151
|
Price HP, Hodgkinson MR, Wright MH, Tate EW, Smith BA, Carrington M, Stark M, Smith DF. A role for the vesicle-associated tubulin binding protein ARL6 (BBS3) in flagellum extension in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1178-91. [PMID: 22609302 PMCID: PMC3793860 DOI: 10.1016/j.bbamcr.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 04/23/2012] [Accepted: 05/05/2012] [Indexed: 11/17/2022]
Abstract
The small GTPase Arl6 is implicated in the ciliopathic human genetic disorder Bardet-Biedl syndrome, acting at primary cilia in recruitment of the octomeric BBSome complex, which is required for specific trafficking events to and from the cilium in eukaryotes. Here we describe functional characterisation of Arl6 in the flagellated model eukaryote Trypanosoma brucei, which requires motility for viability. Unlike human Arl6 which has a ciliary localisation, TbARL6 is associated with electron-dense vesicles throughout the cell body following co-translational modification by N-myristoylation. Similar to the related protein ARL-3A in T. brucei, modulation of expression of ARL6 by RNA interference does not prevent motility but causes a significant reduction in flagellum length. Tubulin is identified as an ARL6 interacting partner, suggesting that ARL6 may act as an anchor between vesicles and cytoplasmic microtubules. We provide evidence that the interaction between ARL6 and the BBSome is conserved in unicellular eukaryotes. Overexpression of BBS1 leads to translocation of endogenous ARL6 to the site of exogenous BBS1 at the flagellar pocket. Furthermore, a combination of BBS1 overexpression and ARL6 RNAi has a synergistic inhibitory effect on cell growth. Our findings indicate that ARL6 in trypanosomes contributes to flagellum biogenesis, most likely through an interaction with the BBSome.
Collapse
Key Words
- arf, adp-ribosylation factor
- arl, adp-ribosylation factor-like
- arl6ip, arl6 interacting protein
- bbs, bardet–biedl syndrome
- bbs1, bardet–biedl syndrome 1 protein
- bsf, bloodstream form
- cona, concanavalin a
- gef, guanine nucleotide exchange factor
- gpcr, g-protein coupled receptor
- hrg4, human retinal gene 4
- ift, intraflagellar transport
- itc, isothermal titration calorimetry
- mant, n-methylanthraniloyl
- map2, microtubule associated protein 2
- nes, nuclear export signal
- nls, nuclear localisation signal
- nmt, myristoyl-coa:protein n-myristoyltransferase
- pcf, procyclic form
- pcm1, pericentriolar material 1
- pfr, paraflagellar rod
- pm, plasma membrane
- rnai, rna interference
- rp2, retinitis pigmentosa protein 2
- tap, tandem affinity purification
- tiem, transmission immuno-electron microscopy
- trypanosoma brucei
- arl6
- bbsome
- bbs1
- flagellum
- tubulin
Collapse
Affiliation(s)
- Helen P Price
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5YW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proc Natl Acad Sci U S A 2012; 109:10996-1001. [PMID: 22711816 DOI: 10.1073/pnas.1202885109] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
African trypanosomes cause sleeping sickness in humans, a disease that is typically fatal without chemotherapy. Unfortunately, drug resistance is common and melarsoprol-resistant trypanosomes often display cross-resistance to pentamidine. Although melarsoprol/pentamidine cross-resistance (MPXR) has been an area of intense interest for several decades, our understanding of the underlying mechanisms remains incomplete. Recently, a locus encoding two closely related aquaglyceroporins, AQP2 and AQP3, was linked to MPXR in a high-throughput loss-of-function screen. Here, we show that AQP2 has an unconventional "selectivity filter." AQP2-specific gene knockout generated MPXR trypanosomes but did not affect resistance to a lipophilic arsenical, whereas recombinant AQP2 reversed MPXR in cells lacking native AQP2 and AQP3. AQP2 was also shown to be disrupted in a laboratory-selected MPXR strain. Both AQP2 and AQP3 gained access to the surface plasma membrane in insect life-cycle-stage trypanosomes but, remarkably, AQP2 was specifically restricted to the flagellar pocket in the bloodstream stage. We conclude that the unconventional aquaglyceroporin, AQP2, renders cells sensitive to both melarsoprol and pentamidine and that loss of AQP2 function could explain cases of innate and acquired MPXR.
Collapse
|
153
|
Abstract
The African trypanosome Trypanosoma brucei is a flagellated unicellular parasite transmitted by tsetse flies that causes African sleeping sickness in sub-Saharan Africa. Trypanosomes are highly adapted for life in the hostile environment of the mammalian bloodstream, and have various adaptations to their cell biology that facilitate immune evasion. These include a specialized morphology, with most nutrient uptake occurring in the privileged location of the flagellar pocket. In addition, trypanosomes show extremely high rates of recycling of a protective VSG (variant surface glycoprotein) coat, whereby host antibodies are stripped off of the VSG before it is re-used. VSG recycling therefore functions as a mechanism for cleaning the VSG coat, allowing trypanosomes to survive in low titres of anti-VSG antibodies. Lastly, T. brucei has developed an extremely sophisticated strategy of antigenic variation of its VSG coat allowing it to evade host antibodies. A single trypanosome has more than 1500 VSG genes, most of which are located in extensive silent arrays. Strikingly, most of these silent VSGs are pseudogenes, and we are still in the process of trying to understand how non-intact VSGs are recombined to produce genes encoding functional coats. Only one VSG is expressed at a time from one of approximately 15 telomeric VSG ES (expression site) transcription units. It is becoming increasingly clear that chromatin remodelling must play a critical role in ES control. Hopefully, a better understanding of these unique trypanosome adaptations will eventually allow us to disrupt their ability to multiply in the mammalian bloodstream.
Collapse
|
154
|
Andersson ER. The role of endocytosis in activating and regulating signal transduction. Cell Mol Life Sci 2012; 69:1755-71. [PMID: 22113372 PMCID: PMC11114983 DOI: 10.1007/s00018-011-0877-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023]
Abstract
Endocytosis is increasingly understood to play crucial roles in most signaling pathways, from determining which signaling components are activated, to how the signal is subsequently transduced and/or terminated. Whether a receptor-ligand complex is internalized via a clathrin-dependent or clathrin-independent endocytic route, and the complexes' subsequent trafficking through specific endocytic compartments, to then be recycled or degraded, has profound effects on signaling output. This review discusses the roles of endocytosis in three markedly different signaling pathways: the Wnt, Notch, and Eph/Ephrin pathways. These offer fundamentally different signaling systems: (1) diffusible ligands inducing signaling in one cell, (2) membrane-tethered ligands inducing signaling in a contacting receptor cell, and (3) bi-directional receptor-ligand signaling in two contacting cells. In each of these systems, endocytosis controls signaling in fascinating ways, and comparison of their similarities and dissimilarities will help to expand our understanding of endocytic control of signal transduction across multiple signaling pathways.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77, Stockholm, Sweden.
| |
Collapse
|
155
|
Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Rev Mol Med 2012; 14:e13. [PMID: 22640744 DOI: 10.1017/erm.2012.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of gene expression, and more significantly gene cohorts, requires tight transcriptional coordination and is an essential feature of probably all cells. In higher eukaryotes, the mechanisms used involve controlled modifications to both local and global DNA environments, principally through changes in chromatin structure as well as cis-element-driven mechanisms. Although the mechanisms regulating chromatin in terms of transcriptional permissiveness and the relation to developmental programmes and responses to the environment are becoming better understood for animal and fungal cells, it is only just beginning to become clear how these processes operate in other taxa, including the trypanosomatids. Recent advances are now illuminating how African trypanosomes regulate higher-order chromatin structure, and, further, how these mechanisms impact on the expression of major surface antigens that are of fundamental importance to life-cycle progression. It is now apparent that several mechanisms are rather more similar between animal and fungal cells and trypanosomes than it originally appeared, but some aspects do involve gene products unique to trypanosomes. Therefore, both evolutionarily common and novel mechanisms cohabit in trypanosomes, offering both important biological insights and possible therapeutic opportunity.
Collapse
|
156
|
Morrison LS, Goundry A, Faria MS, Tetley L, Eschenlauer SC, Westrop GD, Dostalova A, Volf P, Coombs GH, Lima APCA, Mottram JC. Ecotin-like serine peptidase inhibitor ISP1 of Leishmania major plays a role in flagellar pocket dynamics and promastigote differentiation. Cell Microbiol 2012; 14:1271-86. [PMID: 22486816 PMCID: PMC3440592 DOI: 10.1111/j.1462-5822.2012.01798.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Leishmania ISPs are ecotin-like natural peptide inhibitors of trypsin-family serine peptidases, enzymes that are absent from the Leishmania genome. This led to the proposal that ISPs inhibit host serine peptidases and we have recently shown that ISP2 inhibits neutrophil elastase, thereby enhancing parasite survival in murine macrophages. In this study we show that ISP1 has less serine peptidase inhibitory activity than ISP2, and in promastigotes both are generally located in the cytosol and along the flagellum. However, in haptomonad promastigotes there is a prominent accumulation of ISP1 and ISP2 in the hemidesmosome and for ISP2 on the cell surface. An L. major mutant deficient in all three ISP genes (Δisp1/2/3) was generated and compared with Δisp2/3 mutants to elucidate the physiological role of ISP1. In in vitro cultures, the Δisp1/2/3 mutant contained more haptomonad, nectomonad and leptomonad promastigotes with elongated flagella and reduced motility compared with Δisp2/3 populations, moreover it was characterized by very high levels of release of exosome-like vesicles from the flagellar pocket. These data suggest that ISP1 has a primary role in flagellar homeostasis, disruption of which affects differentiation and flagellar pocket dynamics.
Collapse
Affiliation(s)
- Lesley S Morrison
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
La Greca F, Magez S. Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? HUMAN VACCINES 2012; 7:1225-33. [PMID: 22205439 PMCID: PMC3323498 DOI: 10.4161/hv.7.11.18203] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To date, human African trypanosomiasis (HAT) still threatens millions of people throughout sub-Sahara Africa, and new approaches to disease prevention and treatment remain a priority. It is commonly accepted that HAT is fatal unless treatment is provided. However, despite the well-described general symptoms of disease progression during distinct stages of the infection, leading to encephalitic complications, coma and death, a substantial body of evidence has been reported suggesting that natural acquired immunity could occur. Hence, if under favorable conditions natural infections can lead to correct immune activation and immune protection against HAT, the development of an effective anti-HAT vaccine should remain a central goal in the fight against this disease.<br />
In this review, we will (1) discuss the vaccine candidates that have been proposed over the past years, (2) highlight the main obstacles that an efficient anti-trypanosomiasis vaccine needs to overcome and (3) critically reflect on the validity of the widely used murine model for HAT.
Collapse
Affiliation(s)
- Florencia La Greca
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
158
|
Seke Etet PF, Mahomoodally MF. New insights in staging and chemotherapy of African trypanosomiasis and possible contribution of medicinal plants. ScientificWorldJournal 2012; 2012:343652. [PMID: 22593674 PMCID: PMC3349134 DOI: 10.1100/2012/343652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Human African trypanosomiasis (HAT) is a fatal if untreated fly-borne neuroinflammatory disease caused by protozoa of the species Trypanosoma brucei (T.b.). The increasing trend of HAT cases has been reversed, but according to WHO experts, new epidemics of this disease could appear. In addition, HAT is still a considerable burden for life quality and economy in 36 sub-Saharan Africa countries with 15-20 million persons at risk. Following joined initiatives of WHO and private partners, the fight against HAT was re-engaged, resulting in considerable breakthrough. We present here what is known at this day about HAT etiology and pathogenesis and the new insights in the development of accurate tools and tests for disease staging and severity monitoring in the field. Also, we elaborate herein the promising progresses made in the development of less toxic and more efficient trypanocidal drugs including the potential of medicinal plants and related alternative drug therapies.
Collapse
Affiliation(s)
- Paul F Seke Etet
- Department of Neurological Sciences (DNNMMS), University of Verona, Via Delle Grazie 8, 37134 Verona, Italy
| | | |
Collapse
|
159
|
NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 2012; 10:e1001287. [PMID: 22479148 PMCID: PMC3313915 DOI: 10.1371/journal.pbio.1001287] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022] Open
Abstract
NUP1, the first example of a nuclear lamin analog in nonmetazoans, performs roles similar to those of lamins in maintaining the structure and organization of the nucleus in Trypanosoma brucei. A unifying feature of eukaryotic nuclear organization is genome segregation into transcriptionally active euchromatin and transcriptionally repressed heterochromatin. In metazoa, lamin proteins preserve nuclear integrity and higher order heterochromatin organization at the nuclear periphery, but no non-metazoan lamin orthologues have been identified, despite the likely presence of nucleoskeletal elements in many lineages. This suggests a metazoan-specific origin for lamins, and therefore that distinct protein elements must compose the nucleoskeleton in other lineages. The trypanosomatids are highly divergent organisms and possess well-documented but remarkably distinct mechanisms for control of gene expression, including polycistronic transcription and trans-splicing. NUP-1 is a large protein localizing to the nuclear periphery of Trypanosoma brucei and a candidate nucleoskeletal component. We sought to determine if NUP-1 mediates heterochromatin organization and gene regulation at the nuclear periphery by examining the influence of NUP-1 knockdown on morphology, chromatin positioning, and transcription. We demonstrate that NUP-1 is essential and part of a stable network at the inner face of the trypanosome nuclear envelope, since knockdown cells have abnormally shaped nuclei with compromised structural integrity. NUP-1 knockdown also disrupts organization of nuclear pore complexes and chromosomes. Most significantly, we find that NUP-1 is required to maintain the silenced state of developmentally regulated genes at the nuclear periphery; NUP-1 knockdown results in highly specific mis-regulation of telomere-proximal silenced variant surface glycoprotein (VSG) expression sites and procyclin loci, indicating a disruption to normal chromatin organization essential to life-cycle progression. Further, NUP-1 depletion leads to increased VSG switching and therefore appears to have a role in control of antigenic variation. Thus, analogous to vertebrate lamins, NUP-1 is a major component of the nucleoskeleton with key roles in organization of the nuclear periphery, heterochromatin, and epigenetic control of developmentally regulated loci. Eukaryotes—fungi, plants, animals, and many unicellular organisms—are defined by the presence of a cell nucleus that contains the chromosomes and is enveloped by a lipid membrane lined on the inner face with a protein network called the lamina. Among other functions, the lamina serves as an anchorage site for the ends of chromosomes. In multicellular animals (metazoa), the lamina comprises a few related proteins called lamins, which are very important for many functions related to the nucleus; abnormal lamins result in multiple nuclear defects and diseases, including inappropriate gene expression and premature aging. Until now, however, lamins had been found only in metazoa; no protein of equivalent function had been identified in plants, fungi, or unicellular organisms. Here, we describe a protein from African trypanosomes—the single-cell parasites that cause sleeping sickness—that fulfils many lamin-like roles, including maintaining nuclear structure and organizing the chromosomes of this organism. We show that this protein, which we call NUP-1 for nuclear periphery protein-1, is vital for the antigenic variation mechanisms that allow the parasite to escape the host immune response. We propose that NUP-1 is a lamin analogue that performs similar functions in trypanosomes to those of authentic lamins in metazoa. These findings, we believe, have important implications for understanding the evolution of the nucleus.
Collapse
|
160
|
Characterization of a Trypanosoma brucei Alkb homolog capable of repairing alkylated DNA. Exp Parasitol 2012; 131:92-100. [PMID: 22465611 DOI: 10.1016/j.exppara.2012.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/29/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
Abstract
Trypanosoma brucei encodes a protein (denoted TbABH) that is homologous to AlkB of Escherichia coli and AlkB homolog (ABH) proteins in other organisms, raising the possibility that trypanosomes catalyze oxidative repair of alkylation-damaged DNA. TbABH was cloned and expressed in E. coli, and the recombinant protein was purified and characterized. Incubation of anaerobic TbABH with Fe(II) and α-ketoglutarate (αKG) produces a characteristic metal-to-ligand charge-transfer chromophore, confirming its membership in the Fe(II)/αKG dioxygenase superfamily. The protein binds to DNA, with a clear preference for alkylated oligonucleotides according to results derived by electrophoretic mobility shift assays. Finally, the protozoan gene was shown to partially complement E. coli alkB cells when stressed with methylmethanesulfonate; thus confirming assignment of TbABH as a functional AlkB protein in T. brucei.
Collapse
|
161
|
Ikeda KN, de Graffenried CL. Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei. J Cell Sci 2012; 125:3173-84. [PMID: 22427687 DOI: 10.1242/jcs.101162] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinases play an important role in a variety of mitotic events in mammalian cells, ranging from centriole separation and chromosome congression to abscission. To fulfill these roles, Polo-like kinase homologs move to different cellular locations as the cell cycle progresses, starting at the centrosome, progressing to the spindle poles and then the midbody. In the protist parasite Trypanosoma brucei, the single polo-like kinase homolog T. brucei PLK (TbPLK) is essential for cytokinesis and is necessary for the correct duplication of a centrin-containing cytoskeletal structure known as the bilobe. We show that TbPLK has a dynamic localization pattern during the cell cycle. The kinase localizes to the basal body, which nucleates the flagellum, and then successively localizes to a series of cytoskeletal structures that regulate the position and attachment of the flagellum to the cell body. The kinase localizes to each of these structures as they are duplicating. TbPLK associates with a specialized set of microtubules, known as the microtubule quartet, which might transport the kinase during its migration. Depletion of TbPLK causes defects in basal body segregation and blocks the duplication of the regulators that position the flagellum, suggesting that its presence on these structures might be necessary for their proper biogenesis. TbPLK migrates throughout the cell in T. brucei, but the specific locations to which it targets and its functions are geared towards the inheritance of a properly positioned and attached flagellum.
Collapse
Affiliation(s)
- Kyojiro N Ikeda
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Vienna, Austria
| | | |
Collapse
|
162
|
|
163
|
Miranda MR, Sayé M, Bouvier LA, Cámara MDLM, Montserrat J, Pereira CA. Cationic amino acid uptake constitutes a metabolic regulation mechanism and occurs in the flagellar pocket of Trypanosoma cruzi. PLoS One 2012; 7:e32760. [PMID: 22393446 PMCID: PMC3290608 DOI: 10.1371/journal.pone.0032760] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/30/2012] [Indexed: 12/31/2022] Open
Abstract
Trypanosomatids' amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a 100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease (TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls. Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of the plasma membrane named flagellar pocket, staining a single locus close to the flagellar pocket collar. Taken together these data suggest that arginine transport is closely related to arginine metabolism and cell energy balance. The clinical relevance of studying trypanosomatids' permeases relies on the possibility of using these molecules as a route of entry of therapeutic drugs.
Collapse
Affiliation(s)
- Mariana R. Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas “Alfredo Lanari”, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Melisa Sayé
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas “Alfredo Lanari”, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - León A. Bouvier
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas “Alfredo Lanari”, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - María de los Milagros Cámara
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas “Alfredo Lanari”, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Javier Montserrat
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| | - Claudio A. Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas “Alfredo Lanari”, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
164
|
Kaplan OI, Doroquez DB, Cevik S, Bowie RV, Clarke L, Sanders AAWM, Kida K, Rappoport JZ, Sengupta P, Blacque OE. Endocytosis genes facilitate protein and membrane transport in C. elegans sensory cilia. Curr Biol 2012; 22:451-60. [PMID: 22342749 DOI: 10.1016/j.cub.2012.01.060] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 12/16/2011] [Accepted: 01/27/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Multiple intracellular transport pathways drive the formation, maintenance, and function of cilia, a compartmentalized organelle associated with motility, chemo-/mechano-/photosensation, and developmental signaling. These pathways include cilium-based intraflagellar transport (IFT) and poorly understood membrane trafficking events. Defects in ciliary transport contribute to the etiology of human ciliary disease such as Bardet-Biedl syndrome (BBS). In this study, we employ the genetically tractable nematode Caenorhabditis elegans to investigate whether endocytosis genes function in cilium formation and/or the transport of ciliary membrane or ciliary proteins. RESULTS Here we show that localization of the clathrin light chain, AP-2 clathrin adaptor, dynamin, and RAB-5 endocytic proteins overlaps with a morphologically discrete periciliary membrane compartment associated with sensory cilia. In addition, ciliary transmembrane proteins such as G protein-coupled receptors concentrate at periciliary membranes. Disruption of endocytic gene function causes expansion of ciliary and/or periciliary membranes as well as defects in the ciliary targeting and/or transport dynamics of ciliary transmembrane and IFT proteins. Finally, genetic analyses reveal that the ciliary membrane expansions in dynamin and AP-2 mutants require bbs-8 and rab-8 function and that sensory signaling and endocytic genes may function in a common pathway to regulate ciliary membrane volume. CONCLUSIONS These data implicate C. elegans endocytosis proteins localized at the ciliary base in regulating ciliary and periciliary membrane volume and suggest that membrane retrieval from these compartments is counterbalanced by BBS-8 and RAB-8-mediated membrane delivery.
Collapse
Affiliation(s)
- Oktay I Kaplan
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Mol Biochem Parasitol 2012; 181:61-72. [PMID: 22019385 DOI: 10.1016/j.molbiopara.2011.10.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/25/2022]
|
166
|
Konno A, Setou M, Ikegami K. Ciliary and flagellar structure and function--their regulations by posttranslational modifications of axonemal tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:133-70. [PMID: 22364873 DOI: 10.1016/b978-0-12-394305-7.00003-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved microtubule-based organelles protruding from the cell surface. They perform dynein-driven beating which contributes to cell locomotion or flow generation. They also play important roles in sensing as cellular antennae, which allows cells to respond to various external stimuli. The main components of cilia and flagella, α- and β-tubulins, are known to undergo various posttranslational modifications (PTMs), including phosphorylation, palmitoylation, tyrosination/detyrosination, Δ2 modification, acetylation, glutamylation, and glycylation. Recent identification of tubulin-modifying enzymes, especially tubulin tyrosine ligase-like proteins which perform tubulin glutamylation and glycylation, has demonstrated the importance of tubulin modifications for the assembly and functions of cilia and flagella. In this chapter, we review recent work on PTMs of ciliary and flagellar tubulins in conjunction with discussing the basic knowledge.
Collapse
Affiliation(s)
- Alu Konno
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | |
Collapse
|
167
|
Diamine and aminoalcohol derivatives active against Trypanosoma brucei. Bioorg Med Chem Lett 2012; 22:440-3. [DOI: 10.1016/j.bmcl.2011.10.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 12/18/2022]
|
168
|
Lumb JH, Leung KF, DuBois KN, Field MC. Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. J Cell Sci 2011; 124:3771-83. [PMID: 22100919 PMCID: PMC3225266 DOI: 10.1242/jcs.079178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2011] [Indexed: 01/31/2023] Open
Abstract
Early endosomal cargo is typically targeted to either a degradative or recycling pathway. Despite established functions for the retromer and ESCRT complexes at late endosomes/multivesicular bodies, the mechanisms integrating and coordinating these functions remain largely unknown. Rab family GTPases are key membrane trafficking organizers and could contribute. Here, in the unicellular organism Trypanosoma brucei, we demonstrate that Rab28 locates to the endosomal pathway and partially colocalizes with Vps23, an ESCRT I component. Rab28 is required for turnover of endocytosed proteins and for lysosomal delivery of protein cargo. Using RNA interference we find that in Rab28-depleted cells, protein levels of ESCRT I (Vps23/28) and retromer (Vps26) are also decreased, suggesting that Rab28 is an important regulator of these factors. We suggest that Rab28 coordinates the activity of retromer-dependent trafficking and ESCRT-mediated degradative pathways.
Collapse
Affiliation(s)
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Kelly N. DuBois
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
169
|
Silverman JS, Schwartz KJ, Hajduk SL, Bangs JD. Late endosomal Rab7 regulates lysosomal trafficking of endocytic but not biosynthetic cargo in Trypanosoma brucei. Mol Microbiol 2011; 82:664-78. [PMID: 21923766 DOI: 10.1111/j.1365-2958.2011.07842.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present the first functional analysis of the small GTPase, TbRab7, in Trypanosoma brucei. TbRab7 defines discrete late endosomes closely juxtaposed to the terminal p67(+) lysosome. RNAi indicates that TbRab7 is essential in bloodstream trypanosomes. Initial rates of endocytosis were unaffected, but lysosomal delivery of cargo, including tomato lectin (TL) and trypanolytic factor (TLF) were blocked. These accumulate in a dispersed internal compartment of elevated pH, likely derived from the late endosome. Surface binding of TL but not TLF was reduced, suggesting that cellular distribution of flagellar pocket receptors is differentially regulated by TbRab7. TLF activity was reduced approximately threefold confirming that lysosomal delivery is critical for trypanotoxicity. Unexpectedly, delivery of endogenous proteins, p67 and TbCatL, were unaffected indicating that TbRab7 does not regulate biosynthetic lysosomal trafficking. Thus, unlike mammalian cells and yeast, lysosomal trafficking of endocytosed and endogenous proteins occur via different routes and/or are regulated differentially. TbRab7 silencing had no effect on a cryptic default pathway to the lysosome, suggesting that the default lysosomal reporters p67ΔTM, p67ΔCD and VSGΔGPI do not utilize the endocytic pathway as previously proposed. Surprisingly, conditional knockout indicates that TbRab7 may be non-essential in procyclic insect form trypanosomes.
Collapse
Affiliation(s)
- Jason S Silverman
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
170
|
Koumandou VL, Klute MJ, Herman EK, Nunez-Miguel R, Dacks JB, Field MC. Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J Cell Sci 2011; 124:1496-509. [PMID: 21502137 DOI: 10.1242/jcs.081596] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular trafficking and protein sorting are mediated by various protein complexes, with the retromer complex being primarily involved in retrograde traffic from the endosome or lysosome to the Golgi complex. Here, comparative genomics, cell biology and phylogenetics were used to probe the early evolution of retromer and its function. Retromer subunits Vps26, Vps29 and Vps35 are near universal, and, by inference, the complex was an ancient feature of eukaryotic cells. Surprisingly, we found DSCR3, a Vps26 paralogue in humans associated with Down's syndrome, in at least four eukaryotic supergroups, implying a more ancient origin than previously suspected. By contrast, retromer cargo proteins showed considerable interlineage variability, with lineage-specific and broadly conserved examples found. Vps10 trafficking probably represents an ancestral role for the complex. Vps5, the BAR-domain-containing membrane-deformation subunit, was found in diverse eukaryotes, including in the divergent eukaryote Trypanosoma brucei, where it is the first example of a BAR-domain protein. To determine functional conservation, an initial characterisation of retromer was performed in T. brucei; the endosomal localisation and its role in endosomal targeting are conserved. Therefore retromer is identified as a further feature of the sophisticated intracellular trafficking machinery of the last eukaryotic common ancestor, with BAR domains representing a possible third independent mechanism of membrane-deformation arising in early eukaryotes.
Collapse
Affiliation(s)
- V Lila Koumandou
- Department of Pathology, University of Cambridge, Cambridge CB2 1QT, UK
| | | | | | | | | | | |
Collapse
|
171
|
Gadelha C, Holden JM, Allison HC, Field MC. Specializations in a successful parasite: what makes the bloodstream-form African trypanosome so deadly? Mol Biochem Parasitol 2011; 179:51-8. [PMID: 21763356 DOI: 10.1016/j.molbiopara.2011.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/24/2022]
Abstract
Most trypanosomatid parasites have both arthropod and mammalian or plant hosts, and the ability to survive and complete a developmental program in each of these very different environments is essential for life cycle progression and hence being a successful pathogen. For African trypanosomes, where the mammalian stage is exclusively extracellular, this presents specific challenges and requires evasion of both the acquired and innate immune systems, together with adaptation to a specific nutritional environment and resistance to mechanical and biochemical stresses. Here we consider the basis for these adaptations, the specific features of the mammalian infective trypanosome that are required to meet these challenges, and how these processes both inform on basic parasite biology and present potential therapeutic targets.
Collapse
|
172
|
Dimitriadis D, Koumandou VL, Trimpalis P, Kossida S. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis. BMC Evol Biol 2011; 11:193. [PMID: 21729286 PMCID: PMC3155505 DOI: 10.1186/1471-2148-11-193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 07/05/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. RESULTS In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. CONCLUSIONS This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.
Collapse
|
173
|
Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 2011; 10:M111.010538. [PMID: 21685506 DOI: 10.1074/mcp.m111.010538] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.
Collapse
Affiliation(s)
- Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Stijlemans B, Caljon G, Natesan SKA, Saerens D, Conrath K, Pérez-Morga D, Skepper JN, Nikolaou A, Brys L, Pays E, Magez S, Field MC, De Baetselier P, Muyldermans S. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog 2011; 7:e1002072. [PMID: 21698216 PMCID: PMC3116811 DOI: 10.1371/journal.ppat.1002072] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/04/2011] [Indexed: 11/19/2022] Open
Abstract
The African trypanosome Trypanosoma brucei, which persists within the bloodstream of the mammalian host, has evolved potent mechanisms for immune evasion. Specifically, antigenic variation of the variant-specific surface glycoprotein (VSG) and a highly active endocytosis and recycling of the surface coat efficiently delay killing mediated by anti-VSG antibodies. Consequently, conventional VSG-specific intact immunoglobulins are non-trypanocidal in the absence of complement. In sharp contrast, monovalent antigen-binding fragments, including 15 kDa nanobodies (Nb) derived from camelid heavy-chain antibodies (HCAbs) recognizing variant-specific VSG epitopes, efficiently lyse trypanosomes both in vitro and in vivo. This Nb-mediated lysis is preceded by very rapid immobilisation of the parasites, massive enlargement of the flagellar pocket and major blockade of endocytosis. This is accompanied by severe metabolic perturbations reflected by reduced intracellular ATP-levels and loss of mitochondrial membrane potential, culminating in cell death. Modification of anti-VSG Nbs through site-directed mutagenesis and by reconstitution into HCAbs, combined with unveiling of trypanolytic activity from intact immunoglobulins by papain proteolysis, demonstrates that the trypanolytic activity of Nbs and Fabs requires low molecular weight, monovalency and high affinity. We propose that the generation of low molecular weight VSG-specific trypanolytic nanobodies that impede endocytosis offers a new opportunity for developing novel trypanosomiasis therapeutics. In addition, these data suggest that the antigen-binding domain of an anti-microbial antibody harbours biological functionality that is latent in the intact immunoglobulin and is revealed only upon release of the antigen-binding fragment. Haemoparasites, such as African trypanosomes, have developed potent immune evasion mechanisms to avoid antibody-mediated elimination. Consequently, trypanosome surface antigen-specific immunoglobulins in the absence of complement are non-trypanocidal. In contrast, certain monovalent nanobodies (Nb), monomeric antigen-binding domains derived from camelid Heavy-Chain Antibodies (HCAb) and which have a much lower molecular weight (15 kDa) than classical antibodies (150 kDa), efficiently lyse trypanosomes both in vitro and in vivo. This is surprising as classically immunoglobulin effector functions are mediated via the Fc-domain, which is absent from the Nb. We demonstrate that the Nb-mediated trypanolysis depends on the low molecular weight, monovalency and high affinity and is associated with loss of motility, a major block to endocytosis, energy depletion and cell death. Overall, targeting the parasite surface with low molecular weight, high affinity Nbs is sufficient to exert a direct therapeutic action. Therefore, the exploitation of Nbs against African trypanosomiasis represents a novel therapeutic strategy. Furthermore, demonstration that a high affinity antigen-binding Nb or Fab fragment lacking an effector domain (i.e., Fc-domain or an attached toxin) can exert a direct biological function, suggests that intact antibodies likely harbour latent functionality which only become revealed upon removal of the Fc-domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/pharmacology
- Antibodies, Protozoan/therapeutic use
- Antibody Affinity
- Cells, Cultured
- Down-Regulation/drug effects
- Endocytosis/drug effects
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Nanoparticles
- Trypanocidal Agents/pharmacology
- Trypanocidal Agents/therapeutic use
- Trypanosoma brucei brucei/immunology
- Trypanosoma brucei brucei/metabolism
- Trypanosoma brucei brucei/physiology
- Trypanosoma brucei brucei/ultrastructure
- Trypanosomiasis, African/immunology
- Trypanosomiasis, African/metabolism
- Trypanosomiasis, African/therapy
- Variant Surface Glycoproteins, Trypanosoma/immunology
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Lumb JH, Field MC. Rab23 is a flagellar protein in Trypanosoma brucei. BMC Res Notes 2011; 4:190. [PMID: 21676215 PMCID: PMC3138460 DOI: 10.1186/1756-0500-4-190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/15/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rab small GTPases are important mediators of membrane transport, and orthologues frequently retain similar locations and functions, even between highly divergent taxa. In metazoan organisms Rab23 is an important negative regulator of Sonic hedgehog signaling and is crucial for correct development and differentiation of cellular lineages by virtue of an involvement in ciliary recycling. Previously, we reported that Trypanosoma brucei Rab23 localized to the nuclear envelope 1, which is clearly inconsistent with the mammalian location and function. As T. brucei is unicellular the potential that Rab23 has no role in cell signaling was possible. Here we sought to further investigate the role(s) of Rab23 in T. brucei to determine if Rab23 was an example of a Rab protein with divergent function in distinct taxa. METHODS/MAJOR FINDINGS The taxonomic distribution of Rab23 was examined and compared with the presence of flagella/cilia in representative taxa. Despite evidence for considerable secondary loss, we found a clear correlation between a conventional flagellar structure and the presence of a Rab23 orthologue in the genome. By epitope-tagging, Rab23 was localized and found to be present at the flagellum throughout the cell cycle. However, RNAi knockdown did not result in a flagellar defect, suggesting that Rab23 is not required for construction or maintenance of the flagellum. CONCLUSIONS The location of Rab23 at the flagellum is conserved between mammals and trypanosomes and the Rab23 gene is restricted to flagellated organisms. These data may suggest the presence of a Rab23-mediated signaling mechanism in trypanosomes.
Collapse
Affiliation(s)
- Jennifer H Lumb
- Cambridge Institute for Medical Research, MRC/Wellcome Trust building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.
| | | |
Collapse
|
176
|
Abstract
The PC (primary cilium) is present on most cell types in both developing and adult tissues in vertebrates. Despite multiple reports in the 1960s, the PC was almost forgotten for decades by most of the cell biology community, mainly because its function appeared enigmatic. This situation changed 10 years ago with the key discovery that this fascinating structure is the missing link between complex genetic diseases and key signalling pathways during development and tissue homoeostasis. A similar misfortune might have happened to an original membrane domain found at the base of PC in most cell types and recently termed the 'ciliary pocket'. A morphologically related structure has also been described at the connecting cilium of photoreceptors and at the flagellum in spermatids. Its organization is also reminiscent of the flagellar pocket, a plasma membrane invagination specialized in uptake and secretion encountered in kinetoplastid protozoa. The exact function of the ciliary pocket remains to be established, but the recent observation of endocytic activity coupled to the fact that vesicular trafficking plays important roles during ciliogenesis brought excitement in the ciliary community. Here, we have tried to decipher what this highly conserved membrane domain could tell us about the function and/or biogenesis of the associated cilium.
Collapse
|
177
|
Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes. EUKARYOTIC CELL 2011; 10:916-31. [PMID: 21571921 DOI: 10.1128/ec.05012-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cell surface of Trypanosoma brucei is dominated by the glycosylphosphatidylinositol-anchored variant surface glycoprotein (VSG), which is essential for immune evasion. VSG biosynthesis, trafficking, and turnover are well documented, but trans-membrane domain (TMD) proteins, including the invariant surface glycoproteins (ISGs), are less well characterized. Internalization and degradation of ISG65 depend on ubiquitylation of conserved cytoplasmic lysines. Using epitope-tagged ISG75 and reporter chimeric proteins bearing the cytoplasmic and trans-membrane regions of ISG75, together with multiple mutants with lysine-to-arginine mutations, we demonstrate that the cytoplasmic tail of ISG75 is both sufficient and necessary for endosomal targeting and degradation. The ISG75 chimeric reporter protein localized to endocytic organelles, while lysine-null versions were significantly stabilized at the cell surface. Importantly, ISG75 cytoplasmic lysines are modified by extensive oligoubiquitin chains and ubiquitylation is abolished in the lysine-null version. Furthermore, we find evidence for differential modes of turnover of ISG65 and ISG75. Full-length lysine-null ISG65 localization and protein turnover are significantly perturbed, but ISG75 localization and protein turnover are not, while ubiquitin conjugates can be detected for full-length lysine-null ISG75 but not ISG65. We find that the ISG75 ectodomain has a predicted coiled-coil, suggesting that ISG75 could be part of a complex, while ISG65 behaves independently. We also demonstrate a developmental stage-specific mechanism for exclusion of surface ISG expression in insect-stage cells by a ubiquitin-independent mechanism. We suggest that ubiquitylation may be a general mechanism for regulating trans-membrane domain surface proteins in trypanosomes.
Collapse
|
178
|
Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: a rational approach to select vaccine candidates. PLoS Negl Trop Dis 2011; 5:e993. [PMID: 21468311 PMCID: PMC3066142 DOI: 10.1371/journal.pntd.0000993] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background The membrane-associated and membrane-spanning constituents of the Schistosoma mansoni tegument surface, the parasite's principal interface with the host bloodstream, have recently been characterized using proteomic techniques. Biotinylation of live worms using membrane-impermeant probes revealed that only a small subset of the proteins was accessible to the reagents. Their position within the multilayered architecture of the surface has not been ascertained. Methodology/Principal Findings An enzymatic shaving approach on live worms has now been used to release the most accessible components, for analysis by MS/MS. Treatment with trypsin, or phosphatidylinositol-specific phospholipase C (PiPLC), only minimally impaired membrane integrity. PiPLC-enriched proteins were distinguished from those released in parasite vomitus or by handling damage, using isobaric tagging. Trypsin released five membrane proteins, Sm200, Sm25 and three annexins, plus host CD44 and the complement factors C3 and C4. Nutrient transporters and ion channels were absent from the trypsin fraction, suggesting a deeper location in the surface complex; surprisingly, two BAR-domain containing proteins were released. Seven parasite and two host proteins were enriched by PiPLC treatment, the vaccine candidate Sm29 being the most prominent along with two orthologues of human CD59, potentially inhibitors of complement fixation. The enzymes carbonic anhydrase and APD-ribosyl cyclase were also enriched, plus Sm200 and alkaline phosphatase. Host GPI-anchored proteins CD48 and CD90, suggest ‘surface painting’ during worm peregrination in the portal system. Conclusions/Significance Our findings suggest that the membranocalyx secreted over the tegument surface is not the inert barrier previously proposed, some tegument proteins being externally accessible to enzymes and thus potentially located within it. Furthermore, the detection of C3 and C4 indicates that the complement cascade is initiated, while two CD59 orthologues suggest a potential mechanism for its inhibition. The detection of several host proteins is a testimonial to the acquisitive properties of the tegument surface. The exposed parasite proteins could represent novel vaccine candidates for combating this neglected disease. Adult schistosome parasites can reside in the host bloodstream for decades surrounded by components of the immune system. It was originally proposed that their survival depended on the secretion of an inert bilayer, the membranocalyx, to protect the underlying plasma membrane from attack. We have investigated whether any proteins were exposed on the surface of live worms using incubation with selected hydrolases, in combination with mass spectrometry to identify released proteins. We show that a small number of parasite proteins are accessible to the enzymes and so could represent constituents of the membranocalyx. We also identified several proteins acquired by the parasite on contact with host cells. In addition, components of the cytolytic complement pathway were detected, but these appeared not to harm the worm, indicating that some of its own surface proteins could inhibit the lytic pathway. We suggest that, collectively, the ‘superficial’ parasite proteins may provide good candidates for a schistosome vaccine.
Collapse
|
179
|
Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, Berriman M, Hertz-Fowler C, Horn D. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 2011; 21:915-24. [PMID: 21363968 DOI: 10.1101/gr.115089.110] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
African trypanosomes are major pathogens of humans and livestock and represent a model for studies of unusual protozoal biology. We describe a high-throughput phenotyping approach termed RNA interference (RNAi) target sequencing, or RIT-seq that, using Illumina sequencing, maps fitness-costs associated with RNAi. We scored the abundance of >90,000 integrated RNAi targets recovered from trypanosome libraries before and after induction of RNAi. Data are presented for 7435 protein coding sequences, >99% of a non-redundant set in the Trypanosoma brucei genome. Analysis of bloodstream and insect life-cycle stages and differentiated libraries revealed genome-scale knockdown profiles of growth and development, linking thousands of previously uncharacterized and "hypothetical" genes to essential functions. Genes underlying prominent features of trypanosome biology are highlighted, including the constitutive emphasis on post-transcriptional gene expression control, the importance of flagellar motility and glycolysis in the bloodstream, and of carboxylic acid metabolism and phosphorylation during differentiation from the bloodstream to the insect stage. The current data set also provides much needed genetic validation to identify new drug targets. RIT-seq represents a versatile new tool for genome-scale functional analyses and for the exploitation of genome sequence data.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Natesan SKA, Black A, Matthews KR, Mottram JC, Field MC. Trypanosoma brucei brucei: endocytic recycling is important for mouse infectivity. Exp Parasitol 2011; 127:777-83. [PMID: 21256128 PMCID: PMC3080601 DOI: 10.1016/j.exppara.2011.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 01/08/2011] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Endocytosis in the African trypanosome, Trypanosoma brucei, is intimately involved in maintaining homeostasis of the cell surface proteome, morphology of the flagellar pocket and has recently been demonstrated as a bona fide drug target. RNAi-mediated knockdown of many factors required for endocytic transport, including several small GTPases, the major coat protein clathrin and a clathrin-associated receptor, epsinR, results in rapid cell death in vitro. Rapid loss of viability in vitro precludes meaningful investigation by RNAi of the roles of trypanosome endocytosis in vivo. Here we have sought to address this issue using strategies designed to produce milder effects on the endocytic system than complete functional ablation. We created a trypanosome clathrin heavy chain hemizygote and several lines expressing mutant forms of Rab5 and Rab11, described previously. All are viable in in vitro culture, with negligible impact to proliferative rates or cell cycle. Clathrin hemizygotes express clathrin heavy chain at ∼50% of wild type levels, but despite this demonstrate no defect to growth in mice, while none of the Rab5 mutants affected proliferation in vivo, despite clear evidence for effects on endocytosis. By contrast we find that expressing a dominantly active Rab11 mutant led to compromised growth in mice. These data indicate that trypanosomes likely tolerate the effects of partly decreased clathrin expression and alterations in early endocytosis, but are more sensitive to alterations in the recycling arm of the pathway.
Collapse
|
181
|
|
182
|
Inbar E, Canepa GE, Carrillo C, Glaser F, Suter Grotemeyer M, Rentsch D, Zilberstein D, Pereira CA. Lysine transporters in human trypanosomatid pathogens. Amino Acids 2010; 42:347-60. [PMID: 21170560 DOI: 10.1007/s00726-010-0812-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022]
Abstract
In previous studies we characterized arginine transporter genes from Trypanosoma cruzi and Leishmania donovani, the etiological agents of chagas disease and kala azar, respectively, both fatal diseases in humans. Unlike arginine transporters in higher eukaryotes that transport also lysine, these parasite transporters translocate only arginine. This phenomenon prompted us to identify and characterize parasite lysine transporters. Here we demonstrate that LdAAP7 and TcAAP7 encode lysine-specific permeases in L. donovani and T. cruzi, respectively. These two lysine permeases are both members of the large amino acid/auxin permease family and share certain biochemical properties, such as specificity and Km. However, we evidence that LdAAP7 and TcAAP7 differ in their regulation and localization, such differences are likely a reflection of the dissimilar L. donovani and T. cruzi life cycles. Failed attempts to delete both alleles of LdAAP7 support the premise that this is an essential gene that encodes the only lysine permeases expressed in L. donovani promastigotes and T. cruzi epimastigotes, respectively.
Collapse
Affiliation(s)
- Ehud Inbar
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Horn D, McCulloch R. Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 2010; 13:700-5. [PMID: 20884281 PMCID: PMC3117991 DOI: 10.1016/j.mib.2010.08.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/30/2010] [Indexed: 11/02/2022]
Abstract
African trypanosomes escape the host adaptive immune response by switching their dense protective coat of Variant Surface Glycoprotein (VSG). Each cell expresses only one VSG gene at a time from a telomeric expression site (ES). The 'pre-genomic' era saw the identification of the range of pathways involving VSG recombination in the context of mono-telomeric VSG transcription. A prominent feature of the early post-genomic era is the description of the molecular machineries involved in these processes. We describe the factors and sequences recently linked to mutually exclusive transcription and VSG recombination, and how these act in the control of the key virulence mechanism of antigenic variation.
Collapse
Affiliation(s)
- David Horn
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | |
Collapse
|
184
|
Harrington JM, Widener J, Stephens N, Johnson T, Francia M, Capewell P, Macleod A, Hajduk SL. The plasma membrane of bloodstream-form African trypanosomes confers susceptibility and specificity to killing by hydrophobic peptides. J Biol Chem 2010; 285:28659-66. [PMID: 20615879 DOI: 10.1074/jbc.m110.151886] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei is the causative agent of both a veterinary wasting disease and human African trypanosomiasis, or sleeping sickness. The cell membrane of the developmental stage found within the mammalian host, the bloodstream form (BSF), is highly dynamic, exhibiting rapid rates of endocytosis and lateral flow of glycosylphosphatidylinositol-anchored proteins. Here, we show that the cell membrane of these organisms is a target for killing by small hydrophobic peptides that increase the rigidity of lipid bilayers. Specifically, we have derived trypanocidal peptides that are based upon the hydrophobic N-terminal signal sequences of human apolipoproteins. These peptides selectively partitioned into the plasma membrane of BSF trypanosomes, resulting in an increase in the rigidity of the bilayer, dramatic changes in cell motility, and subsequent cell death. No killing of the developmental stage found within the insect midgut, the procyclic form, was observed. Additionally, the peptides exhibited no toxicity toward mammalian cell lines and did not induce hemolysis. Studies with model liposomes indicated that bilayer fluidity dictates the susceptibility of membranes to manipulation by hydrophobic peptides. We suggest that the composition of the BSF trypanosome cell membrane confers a high degree of fluidity and unique susceptibility to killing by hydrophobic peptides and is therefore a target for the development of trypanocidal drugs.
Collapse
Affiliation(s)
- John M Harrington
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Wang YN, Wang M, Field MC. Trypanosoma brucei: trypanosome-specific endoplasmic reticulum proteins involved in variant surface glycoprotein expression. Exp Parasitol 2010; 125:208-21. [PMID: 20109450 PMCID: PMC2877885 DOI: 10.1016/j.exppara.2010.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 12/22/2022]
Abstract
In Trypanosoma brucei the GPI-anchored variant surface glycoprotein (VSG) represents approximately 90% of cell surface protein and a major proportion of endoplasmic reticulum (ER) biosynthetic output. We identified four trypanosomatid-specific genes encoding candidate ER-resident proteins; all were required for normal proliferation. For Tb11.01.2640 and Tb11.01.8120, an increase in VSG abundance was found on silencing, while the protein products localized to the ER; we designated these ERAP32 and ERAP18 for ER-associated protein of 32kDa and 18kDa. Silencing ERAP32 or ERAP18 did not alter expression levels of ISG65 or ISG75, the major surface trans-membrane domain proteins. Surface biotinylation or immunoflorescence did not identify intracellular VSG accumulation, while FACS and fluorescence microscopy indicated that the cells were not increased in size, arguing for increased VSG density on the cell surface. Therefore, ERAP32 and ERAP18 are trypanosome-specific ER-localized proteins with a major role in VSG protein export and, contrary to current paradigms, VSG is not saturated on the cell surface.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ming Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
186
|
Gluenz E, Ginger ML, McKean PG. Flagellum assembly and function during the Leishmania life cycle. Curr Opin Microbiol 2010; 13:473-9. [PMID: 20541962 DOI: 10.1016/j.mib.2010.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 11/17/2022]
Abstract
During a complex digenetic life cycle flagellated Leishmania parasites alternate between promastigote and amastigote forms which differ significantly in cellular morphology and flagellum length. Recent studies have provided important new insights into mechanisms by which Leishmania regulate expression of genes required for flagellum assembly, and mechanisms used to modify flagellum length. While the critical role of the promastigote flagellum in parasite biology has long been appreciated, the importance of the amastigote flagellum has often been disregarded. However, recent work suggests that the 'rudimentary' amastigote flagellum may serve indispensable roles in cellular organisation, and/or sensory perception, which are critical for intracellular survival of Leishmania within host macrophages.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
187
|
Katta SS, Tammana TVS, Sahasrabuddhe AA, Bajpai VK, Gupta CM. Trafficking activity of myosin XXI is required in assembly of Leishmania flagellum. J Cell Sci 2010; 123:2035-44. [PMID: 20501700 DOI: 10.1242/jcs.064725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-based myosin motors have a pivotal role in intracellular trafficking in eukaryotic cells. The parasitic protozoan organism Leishmania expresses a novel class of myosin, myosin XXI (Myo21), which is preferentially localized at the proximal region of the flagellum. However, its function in this organism remains largely unknown. Here, we show that Myo21 interacts with actin, and its expression is dependent of the growth stage. We further reveal that depletion of Myo21 levels results in impairment of the flagellar assembly and intracellular trafficking. These defects are, however, reversed by episomal complementation. Additionally, it is shown that deletion of the Myo21 gene leads to generation of ploidy, suggesting an essential role of Myo21 in survival of Leishmania cells. Together, these results indicate that actin-dependent trafficking activity of Myo21 is essentially required during assembly of the Leishmania flagellum.
Collapse
Affiliation(s)
- Santharam S Katta
- Molecular and Structural Biology Division, Central Drug Research Institute, CSIR, Uttar Pradesh, Lucknow, India
| | | | | | | | | |
Collapse
|
188
|
Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, Saunier S, Spassky N, Bastin P, Benmerah A. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 2010; 123:1785-95. [PMID: 20427320 DOI: 10.1242/jcs.059519] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cilia and flagella are eukaryotic organelles involved in multiple cellular functions. The primary cilium is generally non motile and found in numerous vertebrate cell types where it controls key signalling pathways. Despite a common architecture, ultrastructural data suggest some differences in their organisation. Here, we report the first detailed characterisation of the ciliary pocket, a depression of the plasma membrane in which the primary cilium is rooted. This structure is found at low frequency in kidney epithelial cells (IMCD3) but is associated with virtually all primary cilia in retinal pigment epithelial cells (RPE1). Transmission and scanning electron microscopy, immunofluorescence analysis and videomicroscopy revealed that the ciliary pocket establishes closed links with the actin-based cytoskeleton and that it is enriched in active and dynamic clathrin-coated pits. The existence of the ciliary pocket was confirmed in mouse tissues bearing primary cilia (cumulus), as well as motile cilia and flagella (ependymal cells and spermatids). The ciliary pocket shares striking morphological and functional similarities with the flagellar pocket of Trypanosomatids, a trafficking-specialised membrane domain at the base of the flagellum. Our data therefore highlight the conserved role of membrane trafficking in the vicinity of cilia.
Collapse
Affiliation(s)
- Anahi Molla-Herman
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris 75014, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010; 2010:389153. [PMID: 20182644 PMCID: PMC2826769 DOI: 10.1155/2010/389153] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023] Open
Abstract
Trypanosomiasis is one of the major parasitic diseases for which control is still far from reality. The vaccination approaches by using dominant surface proteins have not been successful, mainly due to antigenic variation of the parasite surface coat. On the other hand, the chemotherapeutic drugs in current use for the treatment of this disease are toxic and problems of resistance are increasing (see Kennedy (2004) and Legros et al. (2002)). Therefore, alternative approaches in both treatment and vaccination against trypanosomiasis are needed at this time. To be able to design and develop such alternatives, the biology of this parasite and the host response against the pathogen need to be studied. These two aspects of this disease with few examples of alternative approaches are discussed here.
Collapse
|