdx mice. PLoS Genet 2014; 10:e1004431. [PMID: 24922526 PMCID: PMC4055409 DOI: 10.1371/journal.pgen.1004431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/24/2014] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin−/− mice. An ∼2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin−/−, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD. Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. Utrophin is structurally similar to dystrophin and improving its expression can prevent skeletal muscle necrosis in the mdx mouse model of DMD. Consequently, improving utrophin expression is a primary therapeutic target for treating DMD. While the downstream mechanisms that influence utrophin expression and stability are well described, the upstream mechanisms are less clear. Here, we found that perturbing the highly ordered structure of striated muscle by genetically deleting desmin from mdx mice increased utrophin expression to levels that prevented skeletal muscle necrosis. Thus, the mdx:desmin double knockout mice may prove valuable in determining the upstream mechanisms that influence utrophin expression to develop a therapy for DMD.
Collapse
Affiliation(s)
- Glen B. Banks
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Ariana C. Combs
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
158
|
Tan N, Lansman JB. Utrophin regulates modal gating of mechanosensitive ion channels in dystrophic skeletal muscle. J Physiol 2014; 592:3303-23. [PMID: 24879867 DOI: 10.1113/jphysiol.2014.274332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dystrophin is a large, submembrane cytoskeletal protein, absence of which causes Duchenne muscular dystrophy. Utrophin is a dystrophin homologue found in both muscle and brain whose physiological function is unknown. Recordings of single-channel activity were made from membrane patches on skeletal muscle from mdx, mdx/utrn(+/-) heterozygotes and mdx/utrn(-/-) double knockout mice to investigate the role of these cytoskeletal proteins in mechanosensitive (MS) channel gating. We find complex, gene dose-dependent effects of utrophin depletion in dystrophin-deficient mdx muscle: (1) increased MS channel open probability, (2) a shift of MS channel gating to larger pressures, (3) appearance of modal gating of MS channels and small conductance channels and (4) expression of large conductance MS channels. We suggest a physical model in which utrophin acts as a scaffolding protein that stabilizes lipid microdomains and clusters MS channel subunits. Depletion of utrophin disrupts domain composition in a manner that favours open channel area expansion, as well as allowing diffusion and aggregation of additional MS channel subunits.
Collapse
Affiliation(s)
- Nhi Tan
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143-0450, USA
| | - Jeffry B Lansman
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143-0450, USA
| |
Collapse
|
159
|
Larsen CA, Howard MT. Conserved regions of the DMD 3' UTR regulate translation and mRNA abundance in cultured myotubes. Neuromuscul Disord 2014; 24:693-706. [PMID: 24928536 DOI: 10.1016/j.nmd.2014.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/13/2014] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD), a severe muscle-wasting disease, is caused by mutations in the DMD gene, which encodes for the protein dystrophin. Its regulation is of therapeutic interest as even small changes in expression of functional dystrophin can significantly impact the severity of DMD. While tissue-specific distribution and transcriptional regulation of several DMD mRNA isoforms has been well characterized, the post-transcriptional regulation of dystrophin synthesis is not well understood. Here, we utilize qRTPCR and a quantitative dual-luciferase reporter assay to examine the effects of isoform specific DMD 5' UTRs and the highly conserved DMD 3' UTR on mRNA abundance and translational control of gene expression in C2C12 cells. The 5' UTRs were shown to initiate translation with low efficiency in both myoblasts and myotubes. Whereas, two large highly conserved elements in the 3' UTR, which overlap the previously described Lemaire A and D regions, increase mRNA levels and enhance translation upon differentiation of myoblasts into myotubes. The results presented here implicate an important role for DMD UTRs in dystrophin expression and delineate the cis-acting elements required for the myotube-specific regulation of steady-state mRNA levels and translational enhancer activity found in the DMD 3' UTR.
Collapse
Affiliation(s)
- C Aaron Larsen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
160
|
Abstract
PURPOSE OF REVIEW The most encouraging recent advances regarding pharmacological agents for treating Duchenne muscular dystrophy (DMD) are summarized. Emphasis is given to compounds acting downstream of dystrophin, the protein lacking in DMD, on cellular pathways leading to pathological consequences. The author highlights the progress that may have the greatest potential for clinical use in DMD. RECENT FINDINGS Modifying the transcripts of the mutated gene by exon skipping has led to expression of shortened dystrophins in DMD patients. Currently, the most promising potential drugs are the exon-skipping agents eteplirsen and drisapersen. Biglycan and SMTC1100 upregulate utrophin. The steroid receptor modulating compounds VBP15 and tamoxifen, and specific antioxidants appear promising agents for symptomatic therapy. SUMMARY The past 18 months have seen a strong increase in the number of exciting reports on novel therapeutic agents for DMD. Exon-skipping agents have been fine-tuned to improve tissue delivery and stability. Impressive discoveries regarding pathogenic events in cellular signalling have revealed targets that were unknown in the context of DMD, thus enabling approaches that limit inflammation, fibrosis and necrosis. The targets are nuclear hormone receptors, NADPH-oxidases and Ca channels. Inhibition of NF-KB, transforming growth factor-alpha (TGF-α) and transforming growth factor-beta (TGF-β)/myostatin production or action are also promising routes in counteracting the complex pathogenesis of DMD.
Collapse
|
161
|
Abstract
Dystrophin and utrophin are highly similar proteins that both link cortical actin filaments with a complex of sarcolemmal glycoproteins, yet localize to different subcellular domains within normal muscle cells. In mdx mice and Duchenne muscular dystrophy patients, dystrophin is lacking and utrophin is consequently up-regulated and redistributed to locations normally occupied by dystrophin. Transgenic overexpression of utrophin has been shown to significantly improve aspects of the disease phenotype in the mdx mouse; therefore, utrophin up-regulation is under intense investigation as a potential therapy for Duchenne muscular dystrophy. Here we biochemically compared the previously documented microtubule binding activity of dystrophin with utrophin and analyzed several transgenic mouse models to identify phenotypes of the mdx mouse that remain despite transgenic utrophin overexpression. Our in vitro analyses revealed that dystrophin binds microtubules with high affinity and pauses microtubule polymerization, whereas utrophin has no activity in either assay. We also found that transgenic utrophin overexpression does not correct subsarcolemmal microtubule lattice disorganization, loss of torque production after in vivo eccentric contractions, or physical inactivity after mild exercise. Finally, our data suggest that exercise-induced inactivity correlates with loss of sarcolemmal neuronal NOS localization in mdx muscle, whereas loss of in vivo torque production after eccentric contraction-induced injury is associated with microtubule lattice disorganization.
Collapse
|
162
|
Lehto T, Castillo Alvarez A, Gauck S, Gait MJ, Coursindel T, Wood MJA, Lebleu B, Boisguerin P. Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Res 2013; 42:3207-17. [PMID: 24366877 PMCID: PMC3950666 DOI: 10.1093/nar/gkt1220] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyocytes. Our results indicate that Pip6a-PMO is taken up in the skeletal muscle cells by an energy- and caveolae-mediated endocytosis. Interestingly, its cellular distribution is different in undifferentiated and differentiated skeletal muscle cells (vesicular versus nuclear). Likewise, Pip6a-PMO mainly accumulates in cytoplasmic vesicles in primary cardiomyocytes, in which clathrin-mediated endocytosis seems to be the pre-dominant uptake pathway. These differences in cellular trafficking correspond well with the exon-skipping data, with higher activity in myotubes than in myoblasts or cardiomyocytes. These differences in cellular trafficking thus provide a possible mechanistic explanation for the variations in exon-skipping activity and restoration of dystrophin protein in heart muscle compared with skeletal muscle tissues in DMD models. Overall, Pip6a-PMO appears as the most efficient conjugate to date (low nanomolar EC50), even if limitations remain from endosomal escape.
Collapse
Affiliation(s)
- Taavi Lehto
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, Montpellier 34095, France, Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 Route de Mende, 34293 Montpellier, France, Universität Potsdam, Institut für Biochemie und Biologie, Maulbeerallee 2, 14469 Potsdam, Germany, Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK and Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
PURPOSE OF REVIEW With transition to the genetic era, the number of muscular dystrophies has grown significantly, but so too has our understanding of their pathogenic underpinnings. Clinical features associated with each muscular dystrophy still guide us to the diagnosis. However, improved diagnostic abilities refine and expand phenotypic and genotypic correlates. This article discusses the epidemiology, clinical features, and diagnosis of these disorders. RECENT FINDINGS Some important recent advancements include (1) a much greater understanding of the pathogenetic pathways underlying facioscapulohumeral muscular dystrophy and myotonic dystrophy type 1; (2) the publication of diagnostic and treatment guidelines for Duchenne muscular dystrophy; and (3) further clarification of the many genetic muscle disorders presenting a limb-girdle pattern of weakness. SUMMARY Muscular dystrophies are genetic, progressive, degenerative disorders with the primary symptom of muscle weakness. Duchenne, Becker, facioscapulohumeral, and myotonic muscular dystrophies are most prevalent and tend to have distinctive features helpful in diagnosis. The limb-girdle, Emery-Dreifuss, and oculopharyngeal muscular dystrophies are less common but often may also be diagnosed on the basis of phenotype. Researchers hope to help patients with future discoveries effective in slowing or halting disease progression, reversing or preventing underlying mechanisms, and repairing previously damaged muscle.
Collapse
|
164
|
|
165
|
Abstract
It is becoming increasingly clear that genomics is beginning to have a major impact in guiding diagnoses and treatment of many disorders. As the cost of DNA sequencing continues to drop and more patient genomes are sequenced, the challenge is to deliver this knowledge to the clinic, particularly in cancer. DNA sequencing of patients with rare disease is revealing novel druggable pathways for more common disorders. Genetic tools for treating disease are also advancing rapidly. Genetic approaches, thought to be pipedreams five years ago for diseases such as Duchenne muscular dystrophy, are now showing promise in clinical trials and many of these methodologies are being applied more widely for other diseases. The era of genomic medicine has arrived.
Collapse
|
166
|
Nilsson MI, Nissar AA, Al-Sajee D, Tarnopolsky MA, Parise G, Lach B, Fürst DO, van der Ven PFM, Kley RA, Hawke TJ. Xin is a marker of skeletal muscle damage severity in myopathies. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1703-1709. [PMID: 24225086 DOI: 10.1016/j.ajpath.2013.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 11/25/2022]
Abstract
Xin is a striated muscle-specific protein that is localized to the myotendinous junction in skeletal muscle. However, in injured mouse muscle, Xin expression is up-regulated and observed throughout skeletal muscle fibers and within satellite cells. In this study, Xin was analyzed by immunofluorescent staining in skeletal muscle samples from 47 subjects with various forms of myopathy, including muscular dystrophies, inflammatory myopathies, mitochondrial/metabolic myopathy, and endocrine myopathy. Results indicate that Xin immunoreactivity is positively and significantly correlated (rs = 0.6175, P = <0.0001) with the severity of muscle damage, regardless of myopathy type. Other muscle damage measures also showed a correlation with severity [Xin actin-binding repeat-containing 2 (rs = -0.7108, P = 0.0006) and collagen (rs = 0.4683, P = 0.0783)]. However, because only Xin lacked immunoreactivity within the healthy muscle belly, any detectable immunoreactivity for Xin was indicative of muscle damage. We also investigated the expression of Xin within the skeletal muscle of healthy individuals subjected to damaging eccentric exercise. Consistent with our previously mentioned results, Xin immunoreactivity was increased 24 hours after exercise in damaged muscle fibers and within the activated muscle satellite cells. Taken together, these data demonstrate Xin as a useful biomarker of muscle damage in healthy individuals and in patients with myopathy. The strong correlation between the degree of muscle damage and Xin immunoreactivity suggests that Xin may be a suitable outcome measure to evaluate disease progression and treatment effects in clinical trials.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Medicine and Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Aliyah A Nissar
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dhuha Al-Sajee
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Medicine and Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Boleslav Lach
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | - Rudolf A Kley
- Department of Neurology, Neuromuscular Centre Ruhrgebiet, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
167
|
Nguyen-Tran DH, Hait NC, Sperber H, Qi J, Fischer K, Ieronimakis N, Pantoja M, Hays A, Allegood J, Reyes M, Spiegel S, Ruohola-Baker H. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 2013; 7:41-54. [PMID: 24077965 PMCID: PMC3882047 DOI: 10.1242/dmm.013631] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.
Collapse
Affiliation(s)
- Diem-Hang Nguyen-Tran
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Bexiga MG, Simpson JC. Human diseases associated with form and function of the Golgi complex. Int J Mol Sci 2013; 14:18670-81. [PMID: 24025425 PMCID: PMC3794802 DOI: 10.3390/ijms140918670] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/09/2013] [Accepted: 09/03/2013] [Indexed: 11/16/2022] Open
Abstract
The Golgi complex lies at the heart of the secretory pathway and is responsible for modifying proteins and lipids, as well as sorting newly synthesized molecules to their correct destination. As a consequence of these important roles, any changes in its proteome can negatively affect its function and in turn lead to disease. Recently, a number of proteins have been identified, which when either depleted or mutated, result in diseases that affect various organ systems. Here we describe how these proteins have been linked to the Golgi complex, and specifically how they affect either the morphology, membrane traffic or glycosylation ability of this organelle.
Collapse
Affiliation(s)
| | - Jeremy C. Simpson
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +353-1-716-2345; Fax: +353-1-716-1153
| |
Collapse
|
169
|
Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E, Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aartsma-Rus A, Thirion C, Lochmüller H, Walter MC, Wolf E. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 2013; 22:4368-82. [PMID: 23784375 DOI: 10.1093/hmg/ddt287] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness and a maximum life span of 3 months due to respiratory impairment. Unlike human DMD patients, some DMD pigs die shortly after birth. To address the accelerated development of muscular dystrophy in DMD pigs when compared with human patients, we performed a genome-wide transcriptome study of biceps femoris muscle specimens from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good concordance with gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis and impaired metabolic activity. In contrast, the transcriptome profile of 2-day-old DMD pigs showed similarities with transcriptome changes induced by acute exercise muscle injury. Our studies provide new insights into early changes associated with dystrophin deficiency in a clinically severe animal model of DMD.
Collapse
|