151
|
Warner LR, Gatzeva-Topalova PZ, Doerner PA, Pardi A, Sousa MC. Flexibility in the Periplasmic Domain of BamA Is Important for Function. Structure 2016; 25:94-106. [PMID: 27989620 DOI: 10.1016/j.str.2016.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
The β-barrel assembly machine (BAM) mediates the biogenesis of outer membrane proteins (OMPs) in Gram-negative bacteria. BamA, the central BAM subunit composed of a transmembrane β-barrel domain linked to five polypeptide transport-associated (POTRA) periplasmic domains, is thought to bind nascent OMPs and undergo conformational cycling to catalyze OMP folding and insertion. One model is that conformational flexibility between POTRA domains is part of this conformational cycling. Nuclear magnetic resonance (NMR) spectroscopy was used here to study the flexibility of the POTRA domains 1-5 in solution. NMR relaxation studies defined effective rotational correlational times and together with residual dipolar coupling data showed that POTRA1-2 is flexibly linked to POTRA3-5. Mutants of BamA that restrict flexibility between POTRA2 and POTRA3 by disulfide crosslinking displayed impaired function in vivo. Together these data strongly support a model in which conformational cycling of hinge motions between POTRA2 and POTRA3 in BamA is required for biological function.
Collapse
Affiliation(s)
- Lisa R Warner
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Petia Z Gatzeva-Topalova
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Pamela A Doerner
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Arthur Pardi
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA.
| | - Marcelo C Sousa
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
152
|
Bakelar J, Buchanan SK, Noinaj N. Structural snapshots of the β-barrel assembly machinery. FEBS J 2016; 284:1778-1786. [PMID: 27862971 DOI: 10.1111/febs.13960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
The β-barrel assembly machinery (BAM) is a multicomponent complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria, with conserved systems in both mitochondria and chloroplasts. Given its importance in the integrity of the outer membrane and in the assembly of surface exposed virulence factors, BAM is an attractive therapeutic target against pathogenic bacteria, particularly multidrug-resistant strains. While the mechanism for how BAM functions remains elusive, previous structural studies have described each of the individual components of BAM, offering only a few clues to how the complex functions. Recently, a number of structures have been reported of complexes, including that of fully assembled BAM in differing conformational states. These studies have provided the molecular blueprint detailing the atomic interactions between the components and have revealed new details about BAM, which suggest a dynamic mechanism that may use conformational changes to assist in the biogenesis of new OMPs.
Collapse
Affiliation(s)
- Jeremy Bakelar
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
153
|
Narita SI, Tokuda H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1414-1423. [PMID: 27871940 DOI: 10.1016/j.bbalip.2016.11.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Bacterial lipoproteins are a subset of membrane proteins localized on either leaflet of the lipid bilayer. These proteins are anchored to membranes through their N-terminal lipid moiety attached to a conserved Cys. Since the protein moiety of most lipoproteins is hydrophilic, they are expected to play various roles in a hydrophilic environment outside the cytoplasmic membrane. Gram-negative bacteria such as Escherichia coli possess an outer membrane, to which most lipoproteins are sorted. The Lol pathway plays a central role in the sorting of lipoproteins to the outer membrane after lipoprotein precursors are processed to mature forms in the cytoplasmic membrane. Most lipoproteins are anchored to the inner leaflet of the outer membrane with their protein moiety in the periplasm. However, recent studies indicated that some lipoproteins further undergo topology change in the outer membrane, and play critical roles in the biogenesis and quality control of the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
| | - Hajime Tokuda
- University of Morioka, Takizawa, Iwate 020-0694, Japan.
| |
Collapse
|
154
|
Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, Ashcroft AE, Radford SE, Ranson NA. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat Commun 2016; 7:12865. [PMID: 27686148 PMCID: PMC5056442 DOI: 10.1038/ncomms12865] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023] Open
Abstract
The β-barrel assembly machinery (BAM) is a ∼203 kDa complex of five proteins (BamA-E), which is essential for viability in E. coli. BAM promotes the folding and insertion of β-barrel proteins into the outer membrane via a poorly understood mechanism. Several current models suggest that BAM functions through a 'lateral gating' motion of the β-barrel of BamA. Here we present a cryo-EM structure of the BamABCDE complex, at 4.9 Å resolution. The structure is in a laterally open conformation showing that gating is independent of BamB binding. We describe conformational changes throughout the complex and interactions between BamA, B, D and E, and the detergent micelle that suggest communication between BAM and the lipid bilayer. Finally, using an enhanced reconstitution protocol and functional assays, we show that for the outer membrane protein OmpT, efficient folding in vitro requires lateral gating in BAM.
Collapse
Affiliation(s)
- Matthew G. Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Anna J. Higgins
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| |
Collapse
|
155
|
Wang X, Jiang F, Zheng J, Chen L, Dong J, Sun L, Zhu Y, Liu B, Yang J, Yang G, Jin Q. The outer membrane phospholipase A is essential for membrane integrity and type III secretion in Shigella flexneri. Open Biol 2016; 6:rsob.160073. [PMID: 27655730 PMCID: PMC5043575 DOI: 10.1098/rsob.160073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Outer membrane phospholipase A (OMPLA) is an enzyme located in the outer membrane of Gram-negative bacteria. OMPLA exhibits broad substrate specificity, and some of its substrates are located in the cellular envelope. Generally, the enzymatic activity can only be induced by perturbation of the cell envelope integrity through diverse methods. Although OMPLA has been thoroughly studied as a membrane protein in Escherichia coli and is constitutively expressed in many other bacterial pathogens, little is known regarding the functions of OMPLA during the process of bacterial infection. In this study, the proteomic and transcriptomic data indicated that OMPLA in Shigella flexneri, termed PldA, both stabilizes the bacterial membrane and is involved in bacterial infection under ordinary culture conditions. A series of physiological assays substantiated the disorganization of the bacterial outer membrane and the periplasmic space in the ΔpldA mutant strain. Furthermore, the ΔpldA mutant strain showed decreased levels of type III secretion system expression, contributing to the reduced internalization efficiency in host cells. The results of this study support that PldA, which is widespread across Gram-negative bacteria, is an important factor for the bacterial life cycle, particularly in human pathogens.
Collapse
Affiliation(s)
- Xia Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Feng Jiang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Jianhua Zheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Lihong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Jie Dong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Lilian Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Yafang Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Guowei Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| |
Collapse
|
156
|
Abstract
AbstractIncreasing evidence suggests that most proteins occur and function in complexes rather than as isolated entities when embedded in cellular membranes. Nuclear magnetic resonance (NMR) provides increasing possibilities to study structure, dynamics and assembly of such systems. In our review, we discuss recent methodological progress to study membrane–protein complexes (MPCs) by NMR, starting with expression, isotope-labeling and reconstitution protocols. We review approaches to deal with spectral complexity and limited spectral spectroscopic sensitivity that are usually encountered in NMR-based studies of MPCs. We highlight NMR applications in various classes of MPCs, including G-protein-coupled receptors, ion channels and retinal proteins and extend our discussion to protein–protein complexes that span entire cellular compartments or orchestrate processes such as protein transport across or within membranes. These examples demonstrate the growing potential of NMR-based studies of MPCs to provide critical insight into the energetics of protein–ligand and protein–protein interactions that underlie essential biological functions in cellular membranes.
Collapse
|
157
|
Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Proc Natl Acad Sci U S A 2016; 113:E5034-43. [PMID: 27493217 DOI: 10.1073/pnas.1602382113] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion.
Collapse
|
158
|
Plummer AM, Fleming KG. From Chaperones to the Membrane with a BAM! Trends Biochem Sci 2016; 41:872-882. [PMID: 27450425 DOI: 10.1016/j.tibs.2016.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Abstract
Outer membrane proteins (OMPs) play a central role in the integrity of the outer membrane of Gram-negative bacteria. Unfolded OMPs (uOMPs) transit across the periplasm, and subsequent folding and assembly are crucial for biogenesis. Chaperones and the essential β-barrel assembly machinery (BAM) complex facilitate these processes. In vitro studies suggest that some chaperones sequester uOMPs in internal cavities during their periplasmic transit to prevent deleterious aggregation. Upon reaching the outer membrane, the BAM complex acts catalytically to accelerate uOMP folding. Complementary in vivo experiments have revealed the localization and activity of the BAM complex in living cells. Completing an understanding of OMP biogenesis will require a holistic view of the interplay among the individual components discussed here.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
159
|
Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens. Structure 2016; 24:965-976. [PMID: 27161977 DOI: 10.1016/j.str.2016.03.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 01/16/2023]
Abstract
Incorporation of lipopolysaccharide (LPS) into the outer membrane of Gram-negative bacteria is essential for viability, and is accomplished by a two-protein complex called LptDE. We solved crystal structures of the core LptDE complexes from Yersinia pestis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and a full-length structure of the K. pneumoniae LptDE complex. Our structures adopt the same plug and 26-strand β-barrel architecture found recently for the Shigella flexneri and Salmonella typhimurium LptDE structures, illustrating a conserved fold across the family. A comparison of the only two full-length structures, SfLptDE and our KpLptDE, reveals a 21° rotation of the LptD N-terminal domain that may impart flexibility on the trans-envelope LptCAD scaffold. Utilizing mutagenesis coupled to an in vivo functional assay and molecular dynamics simulations, we demonstrate the critical role of Pro231 and Pro246 in the function of the LptD lateral gate that allows partitioning of LPS into the outer membrane.
Collapse
|
160
|
Krachler AM. BamB and outer membrane biogenesis - The Achilles' heel for targeting Klebsiella infections? Virulence 2016; 7:508-11. [PMID: 27129024 DOI: 10.1080/21505594.2016.1184388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anne Marie Krachler
- a Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham , UK
| |
Collapse
|