151
|
Fico A, Fiorenzano A, Pascale E, Patriarca EJ, Minchiotti G. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci 2019; 76:1459-1471. [PMID: 30607432 PMCID: PMC6439142 DOI: 10.1007/s00018-018-3000-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
LncRNAs have recently emerged as new and fundamental transcriptional and post-transcriptional regulators acting at multiple levels of gene expression. Indeed, lncRNAs participate in a wide variety of stem cell and developmental processes, acting in cis and/or in trans in the nuclear and/or in the cytoplasmic compartments, and generating an intricate network of interactions with RNAs, enhancers, and chromatin-modifier complexes. Given the versatility of these molecules to operate in different subcellular compartments, via different modes of action and with different target specificity, the interest in this research field is rapidly growing. Here, we review recent progress in defining the functional role of lncRNAs in stem cell biology with a specific focus on the underlying mechanisms. We also discuss recent findings on a new family of evolutionary conserved lncRNAs transcribed from ultraconserved elements, which show perfect conservation between human, mouse, and rat genomes, and that are emerging as new player in this complex scenario.
Collapse
Affiliation(s)
- Annalisa Fico
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
| | - Alessandro Fiorenzano
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Emilia Pascale
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Eduardo Jorge Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| |
Collapse
|
152
|
Oksuz O, Narendra V, Lee CH, Descostes N, LeRoy G, Raviram R, Blumenberg L, Karch K, Rocha PP, Garcia BA, Skok JA, Reinberg D. Capturing the Onset of PRC2-Mediated Repressive Domain Formation. Mol Cell 2019; 70:1149-1162.e5. [PMID: 29932905 DOI: 10.1016/j.molcel.2018.05.023] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/10/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022]
Abstract
Polycomb repressive complex 2 (PRC2) maintains gene silencing by catalyzing methylation of histone H3 at lysine 27 (H3K27me2/3) within chromatin. By designing a system whereby PRC2-mediated repressive domains were collapsed and then reconstructed in an inducible fashion in vivo, a two-step mechanism of H3K27me2/3 domain formation became evident. First, PRC2 is stably recruited by the actions of JARID2 and MTF2 to a limited number of spatially interacting "nucleation sites," creating H3K27me3-forming Polycomb foci within the nucleus. Second, PRC2 is allosterically activated via its binding to H3K27me3 and rapidly spreads H3K27me2/3 both in cis and in far-cis via long-range contacts. As PRC2 proceeds further from the nucleation sites, its stability on chromatin decreases such that domains of H3K27me3 remain proximal, and those of H3K27me2 distal, to the nucleation sites. This study demonstrates the principles of de novo establishment of PRC2-mediated repressive domains across the genome.
Collapse
Affiliation(s)
- Ozgur Oksuz
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Varun Narendra
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Chul-Hwan Lee
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Nicolas Descostes
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Gary LeRoy
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ramya Raviram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lili Blumenberg
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly Karch
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pedro P Rocha
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
153
|
Zhang Q, McKenzie NJ, Warneford-Thomson R, Gail EH, Flanigan SF, Owen BM, Lauman R, Levina V, Garcia BA, Schittenhelm RB, Bonasio R, Davidovich C. RNA exploits an exposed regulatory site to inhibit the enzymatic activity of PRC2. Nat Struct Mol Biol 2019; 26:237-247. [PMID: 30833789 DOI: 10.1038/s41594-019-0197-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/29/2019] [Indexed: 12/18/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that maintains cell identity during development in multicellular organisms by marking repressed genes and chromatin domains. In addition to four core subunits, PRC2 comprises multiple accessory subunits that vary in their composition during cellular differentiation and define two major holo-PRC2 complexes: PRC2.1 and PRC2.2. PRC2 binds to RNA, which inhibits its enzymatic activity, but the mechanism of RNA-mediated inhibition of holo-PRC2 is poorly understood. Here we present in vivo and in vitro protein-RNA interaction maps and identify an RNA-binding patch within the allosteric regulatory site of human and mouse PRC2, adjacent to the methyltransferase center. RNA-mediated inhibition of holo-PRC2 is relieved by allosteric activation of PRC2 by H3K27me3 and JARID2-K116me3 peptides. Both holo-PRC2.1 and holo-PRC2.2 bind RNA, providing a unified model to explain how RNA and allosteric stimuli antagonistically regulate the enzymatic activity of PRC2.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicholas J McKenzie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Robert Warneford-Thomson
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Graduate Group in Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarena F Flanigan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brady M Owen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard Lauman
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Graduate Group in Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vitalina Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Benjamin A Garcia
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Monash Biomedical Proteomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia. .,EMBL-Australia and the ARC Centre of Excellence in Advanced Molecular Imaging, Clayton, Victoria, Australia.
| |
Collapse
|
154
|
Zhao Y, Ding L, Wang D, Ye Z, He Y, Ma L, Zhu R, Pan Y, Wu Q, Pang K, Hou X, Weroha SJ, Han C, Coleman R, Coleman I, Karnes RJ, Zhang J, Nelson PS, Wang L, Huang H. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J 2019; 38:e99599. [PMID: 30723117 PMCID: PMC6396169 DOI: 10.15252/embj.201899599] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
In light of the increasing number of identified cancer-driven gain-of-function (GOF) mutants of p53, it is important to define a common mechanism to systematically target several mutants, rather than developing strategies tailored to inhibit each mutant individually. Here, using RNA immunoprecipitation-sequencing (RIP-seq), we identified the Polycomb-group histone methyltransferase EZH2 as a p53 mRNA-binding protein. EZH2 bound to an internal ribosome entry site (IRES) in the 5'UTR of p53 mRNA and enhanced p53 protein translation in a methyltransferase-independent manner. EZH2 augmented p53 GOF mutant-mediated cancer growth and metastasis by increasing protein levels of mutant p53. EZH2 overexpression was associated with worsened outcome selectively in patients with p53-mutated cancer. Depletion of EZH2 by antisense oligonucleotides inhibited p53 GOF mutant-mediated cancer growth. Our findings reveal a non-methyltransferase function of EZH2 that controls protein translation of p53 GOF mutants, inhibition of which causes synthetic lethality in cancer cells expressing p53 GOF mutants.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Liya Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenqing Ye
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Linlin Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Runzhi Zhu
- Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Qiang Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Pang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Roger Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - R Jeffery Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Liguo Wang
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
155
|
Nozawa RS, Gilbert N. RNA: Nuclear Glue for Folding the Genome. Trends Cell Biol 2019; 29:201-211. [DOI: 10.1016/j.tcb.2018.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
|
156
|
Hajjari M, Rahnama S. Association Between SNPs of Long Non-coding RNA HOTAIR and Risk of Different Cancers. Front Genet 2019; 10:113. [PMID: 30873206 PMCID: PMC6403183 DOI: 10.3389/fgene.2019.00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Mohammadreza Hajjari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saghar Rahnama
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
157
|
Loubiere V, Martinez AM, Cavalli G. Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. Bioessays 2019; 41:e1800222. [PMID: 30793782 DOI: 10.1002/bies.201800222] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue-specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context- and tissue-specific assembly of the different types of Polycomb Group (PcG) complexes, which regulates their targeting and/or activities on chromatin. Here, an overview is provided of how PcG complexes function at multiple scales to regulate transcription, local chromatin environment, and higher order structures that support normal differentiation and are perturbed in tumorigenesis.
Collapse
Affiliation(s)
- Vincent Loubiere
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| |
Collapse
|
158
|
Sun Y, Ma L. New Insights into Long Non-Coding RNA MALAT1 in Cancer and Metastasis. Cancers (Basel) 2019; 11:cancers11020216. [PMID: 30781877 PMCID: PMC6406606 DOI: 10.3390/cancers11020216] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most abundant, long non-coding RNAs (lncRNAs) in normal tissues. This lncRNA is highly conserved among mammalian species, and based on in vitro results, has been reported to regulate alternative pre-mRNA splicing and gene expression. However, Malat1 knockout mice develop and grow normally, and do not show alterations in alternative splicing. While MALAT1 was originally described as a prognostic marker of lung cancer metastasis, emerging evidence has linked this lncRNA to other cancers, such as breast cancer, prostate cancer, pancreatic cancer, glioma, and leukemia. The role described for MALAT1 is dependent on the cancer types and the experimental model systems. Notably, different or opposite phenotypes resulting from different strategies for inactivating MALAT1 have been observed, which led to distinct models for MALAT1's functions and mechanisms of action in cancer and metastasis. In this review, we reflect on different experimental strategies used to study MALAT1's functions, and discuss the current mechanistic models of this highly abundant and conserved lncRNA.
Collapse
Affiliation(s)
- Yutong Sun
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Li Ma
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
159
|
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A. R-Loops Enhance Polycomb Repression at a Subset of Developmental Regulator Genes. Mol Cell 2019; 73:930-945.e4. [PMID: 30709709 PMCID: PMC6414425 DOI: 10.1016/j.molcel.2018.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/14/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
R-loops are three-stranded nucleic acid structures that form during transcription, especially over unmethylated CpG-rich promoters of active genes. In mouse embryonic stem cells (mESCs), CpG-rich developmental regulator genes are repressed by the Polycomb complexes PRC1 and PRC2. Here, we show that R-loops form at a subset of Polycomb target genes, and we investigate their contribution to Polycomb repression. At R-loop-positive genes, R-loop removal leads to decreased PRC1 and PRC2 recruitment and Pol II activation into a productive elongation state, accompanied by gene derepression at nascent and processed transcript levels. Stable removal of PRC2 derepresses R-loop-negative genes, as expected, but does not affect R-loops, PRC1 recruitment, or transcriptional repression of R-loop-positive genes. Our results highlight that Polycomb repression does not occur via one mechanism but consists of different layers of repression, some of which are gene specific. We uncover that one such mechanism is mediated by an interplay between R-loops and RING1B recruitment. R-loops form at a subset of PcG target genes R-loops contribute to PcG recruitment genome-wide Loss of R-loops leads to transcriptional activation of R-loop-positive PcG targets R-loops and PRC1 contribute to transcriptional repression of PcG targets
Collapse
Affiliation(s)
- Konstantina Skourti-Stathaki
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK; Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany.
| | - Elena Torlai Triglia
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany
| | - Marie Warburton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany; Berlin Institute of Health, Berlin, Germany; Institute for Biology, Humboldt-Universitat zu Berlin, Berlin, Germany.
| |
Collapse
|
160
|
Maintenance of epigenetic landscape requires CIZ1 and is corrupted in differentiated fibroblasts in long-term culture. Nat Commun 2019; 10:460. [PMID: 30692537 PMCID: PMC6484225 DOI: 10.1038/s41467-018-08072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The inactive X chromosome (Xi) serves as a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes (PRC1/2). Here we show that Xi transiently relocates from the nuclear periphery towards the interior during its replication, in a process dependent on CIZ1. Compromised relocation of Xi in CIZ1-null primary mouse embryonic fibroblasts is accompanied by loss of PRC-mediated H2AK119Ub1 and H3K27me3, increased solubility of PRC2 catalytic subunit EZH2, and genome-wide deregulation of polycomb-regulated genes. Xi position in S phase is also corrupted in cells adapted to long-term culture (WT or CIZ1-null), and also accompanied by specific changes in EZH2 and its targets. The data are consistent with the idea that chromatin relocation during S phase contributes to maintenance of epigenetic landscape in primary cells, and that elevated soluble EZH2 is part of an error-prone mechanism by which modifying enzyme meets template when chromatin relocation is compromised. The inactive X chromosome (Xi) is a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes. Here the authors show that Xi transiently relocates from the nuclear periphery during replication in a CIZ1-dependent manner, which plays a role in maintaining PRC-mediated repressed chromatin.
Collapse
|
161
|
Abstract
Polycomb repressive complex 2 (PRC2) and its methylation of histone 3 at lysine 27 (H3K27me3) play a crucial role in epigenetic regulation of normal development and malignancy. Several factors regulate the recruitment of PRC2 and affects its chromatin modification function. Over the past years, emerging discoveries have portrayed the association of RNA (protein-coding and non-coding) with PRC2 as a critical factor in understanding PRC2 function. With PRC2 being a macromolecular complex of interest in development and diseases, further studies are needed to relate the rapidly evolving PRC2:RNA biology in that scenario. In this review, we summarize the current understanding of different modes of RNA binding by PRC2, and further discuss perspectives, key questions and therapeutic applications of PRC2 binding to RNAs.
Collapse
Affiliation(s)
- Junli Yan
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore
| | - Bibek Dutta
- b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Yan Ting Hee
- c Lee Kong Chian School of Medicine , Nanyang Technological University , Singapore , Singapore
| | - Wee-Joo Chng
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore.,b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,d Department of Hematology-Oncology , National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS) , Singapore , Singapore
| |
Collapse
|
162
|
Sauvageau M. Diverging RNPs: Toward Understanding lncRNA-Protein Interactions and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:285-312. [PMID: 31811638 DOI: 10.1007/978-3-030-31434-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA-protein interactions are essential to a variety of biological processes. The realization that mammalian genomes are pervasively transcribed brought a tidal wave of tens of thousands of newly identified long noncoding RNAs (lncRNAs) and raised questions about their purpose in cells. The vast majority of lncRNAs have yet to be studied, and it remains to be determined to how many of these transcripts a function can be ascribed. However, results gleaned from studying a handful of these macromolecules have started to reveal common themes of biological function and mechanism of action involving intricate RNA-protein interactions. Some lncRNAs were shown to regulate the chromatin and transcription of distant and neighboring genes in the nucleus, while others regulate the translation or localization of proteins in the cytoplasm. Some lncRNAs were found to be crucial during development, while mutations and aberrant expression of others have been associated with several types of cancer and a plethora of diseases. Over the last few years, the establishment of new technologies has been key in providing the tools to decode the rules governing lncRNA-protein interactions and functions. This chapter will highlight the general characteristics of lncRNAs, their function, and their mode of action, with a special focus on protein interactions. It will also describe the methods at the disposition of scientists to help them cross this next frontier in our understanding of lncRNA biology.
Collapse
Affiliation(s)
- Martin Sauvageau
- Montreal Clinical Research Institute (IRCM), Montréal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
163
|
Kasinath V, Poepsel S, Nogales E. Recent Structural Insights into Polycomb Repressive Complex 2 Regulation and Substrate Binding. Biochemistry 2018; 58:346-354. [PMID: 30451485 PMCID: PMC6438374 DOI: 10.1021/acs.biochem.8b01064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycomb group proteins are transcriptional repressors controlling gene expression patterns and maintaining cell type identity. The chemical modifications of histones and DNA caused by the regulated activity of chromatin-modifying enzymes such as Polycomb help establish and maintain such expression patterns. Polycomb repressive complex 2 (PRC2) is the only known methyltransferase specific for histone H3 lysine 27 (H3K27) and catalyzes its trimethylation leading to the repressive H3K27me3 mark. Structural biology has made important contributions to our understanding of the molecular mechanisms that ensure the spatiotemporal regulation of PRC2 activity and the establishment of inactive chromatin domains marked by H3K27me3. In this review, we discuss the recent structural studies that have advanced our understanding of PRC2 function, in particular the roles of intersubunit interactions in complex assembly and the regulation of methyltransferase activity, as well as the mechanism of local H3K27me3 spreading leading to repressive domains.
Collapse
Affiliation(s)
- Vignesh Kasinath
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Simon Poepsel
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Molecular and Cellular Biology , University of California , Berkeley , California 94720 , United States.,Howard Hughes Medical Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
164
|
Mikaeili H, Sandi M, Bayot A, Al-Mahdawi S, Pook MA. FAST-1 antisense RNA epigenetically alters FXN expression. Sci Rep 2018; 8:17217. [PMID: 30464193 PMCID: PMC6249312 DOI: 10.1038/s41598-018-35639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is a multisystem genetic disorder caused by GAA repeat expansion mutations within the FXN gene, resulting in heterochromatin formation and deficiency of frataxin protein. Elevated levels of the FXN antisense transcript (FAST-1) have previously been detected in FRDA. To investigate the effects of FAST-1 on the FXN gene expression, we first stably overexpressed FAST-1 in non-FRDA cell lines and then we knocked down FAST-1 in FRDA fibroblast cells. We observed decreased FXN expression in each FAST-1 overexpressing cell type compared to control cells. We also found that FAST-1 overexpression is associated with both CCCTC-Binding Factor (CTCF) depletion and heterochromatin formation at the 5'UTR of the FXN gene. We further showed that knocking down FAST-1 in FRDA fibroblast cells significantly increased FXN expression. Our results indicate that FAST-1 can act in trans in a similar manner to the cis-acting FAST-1 overexpression that has previously been identified in FRDA fibroblasts. The effects of stably transfected FAST-1 expression on CTCF occupancy and heterochromatin formation at the FXN locus suggest a direct role for FAST-1 in the FRDA molecular disease mechanism. Our findings also support the hypothesis that inhibition of FAST-1 may be a potential approach for FRDA therapy.
Collapse
Affiliation(s)
- Hajar Mikaeili
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Madhavi Sandi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Aurélien Bayot
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
- Mitochondrial Biology Group, CNRS UMR 3691, Departement of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Sahar Al-Mahdawi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Mark A Pook
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom.
| |
Collapse
|
165
|
RNA motifs and combinatorial prediction of interactions, stability and localization of noncoding RNAs. Nat Struct Mol Biol 2018; 25:1070-1076. [DOI: 10.1038/s41594-018-0155-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/15/2018] [Indexed: 01/16/2023]
|
166
|
Szabó B, Murvai N, Abukhairan R, Schád É, Kardos J, Szeder B, Buday L, Tantos Á. Disordered Regions of Mixed Lineage Leukemia 4 (MLL4) Protein Are Capable of RNA Binding. Int J Mol Sci 2018; 19:ijms19113478. [PMID: 30400675 PMCID: PMC6274713 DOI: 10.3390/ijms19113478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as important regulators of cellular processes and are extensively involved in the development of different cancers; including leukemias. As one of the accepted methods of lncRNA function is affecting chromatin structure; lncRNA binding has been shown for different chromatin modifiers. Histone lysine methyltransferases (HKMTs) are also subject of lncRNA regulation as demonstrated for example in the case of Polycomb Repressive Complex 2 (PRC2). Mixed Lineage Leukemia (MLL) proteins that catalyze the methylation of H3K4 have been implicated in several different cancers; yet many details of their regulation and targeting remain elusive. In this work we explored the RNA binding capability of two; so far uncharacterized regions of MLL4; with the aim of shedding light to the existence of possible regulatory lncRNA interactions of the protein. We demonstrated that both regions; one that contains a predicted RNA binding sequence and one that does not; are capable of binding to different RNA constructs in vitro. To our knowledge, these findings are the first to indicate that an MLL protein itself is capable of lncRNA binding.
Collapse
Affiliation(s)
- Beáta Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Nikoletta Murvai
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Rawan Abukhairan
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary.
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Ágnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| |
Collapse
|
167
|
Yen YP, Hsieh WF, Tsai YY, Lu YL, Liau ES, Hsu HC, Chen YC, Liu TC, Chang M, Li J, Lin SP, Hung JH, Chen JA. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. eLife 2018; 7:38080. [PMID: 30311912 PMCID: PMC6221546 DOI: 10.7554/elife.38080] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell-derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes. When a gene is active, its DNA sequence is ‘transcribed’ to form a molecule of RNA. Many of these RNAs act as templates for making proteins. But for some genes, the protein molecules are not their final destinations. Their RNA molecules instead help to control gene activity, which can alter the behaviour or the identity of a cell. For example, experiments performed in individual cells suggest that so-called long non-coding RNAs (or lncRNAs for short) guide how stem cells develop into different types of mature cells. However, it is not clear whether lncRNAs play the same critical role in embryos. Yen et al. used embryonic stem cells to model how motor neurons develop in the spinal cord of mouse embryos. This revealed that motor neurons produce large amounts of a specific group of lncRNAs, particularly one called Meg3. Further experiments showed that motor neurons in mouse embryos that lack Meg3 do not correctly silence a set of genes called the Hox genes, which are crucial for laying out the body plans of many different animal embryos. These neurons also incorrectly continue to express genes that are normally active in an early phase of the stem-like cells that make motor neurons. There is wide interest in how lncRNAs help to regulate embryonic development. With this new knowledge of how Meg3 regulates the activity of Hox genes in motor neurons, research could now be directed toward investigating whether lncRNAs help other tissues to develop in a similar way.
Collapse
Affiliation(s)
- Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wen-Fu Hsieh
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Ya-Yin Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ya-Lin Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ee Shan Liau
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ho-Chiang Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ting-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Joye Li
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jui-Hung Hung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.,Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
168
|
Abstract
SIGNIFICANCE The emerging connections between an increasing number of long noncoding RNAs (lncRNAs) and oncogenic hallmarks provide a new twist to tumor complexity. Recent Advances: In the present review, we highlight specific lncRNAs that have been studied in relation to tumorigenesis, either as participants in the neoplastic process or as markers of pathway activity or drug response. These transcripts are typically deregulated by oncogenic or tumor-suppressing signals or respond to microenvironmental conditions such as hypoxia. CRITICAL ISSUES Among these transcripts are lncRNAs sufficiently divergent between mouse and human genomes that may contribute to biological differences between species. FUTURE DIRECTIONS From a translational standpoint, knowledge about primate-specific lncRNAs may help explain the reason behind the failure to reproduce the results from mouse cancer models in human cell-based systems. Antioxid. Redox Signal. 29, 922-935.
Collapse
Affiliation(s)
- Xue Wu
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Oana M Tudoran
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I. Chiricuta," Cluj-Napoca, Romania
| | - George A Calin
- 4 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, Texas.,5 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Mircea Ivan
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
169
|
Abstract
SIGNIFICANCE The concepts of junk DNA and transcriptional noise are long gone as the existence of noncoding RNAs (ncRNAs) has been tested extensively in recent years. Given that the epigenetic status of cells affects many biological processes, how ncRNAs mechanistically contribute to these processes is of great interest. Recent Advances: Recent studies show that various ncRNAs interact with epigenetic and/or transcription factors to modulate the epigenetic status of cells directly and/or indirectly. There exists growing interest in the field of cardiovascular research to understand the roles of ncRNAs. Due to the large number of ncRNAs in the mammalian genome, only a handful of ncRNAs have been functionally elucidated, which makes it difficult to understand how ncRNAs interact with protein-coding genes and their encoded proteins. CRITICAL ISSUES Although the canonical function of microRNAs (miRNAs) to inhibit the translation of protein-coding genes is well established, the number of functionally annotated long noncoding RNAs (lncRNAs) is still small, which is especially true in the heart. FUTURE DIRECTIONS Future studies must connect the epigenetic controls of various cellular phenomena by incorporating both miRNAs and lncRNAs. Antioxid. Redox Signal. 29, 832-845.
Collapse
Affiliation(s)
- Shizuka Uchida
- 1 Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Roberto Bolli
- 1 Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky.,2 Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
170
|
Abstract
SIGNIFICANCE To maintain homeostasis, gene expression has to be tightly regulated by complex and multiple mechanisms occurring at the epigenetic, transcriptional, and post-transcriptional levels. One crucial regulatory component is represented by long noncoding RNAs (lncRNAs), nonprotein-coding RNA species implicated in all of these levels. Thus, lncRNAs have been associated with any given process or pathway of interest in a variety of systems, including the heart. Recent Advances: Mounting evidence implicates lncRNAs in cardiovascular diseases (CVD) and progression and their presence in the blood of heart disease patients indicates that they are attractive potential biomarkers. CRITICAL ISSUES Our understanding of the regulation and molecular mechanisms of action of most lncRNAs remains rudimentary. A challenge is represented by their often low evolutionary sequence conservation that limits the use of animal models for preclinical studies. Nevertheless, a growing number of lncRNAs with an impact on heart function is rapidly accumulating. In this study, we will discuss (i) lncRNAs that control heart homeostasis and disease; (ii) concepts, approaches, and methodologies necessary to study lncRNAs in the heart; and (iii) challenges posed and opportunities presented by lncRNAs as potential therapeutic targets and biomarkers. FUTURE DIRECTIONS A deeper knowledge of the molecular mechanisms underpinning CVDs is necessary to develop more effective treatments. Further studies are needed to clarify the regulation and function of lncRNAs in the heart before they can be considered as therapeutic targets and disease biomarkers. Antioxid. Redox Signal. 29, 880-901.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory, IRCCS Policlinico San Donato , Milan, Italy
| | - Antonio Salgado Somoza
- 2 Cardiovascular Research Unit, Luxembourg Institute of Health (LIH) , Luxembourg, Luxembourg
| | - Yvan Devaux
- 2 Cardiovascular Research Unit, Luxembourg Institute of Health (LIH) , Luxembourg, Luxembourg
| | - Fabio Martelli
- 1 Molecular Cardiology Laboratory, IRCCS Policlinico San Donato , Milan, Italy
| |
Collapse
|
171
|
Su M, Xiao Y, Ma J, Cao D, Zhou Y, Wang H, Liao Q, Wang W. Long non-coding RNAs in esophageal cancer: molecular mechanisms, functions, and potential applications. J Hematol Oncol 2018; 11:118. [PMID: 30223861 PMCID: PMC6142629 DOI: 10.1186/s13045-018-0663-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Esophageal cancer (EC) is the sixth leading cause of cancer-related death worldwide. The lack of early diagnostic biomarkers and effective prognostic indicators for metastasis and recurrence has resulted in the poor prognosis of EC. In addition, the underlying molecular mechanisms of EC development have yet to be elucidated. Accumulating evidence has demonstrated that lncRNAs play a vital role in the pathological progression of EC. LncRNAs may regulate gene expression through the recruitment of histone-modifying complexes to the chromatin and through interactions with RNAs or proteins. Recent evidence has demonstrated that the dysregulation of lncRNAs plays important roles in the proliferation, metastasis, invasion, angiogenesis, apoptosis, chemoradiotherapy resistance, and stemness of EC, which suggests potential clinical implications. In this review, we highlight the emerging roles and regulatory mechanisms of lncRNAs in the context of EC and discuss their potential clinical applications as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China. .,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, 410001, Hunan, People's Republic of China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Deliang Cao
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Hui Wang
- Department of Thoracic Radiotherapy, Key laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Qianjin Liao
- Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
172
|
Bravo JPK, Borodavka A, Barth A, Calabrese AN, Mojzes P, Cockburn JJB, Lamb DC, Tuma R. Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Res 2018; 46:7924-7937. [PMID: 29796667 PMCID: PMC6125681 DOI: 10.1093/nar/gky394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.
Collapse
Affiliation(s)
- Jack P K Bravo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Anders Barth
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Peter Mojzes
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Joseph J B Cockburn
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
173
|
Kaikkonen MU, Adelman K. Emerging Roles of Non-Coding RNA Transcription. Trends Biochem Sci 2018; 43:654-667. [DOI: 10.1016/j.tibs.2018.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/07/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
174
|
Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res 2018; 3:108-117. [PMID: 30175284 PMCID: PMC6114262 DOI: 10.1016/j.ncrna.2018.03.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, long noncoding RNAs (lncRNAs) have been identified as significant players in gene regulation. They are often differentially expressed and widely-associated with a majority of cancer types. The aberrant expression of these transcripts has been linked to tumorigenesis, metastasis, cancer stage progression and patient survival. Despite their apparent link to cancer, it has been challenging to gain a mechanistic understanding of how they contribute to cancer, partially due the difficulty in discriminating functional RNAs from other noncoding transcription events. However, there are several well-studied lncRNAs where specific mechanisms have been more clearly defined, leading to new discoveries into how these RNAs function. One major observation that has come to light is the context-dependence of lncRNA mechanisms, where they often have unique function in specific cell types and environment. Here, we review the molecular mechanisms of lncRNAs with a focus on cancer pathways, illustrating a few informative examples. Together, this type of detailed insight will lead to a greater understanding of the potential for the application of lncRNAs as targets of cancer therapies and diagnostics.
Collapse
Affiliation(s)
- Maggie M. Balas
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
| | - Aaron M. Johnson
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
| |
Collapse
|
175
|
Kurup JT, Kidder BL. Identification of H4K20me3- and H3K4me3-associated RNAs using CARIP-Seq expands the transcriptional and epigenetic networks of embryonic stem cells. J Biol Chem 2018; 293:15120-15135. [PMID: 30115682 DOI: 10.1074/jbc.ra118.004974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/06/2022] Open
Abstract
RNA has been shown to interact with various proteins to regulate chromatin dynamics and gene expression. However, it is unknown whether RNAs associate with epigenetic marks such as post-translational modifications of histones, including histone 4 lysine 20 trimethylation (H4K20me3) or trimethylated histone 3 lysine 4 (H3K4me3), to regulate chromatin and gene expression. Here, we used chromatin-associated RNA immunoprecipitation (CARIP) followed by next-generation sequencing (CARIP-Seq) to survey RNAs associated with H4K20me3- and H3K4me3-marked chromatin on a global scale in embryonic stem (ES) cells. We identified thousands of mRNAs and noncoding RNAs that associate with H4K20me3- and H3K4me3-marked chromatin. H4K20me3- and H3K4me3-interacting RNAs are involved in chromatin organization and modification and RNA processing, whereas H4K20me3-only RNAs are involved in cell motility and differentiation, and H3K4me3-only RNAs are involved in metabolic processes and RNA processing. Expression of H3K4me3-associated RNAs is enriched in ES cells, whereas expression of H4K20me3-associated RNAs is enriched in ES cells and differentiated cells. H4K20me3- and H3K4me3-interacting RNAs originate from genes that co-localize with features of active chromatin, including transcriptional machinery and active promoter regions, and the histone modification H3K36me3 in gene body regions. We also found that H4K20me3 and H3K4me3 are associated with distinct gene features including transcripts of greater length and exon number relative to unoccupied transcripts. H4K20me3- and H3K4me3-marked chromatin is also associated with processed RNAs (exon transcripts) relative to unspliced pre-mRNA and ncRNA transcripts. In summary, our results provide evidence that H4K20me3- and H3K4me3-associated RNAs represent a distinct subnetwork of the ES cell transcriptional repertoire.
Collapse
Affiliation(s)
- Jiji T Kurup
- From the Department of Oncology and.,the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Benjamin L Kidder
- From the Department of Oncology and .,the Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
176
|
Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, Li Z, Zhang Z, Chang Y, Xia K, Liu J, Yuan W. MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Manag Res 2018; 10:2249-2257. [PMID: 30100756 PMCID: PMC6065600 DOI: 10.2147/cmar.s166308] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Noncoding RNAs (ncRNAs) can be divided into microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), pRNAs, and tRNAs. Traditionally, miRNAs exert their biological function mainly through the inhibition of translation via the induction of target RNA transcript degradation. lncRNAs and circRNAs were once considered to have no potential to code proteins. Here, we will review the current knowledge on ncRNAs in relation to their origins, characteristics, and functions. We will also review how ncRNAs work as competitive endogenous RNA, gene transcription and expression regulators, and RNA-binding protein sponges in colorectal cancer (CRC). Notably, except for the abovementioned mechanisms, recent advances revealed that lncRNAs can also act as the precursor of miRNAs, and a small portion of lncRNAs and circRNAs was verified to have the potential to code proteins, providing new evidence for the significance of ncRNAs in CRC tumorigenesis and development.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450002, People's Republic of China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Junmin Song
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Yuan Chang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Kunkun Xia
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| |
Collapse
|
177
|
Liu G, Zhang W. Long non-coding RNA HOTAIR promotes UVB-induced apoptosis and inflammatory injury by up-regulation of PKR in keratinocytes. ACTA ACUST UNITED AC 2018; 51:e6896. [PMID: 29898032 PMCID: PMC6002131 DOI: 10.1590/1414-431x20186896] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may
induce cancer, immunosuppression, photoaging, and inflammation. The long
non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in
multiple human biological processes. However, its role in UVB-induced
keratinocyte injury is unclear. This study was performed to investigate the
effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human
keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction
was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6.
Cell viability was measured using trypan blue exclusion method and cell
apoptosis using flow cytometry and western blot. ELISA was used to measure the
concentrations of TNF-α and IL-6. Western blot was used to measure the
expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway
proteins. UVB induced HaCaT cell injury by inhibiting cell viability and
promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted
the expression of HOTAIR. HOTAIR suppression increased cell viability and
decreased apoptosis and expression of inflammatory factors in UVB-treated cells.
HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased
cell viability and increased cell apoptosis and expression of inflammatory
factors in UVB-treated cells by upregulating PKR. Overexpression of PKR
decreased cell viability and promoted cell apoptosis in UVB-treated cells.
Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings
identified an essential role of HOTAIR in promoting UVB-induced apoptosis and
inflammatory injury by up-regulating PKR in keratinocytes.
Collapse
Affiliation(s)
- Guo Liu
- Department of Burns and Plastic Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Wenhao Zhang
- Department of Burns and Plastic Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
178
|
Youmans DT, Schmidt JC, Cech TR. Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits. Genes Dev 2018; 32:794-805. [PMID: 29891558 PMCID: PMC6049511 DOI: 10.1101/gad.311936.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that promotes epigenetic gene silencing, but the dynamics of its interactions with chromatin are largely unknown. Here we quantitatively measured the binding of PRC2 to chromatin in human cancer cells. Genome editing of a HaloTag into the endogenous EZH2 and SUZ12 loci and single-particle tracking revealed that ∼80% of PRC2 rapidly diffuses through the nucleus, while ∼20% is chromatin-bound. Short-term treatment with a small molecule inhibitor of the EED-H3K27me3 interaction had no immediate effect on the chromatin residence time of PRC2. In contrast, separation-of-function mutants of SUZ12, which still form the core PRC2 complex but cannot bind accessory proteins, revealed a major contribution of AEBP2 and PCL homolog proteins to chromatin binding. We therefore quantified the dynamics of this chromatin-modifying complex in living cells and separated the contributions of H3K27me3 histone marks and various PRC2 subunits to recruitment of PRC2 to chromatin.
Collapse
Affiliation(s)
- Daniel T Youmans
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Anschutz Medical Campus, University of Colorado at Denver, Aurora, Colorado 80045, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Jens C Schmidt
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
179
|
Brockdorff N. Polycomb complexes in X chromosome inactivation. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2017.0021. [PMID: 28947664 PMCID: PMC5627167 DOI: 10.1098/rstb.2017.0021] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Identifying the critical RNA binding proteins (RBPs) that elicit Xist mediated silencing has been a key goal in X inactivation research. Early studies implicated the Polycomb proteins, a family of factors linked to one of two major multiprotein complexes, PRC1 and PRC2 (Wang 2001 Nat. Genet.28, 371–375 (doi:10.1038/ng574); Silva 2003 Dev. Cell4, 481–495 (doi:10.1016/S1534-5807(03)00068-6); de Napoles 2004 Dev. Cell7, 663–676 (doi:10.1016/j.devcel.2004.10.005); Plath 2003 Science300, 131–135 (doi:10.1126/science.1084274)). PRC1 and PRC2 complexes catalyse specific histone post-translational modifications (PTMs), ubiquitylation of histone H2A at position lysine 119 (H2AK119u1) and methylation of histone H3 at position lysine 27 (H3K27me3), respectively, and accordingly, these modifications are highly enriched over the length of the inactive X chromosome (Xi). A key study proposed that PRC2 subunits bind directly to Xist RNA A-repeat element, a region located at the 5′ end of the transcript known to be required for Xist mediated silencing (Zhao 2008 Science322, 750–756 (doi:10.1126/science.1163045)). Subsequent recruitment of PRC1 was assumed to occur via recognition of PRC2 mediated H3K27me3 by the CBX subunit of PRC1, as has been shown to be the case at other Polycomb target loci (Cao 2002 Science298, 1039–1043 (doi:10.1126/science.1076997)). More recently, several reports have questioned aspects of the prevailing view, both in relation to the mechanism for Polycomb recruitment by Xist RNA and the contribution of the Polycomb pathway to Xist mediated silencing. In this article I provide an overview of our recent progress towards resolving these discrepancies. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
180
|
Berrozpe G, Bryant GO, Warpinski K, Spagna D, Narayan S, Shah S, Ptashne M. Polycomb Responds to Low Levels of Transcription. Cell Rep 2018; 20:785-793. [PMID: 28746865 DOI: 10.1016/j.celrep.2017.06.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 06/23/2017] [Indexed: 01/27/2023] Open
Abstract
How is Polycomb (Pc), a eukaryotic negative regulator of transcription, targeted to specific mammalian genes? Our genome-wide analysis of the Pc mark H3K27me3 in murine cells revealed that Pc is preferentially associated with CpG island promoters of genes that are transcribed at a low level and less so with promoters of genes that are either silent or more highly expressed. Studies of the CpG island promoter of the Kit gene demonstrate that Pc is largely absent when the gene is silent in myeloid cells, as well as when the gene is highly expressed in mast cells. Manipulations that increase transcription in the former case, and reduce it in the latter, increase Pc occupancy. The average negative effect of Pc, we infer, is about 2-fold. We suggest possible biological roles for such negative effects and propose a mechanism by which Pc might be recruited to weakly transcribed genes.
Collapse
Affiliation(s)
- Georgina Berrozpe
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Gene O Bryant
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Katherine Warpinski
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Dan Spagna
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Santosh Narayan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Shivangi Shah
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Mark Ptashne
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA.
| |
Collapse
|
181
|
Gordon AD, Biswas S, Feng B, Chakrabarti S. MALAT1: A regulator of inflammatory cytokines in diabetic complications. Endocrinol Diabetes Metab 2018; 1:e00010. [PMID: 30815547 PMCID: PMC6354803 DOI: 10.1002/edm2.10] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/16/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES AND DESIGN In this study, we examined the role of MALAT1, a highly conserved nuclear long non-coding RNA molecule, in chronic diabetic complications affecting the heart and kidneys using both in vitro and in vivo models: human endothelial cell culture and a Malat1 knockout mice model. RESULTS Findings from our in vitro experiments demonstrated that MALAT1 was predominantly localized to nuclear speckles in endothelial cells and MALAT1 expression was significantly increased following incubation with high glucose in association with increased expression of inflammatory cytokines. As for our in vivo experiments, we used Malat1 knockout mice and wild-type controls with or without streptozotocin-induced diabetes over 2 months of follow-up, where all of our diabetic animals showed hyperglycaemia and polyuria. Examination of cardiac and renal tissues demonstrated altered MALAT1 RNA expression in wild-type diabetic animals. Such changes were associated with augmented production of downstream inflammatory molecules at the mRNA and protein levels. Diabetes-induced elevations of inflammatory markers were significantly decreased in Malat1 knockout diabetic animals. In addition to transcript and protein analyses, we examined functional changes in the heart and kidneys. Organ functions were affected in the wild-type diabetic mice but were rescued in Malat1 knockout mice. CONCLUSIONS Taken together, findings from this study will provide direct evidence and insight into the importance of MALAT1 in the pathogenesis of chronic diabetic complications involving the heart and kidneys.
Collapse
Affiliation(s)
- Andrew Devon Gordon
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Saumik Biswas
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Biao Feng
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| |
Collapse
|
182
|
Wang C, Zhu B, Xiong J. Recruitment and reinforcement: maintaining epigenetic silencing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:515-522. [PMID: 29564598 DOI: 10.1007/s11427-018-9276-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/07/2023]
Abstract
Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.
Collapse
Affiliation(s)
- Chengzhi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
183
|
Cipriano A, Ballarino M. The Ever-Evolving Concept of the Gene: The Use of RNA/Protein Experimental Techniques to Understand Genome Functions. Front Mol Biosci 2018; 5:20. [PMID: 29560353 PMCID: PMC5845540 DOI: 10.3389/fmolb.2018.00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
184
|
Zhang B, Mao YS, Diermeier SD, Novikova IV, Nawrocki EP, Jones TA, Lazar Z, Tung CS, Luo W, Eddy SR, Sanbonmatsu KY, Spector DL. Identification and Characterization of a Class of MALAT1-like Genomic Loci. Cell Rep 2018; 19:1723-1738. [PMID: 28538188 DOI: 10.1016/j.celrep.2017.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/27/2016] [Accepted: 04/28/2017] [Indexed: 02/09/2023] Open
Abstract
The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript (MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant long noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Thus, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.
Collapse
Affiliation(s)
- Bin Zhang
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Department of Pathology and Laboratory Medicine, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Yuntao S Mao
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Irina V Novikova
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, MS K710 Los Alamos, NM 87545, USA
| | - Eric P Nawrocki
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA; National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD 20894, USA
| | - Tom A Jones
- Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Zsolt Lazar
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Chang-Shung Tung
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, MS K710 Los Alamos, NM 87545, USA
| | - Weijun Luo
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Sean R Eddy
- Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, MS K710 Los Alamos, NM 87545, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
185
|
Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer. Int J Mol Sci 2018; 19:ijms19020570. [PMID: 29443889 PMCID: PMC5855792 DOI: 10.3390/ijms19020570] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of the epigenetic status of the human genome. Besides their participation to normal physiology, lncRNA expression and function have been already associated to many diseases, including cancer. By interacting with epigenetic regulators and by controlling chromatin topology, their misregulation may result in an aberrant regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has characterized cancer development and progression.
Collapse
|
186
|
Hawkes EJ, Hennelly SP, Novikova IV, Irwin JA, Dean C, Sanbonmatsu KY. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures. Cell Rep 2018; 16:3087-3096. [PMID: 27653675 DOI: 10.1016/j.celrep.2016.08.045] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/03/2016] [Accepted: 08/12/2016] [Indexed: 01/07/2023] Open
Abstract
There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. We investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probing and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.
Collapse
Affiliation(s)
- Emily J Hawkes
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott P Hennelly
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Irina V Novikova
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA 99354, USA
| | - Judith A Irwin
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Karissa Y Sanbonmatsu
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87544, USA.
| |
Collapse
|
187
|
Ribeiro DM, Zanzoni A, Cipriano A, Delli Ponti R, Spinelli L, Ballarino M, Bozzoni I, Tartaglia GG, Brun C. Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res 2018; 46:917-928. [PMID: 29165713 PMCID: PMC5778612 DOI: 10.1093/nar/gkx1169] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/14/2022] Open
Abstract
The human transcriptome contains thousands of long non-coding RNAs (lncRNAs). Characterizing their function is a current challenge. An emerging concept is that lncRNAs serve as protein scaffolds, forming ribonucleoproteins and bringing proteins in proximity. However, only few scaffolding lncRNAs have been characterized and the prevalence of this function is unknown. Here, we propose the first computational approach aimed at predicting scaffolding lncRNAs at large scale. We predicted the largest human lncRNA-protein interaction network to date using the catRAPID omics algorithm. In combination with tissue expression and statistical approaches, we identified 847 lncRNAs (∼5% of the long non-coding transcriptome) predicted to scaffold half of the known protein complexes and network modules. Lastly, we show that the association of certain lncRNAs to disease may involve their scaffolding ability. Overall, our results suggest for the first time that RNA-mediated scaffolding of protein complexes and modules may be a common mechanism in human cells.
Collapse
Affiliation(s)
- Diogo M Ribeiro
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Andrea Cipriano
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Lionel Spinelli
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Monica Ballarino
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Irene Bozzoni
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluıs Companys, 08010 Barcelona, Spain
| | - Christine Brun
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
- CNRS, Marseille, France
| |
Collapse
|
188
|
Deckard CE, Sczepanski JT. Polycomb repressive complex 2 binds RNA irrespective of stereochemistry. Chem Commun (Camb) 2018; 54:12061-12064. [DOI: 10.1039/c8cc07433j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Polycomb Repressive Complex 2 (PRC2) interacts promiscuously with G-quadruplex (G4) RNA structures.
Collapse
|
189
|
Qi Y, Ooi HS, Wu J, Chen J, Zhang X, Tan S, Yu Q, Li YY, Kang Y, Li H, Xiong Z, Zhu T, Liu B, Shao Z, Zhao X. MALAT1 long ncRNA promotes gastric cancer metastasis by suppressing PCDH10. Oncotarget 2017; 7:12693-703. [PMID: 26871474 PMCID: PMC4914315 DOI: 10.18632/oncotarget.7281] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/23/2016] [Indexed: 01/01/2023] Open
Abstract
EZH2, the catalytic component of polycomb repressive complex 2 (PRC2), is frequently overexpressed in human cancers and contributes to tumor initiation and progression, in part through transcriptional silencing of tumor suppressor genes. A number of noncoding RNAs (ncRNAs) recruit EZH2 to specific chromatin loci, where they modulate gene expression. Here, we used RNA immunoprecipitation sequencing (RIP-seq) to profile EZH2-associated transcripts in human gastric cancer cell lines. We identified 8,256 transcripts, including both noncoding and coding transcripts, some of which were derived from cancer-related loci. In particular, we found that long noncoding RNA (lncRNA) MALAT1 binds EZH2, suppresses the tumor suppressor PCDH10, and promotes gastric cellular migration and invasion. Our work thus provides a global view of the EZH2-associated transcriptome and offers new insight into the function of EZH2 in gastric tumorigenesis.
Collapse
Affiliation(s)
- Ying Qi
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Sain Ooi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jun Wu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Chen
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Zhang
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Tan
- Laboratory of Molecular Tumor Pathology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing Yu
- Laboratory of Molecular Tumor Pathology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformatics Technology, Shanghai, China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Zirui Xiong
- Laboratory of Molecular Tumor Pathology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Zhu
- Laboratory of Molecular Tumor Pathology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Bingya Liu
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Shao
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
190
|
Ong MS, Cai W, Yuan Y, Leong HC, Tan TZ, Mohammad A, You ML, Arfuso F, Goh BC, Warrier S, Sethi G, Tolwinski NS, Lobie PE, Yap CT, Hooi SC, Huang RY, Kumar AP. 'Lnc'-ing Wnt in female reproductive cancers: therapeutic potential of long non-coding RNAs in Wnt signalling. Br J Pharmacol 2017; 174:4684-4700. [PMID: 28736855 PMCID: PMC5727316 DOI: 10.1111/bph.13958] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Recent discoveries in the non-coding genome have challenged the original central dogma of molecular biology, as non-coding RNAs and related processes have been found to be important in regulating gene expression. MicroRNAs and long non-coding RNAs (lncRNAs) are among those that have gained attention recently in human diseases, including cancer, with the involvement of many more non-coding RNAs (ncRNAs) waiting to be discovered. ncRNAs are a group of ribonucleic acids transcribed from regions of the human genome, which do not become translated into proteins, despite having essential roles in cellular physiology. Deregulation of ncRNA expression and function has been observed in cancer pathogenesis. Recently, the roles of a group of ncRNA known as lncRNA have gained attention in cancer, with increasing reports of their oncogenic involvement. Female reproductive cancers remain a leading cause of death in the female population, accounting for almost a third of all female cancer deaths in 2016. The Wnt signalling pathway is one of the most important oncogenic signalling pathways which is hyperactivated in cancers, including female reproductive cancers. The extension of ncRNA research into their mechanistic roles in human cancers has also led to novel reported roles of ncRNAs in the Wnt pathway and Wnt-mediated oncogenesis. This review aims to provide a critical summary of the respective roles and cellular functions of Wnt-associated lncRNAs in female reproductive cancers and explores the potential of circulating cell-free lncRNAs as diagnostic markers and lncRNAs as therapeutic targets. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Mei S Ong
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Wanpei Cai
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Yi Yuan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Hin C Leong
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Tuan Z Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Asad Mohammad
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Ming L You
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Boon C Goh
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Haematology‐OncologyNational University Health SystemSingapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Gautam Sethi
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Nicholas S Tolwinski
- Division of ScienceYale‐NUS CollegeSingapore
- Department of Biological ScienceNational University of SingaporeSingapore
| | - Peter E Lobie
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Tsinghua Berkeley Shenzhen Institute and Division of Life Science and HealthTsinghua University Graduate SchoolShenzhenChina
| | - Celestial T Yap
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
| | - Shing C Hooi
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Ruby Y Huang
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Obstetrics and GynaecologyNational University HospitalSingapore
| | - Alan P Kumar
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- Curtin Medical School, Faculty of Health ScienceCurtin UniversityPerthWAAustralia
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| |
Collapse
|
191
|
Long Y, Bolanos B, Gong L, Liu W, Goodrich KJ, Yang X, Chen S, Gooding AR, Maegley KA, Gajiwala KS, Brooun A, Cech TR, Liu X. Conserved RNA-binding specificity of polycomb repressive complex 2 is achieved by dispersed amino acid patches in EZH2. eLife 2017; 6. [PMID: 29185984 PMCID: PMC5706960 DOI: 10.7554/elife.31558] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a key chromatin modifier responsible for methylation of lysine 27 in histone H3. PRC2 has been shown to interact with thousands of RNA species in vivo, but understanding the physiological function of RNA binding has been hampered by the lack of separation-of-function mutants. Here, we use comprehensive mutagenesis and hydrogen deuterium exchange mass spectrometry (HDX-MS) to identify critical residues for RNA interaction in PRC2 core complexes from Homo sapiens and Chaetomium thermophilum, for which crystal structures are known. Preferential binding of G-quadruplex RNA is conserved, surprisingly using different protein elements. Key RNA-binding residues are spread out along the surface of EZH2, with other subunits including EED also contributing, and missense mutations of some of these residues have been found in cancer patients. The unusual nature of this protein-RNA interaction provides a paradigm for other epigenetic modifiers that bind RNA without canonical RNA-binding motifs.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Ben Bolanos
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Lihu Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Wei Liu
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Karen J Goodrich
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Siming Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Anne R Gooding
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Karen A Maegley
- Oncology Research Unit, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Ketan S Gajiwala
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Alexei Brooun
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Thomas R Cech
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
192
|
Bloomer RH, Dean C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5439-5452. [PMID: 28992087 DOI: 10.1093/jxb/erx270] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond.
Collapse
Affiliation(s)
- R H Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - C Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
193
|
Wang X, Davidovich C. Targeting PRC2: RNA offers new opportunities. Oncotarget 2017; 8:107346-107347. [PMID: 29296169 PMCID: PMC5746071 DOI: 10.18632/oncotarget.22715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/24/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xueyin Wang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia; EMBL-Australia and the ARC Centre of Excellence in Advanced Molecular Imaging, Clayton, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia; EMBL-Australia and the ARC Centre of Excellence in Advanced Molecular Imaging, Clayton, Australia
| |
Collapse
|
194
|
Polycomb Repressive Complex 2 Methylates Elongin A to Regulate Transcription. Mol Cell 2017; 68:872-884.e6. [PMID: 29153392 DOI: 10.1016/j.molcel.2017.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/21/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Polycomb repressive complex 2 (PRC2-EZH2) methylates histone H3 at lysine 27 (H3K27) and is required to maintain gene repression during development. Misregulation of PRC2 is linked to a range of neoplastic malignancies, which is believed to involve methylation of H3K27. However, the full spectrum of non-histone substrates of PRC2 that might also contribute to PRC2 function is not known. We characterized the target recognition specificity of the PRC2 active site and used the resultant data to screen for uncharacterized potential targets. The RNA polymerase II (Pol II) transcription elongation factor, Elongin A (EloA), is methylated by PRC2 in vivo. Mutation of the methylated EloA residue decreased repression of a subset of PRC2 target genes as measured by both steady-state and nascent RNA levels and perturbed embryonic stem cell differentiation. We propose that PRC2 modulates transcription of a subset of low expression target genes in part via methylation of EloA.
Collapse
|
195
|
Herrera-Merchan A, Cuadros M, Rodriguez MI, Rodriguez S, Torres R, Estecio M, Coira IF, Loidi C, Saiz M, Carmona-Saez P, Medina PP. The value of lncRNAFENDRRandFOXF1as a prognostic factor for survival of lung adenocarcinoma. Oncotarget 2017. [DOI: 10.18632/oncotarget.22154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Antonio Herrera-Merchan
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Marta Cuadros
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Maria Isabel Rodriguez
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Sandra Rodriguez
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Raul Torres
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Marcos Estecio
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Isabel F. Coira
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Claudia Loidi
- Pathological Anatomy, University Hospital Cruces, University of Pais Vasco, Spain
| | - Monica Saiz
- Pathological Anatomy, University Hospital Cruces, University of Pais Vasco, Spain
| | - Pedro Carmona-Saez
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
| | - Pedro P. Medina
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| |
Collapse
|
196
|
Marín-Béjar O, Mas AM, González J, Martinez D, Athie A, Morales X, Galduroz M, Raimondi I, Grossi E, Guo S, Rouzaut A, Ulitsky I, Huarte M. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol 2017; 18:202. [PMID: 29078818 PMCID: PMC5660458 DOI: 10.1186/s13059-017-1331-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/04/2017] [Indexed: 01/16/2023] Open
Abstract
Background It is now obvious that the majority of cellular transcripts do not code for proteins, and a significant subset of them are long non-coding RNAs (lncRNAs). Many lncRNAs show aberrant expression in cancer, and some of them have been linked to cell transformation. However, the underlying mechanisms remain poorly understood and it is unknown how the sequences of lncRNA dictate their function. Results Here we characterize the function of the p53-regulated human lncRNA LINC-PINT in cancer. We find that LINC-PINT is downregulated in multiple types of cancer and acts as a tumor suppressor lncRNA by reducing the invasive phenotype of cancer cells. A cross-species analysis identifies a highly conserved sequence element in LINC-PINT that is essential for its function. This sequence mediates a specific interaction with PRC2, necessary for the LINC-PINT-dependent repression of a pro-invasion signature of genes regulated by the transcription factor EGR1. Conclusions Our findings support a conserved functional co-dependence between LINC-PINT and PRC2 and lead us to propose a new mechanism where the lncRNA regulates the availability of free PRC2 at the proximity of co-regulated genomic loci. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1331-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oskar Marín-Béjar
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.,Present Address: Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aina M Mas
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Dannys Martinez
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Alejandro Athie
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Xabier Morales
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Mikel Galduroz
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Ivan Raimondi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Elena Grossi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Shuling Guo
- Department of Antisense Drug Discovery and Clinical Development, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Ana Rouzaut
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain. .,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
197
|
Wang X, Paucek RD, Gooding AR, Brown ZZ, Ge EJ, Muir TW, Cech TR. Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nat Struct Mol Biol 2017; 24:1028-1038. [PMID: 29058709 PMCID: PMC5771497 DOI: 10.1038/nsmb.3487] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022]
Abstract
Many studies have revealed pathways of epigenetic gene silencing by Polycomb Repressive Complex 2 (PRC2) in vivo, but understanding molecular mechanisms requires biochemistry. Here we analyze reconstituted human PRC2-nucleosome complexes. Histone modifications, the H3K27M cancer mutation, and inclusion of JARID2 or EZH1 in the PRC2 complex have unexpectedly minor effects on PRC2-nucleosome binding. Instead, protein-free linker DNA dominates the PRC2-nucleosome interaction. Specificity for CG-rich sequences is consistent with PRC2 occupying CG-rich DNA in vivo. Intriguingly, PRC2 preferentially binds methylated DNA via AEBP2, suggesting how DNA- and histone-methylation collaborate to repress chromatin. RNA is known to inhibit PRC2 activity. We find that RNA is not a methyltransferase inhibitor per se, but instead sequesters PRC2 from nucleosome substrates; this occurs because PRC2 binding requires linker DNA, and RNA and DNA binding are mutually exclusive. Together, we provide a model for PRC2 recruitment and a straightforward explanation of how actively transcribed portions of the genome bind PRC2 but escape silencing.
Collapse
Affiliation(s)
- Xueyin Wang
- Department of Chemistry & Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Richard D Paucek
- Department of Chemistry & Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Anne R Gooding
- Department of Chemistry & Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary Z Brown
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Eva J Ge
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Thomas R Cech
- Department of Chemistry & Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
198
|
Wang AH, Juan AH, Ko KD, Tsai PF, Zare H, Dell'Orso S, Sartorelli V. The Elongation Factor Spt6 Maintains ESC Pluripotency by Controlling Super-Enhancers and Counteracting Polycomb Proteins. Mol Cell 2017; 68:398-413.e6. [PMID: 29033324 DOI: 10.1016/j.molcel.2017.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/23/2017] [Accepted: 09/12/2017] [Indexed: 01/07/2023]
Abstract
Spt6 coordinates nucleosome dis- and re-assembly, transcriptional elongation, and mRNA processing. Here, we report that depleting Spt6 in embryonic stem cells (ESCs) reduced expression of pluripotency factors, increased expression of cell-lineage-affiliated developmental regulators, and induced cell morphological and biochemical changes indicative of ESC differentiation. Selective downregulation of pluripotency factors upon Spt6 depletion may be mechanistically explained by its enrichment at ESC super-enhancers, where Spt6 controls histone H3K27 acetylation and methylation and super-enhancer RNA transcription. In ESCs, Spt6 interacted with the PRC2 core subunit Suz12 and prevented H3K27me3 accumulation at ESC super-enhancers and associated promoters. Biochemical as well as functional experiments revealed that Spt6 could compete for binding of the PRC2 methyltransferase Ezh2 to Suz12 and reduce PRC2 chromatin engagement. Thus, in addition to serving as a histone chaperone and transcription elongation factor, Spt6 counteracts repression by opposing H3K27me3 deposition at critical genomic regulatory regions.
Collapse
Affiliation(s)
- A Hongjun Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20829, USA
| | - Aster H Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20829, USA
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20829, USA
| | - Pei-Fang Tsai
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20829, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20829, USA
| | - Stefania Dell'Orso
- High-Throughput Sequencing Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20829, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20829, USA.
| |
Collapse
|
199
|
Ozdilek BA, Thompson VF, Ahmed NS, White CI, Batey RT, Schwartz JC. Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Res 2017; 45:7984-7996. [PMID: 28575444 PMCID: PMC5570134 DOI: 10.1093/nar/gkx460] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
RGG/RG domains are the second most common RNA binding domain in the human genome, yet their RNA-binding properties remain poorly understood. Here, we report a detailed analysis of the RNA binding characteristics of intrinsically disordered RGG/RG domains from Fused in Sarcoma (FUS), FMRP and hnRNPU. For FUS, previous studies defined RNA binding as mediated by its well-folded domains; however, we show that RGG/RG domains are the primary mediators of binding. RGG/RG domains coupled to adjacent folded domains can achieve affinities approaching that of full-length FUS. Analysis of RGG/RG domains from FUS, FMRP and hnRNPU against a spectrum of contrasting RNAs reveals that each display degenerate binding specificity, while still displaying different degrees of preference for RNA.
Collapse
Affiliation(s)
- Bagdeser A Ozdilek
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Campus Box 347, Boulder, CO 80309, USA
| | - Valery F Thompson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Nasiha S Ahmed
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Connor I White
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado, Campus Box 596, Boulder, CO 80309, USA
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
200
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|