151
|
Erbes T, Hirschfeld M, Waldeck S, Rücker G, Jäger M, Willmann L, Kammerer B, Mayer S, Gitsch G, Stickeler E. Hyperthermia-driven aberrations of secreted microRNAs in breast cancer in vitro. Int J Hyperthermia 2016; 32:630-42. [PMID: 27380148 DOI: 10.3109/02656736.2016.1161832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Expression profile alterations of nine breast cancer (BC)-associated secreted microRNAs (miRs) were determined under microenvironmental alterations occurring in tumour progression, metastasis or specific oncological treatment modalities. Thereto, the potential influence of the exogenic stimuli hypoxia, acidosis and hyperthermia was investigated in vitro. MATERIAL AND METHODS Four established BC cell lines were applied as in vitro BC model systems. Quantitative analyses of secreted microRNA specimens were performed by RNA isolation from cell culture supernatant and subsequent real-time PCR in cells under physiological versus hypoxic, acidic or hyperthermia conditions. RESULTS The in vitro application of exogenic stimuli hypoxia, extracellular acidosis and hyperthermia caused heterogeneous expression alterations for the investigated secreted miRNA phenotypes. The majority of relevant exogenic stimuli-dependent microRNA expression alterations were restricted to single events displaying distinct cell type and stimulus dependent correlations only. Most remarkably, hyperthermia triggered a uniform significant down-regulatory effect on the expression levels of the three secreted microRNAs miR-10b, miR-15b and miR-139, respectively. The marked decrease in miR-10b and miR-15b levels was detectable in all four, while miR-139 was found significantly reduced in three out of four BC cell lines. CONCLUSION Hyperthermia-dependent down-regulatory influence on three distinct BC-related microRNAs in vitro generates translational aspects for clinical BC treatment, since the identified microRNAs miR-10b, miR-15b and miR-139 are known to have oncogenic as well as tumour suppressor functions in BC. However, an evaluation regarding the potential impact of microRNA-related hyperthermia-dependent alterations for innovative BC treatment approaches demands further analysis including in vivo data.
Collapse
Affiliation(s)
- Thalia Erbes
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Marc Hirschfeld
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany ;,b German Cancer Consortium (DKTK) , German Cancer Research Center (DKFZ) , Heidelberg , Germany ;,c Institute of Veterinary Medicine , Georg-August-University , Göttingen , Germany
| | - Silvia Waldeck
- d Department of Internal Medicine I, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Gerta Rücker
- e Institute for Medical Biometry and Statistics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Markus Jäger
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Lucas Willmann
- f Centre for Biological Systems Analysis (ZBSA) , Albert-Ludwigs University , Freiburg , Germany ;,g Institute of Biology II , Albert-Ludwigs University , Freiburg , Germany
| | - Bernd Kammerer
- f Centre for Biological Systems Analysis (ZBSA) , Albert-Ludwigs University , Freiburg , Germany
| | - Sebastian Mayer
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Gerald Gitsch
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Elmar Stickeler
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany ;,h Department of Gynaecology and Obstetrics , University Medical Centre, RWTH , Pauwelsstrasse 30 , 52074 Aachen , Germany
| |
Collapse
|
152
|
Azlan A, Dzaki N, Azzam G. Argonaute: The executor of small RNA function. J Genet Genomics 2016; 43:481-94. [PMID: 27569398 DOI: 10.1016/j.jgg.2016.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/08/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
Abstract
The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Najat Dzaki
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
153
|
Lai X, Wolkenhauer O, Vera J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res 2016; 44:6019-35. [PMID: 27317695 PMCID: PMC5291278 DOI: 10.1093/nar/gkw550] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
The discovery of microRNAs (miRNAs) has added a new player to the regulation of gene expression. With the increasing number of molecular species involved in gene regulatory networks, it is hard to obtain an intuitive understanding of network dynamics. Mathematical modelling can help dissecting the role of miRNAs in gene regulatory networks, and we shall here review the most recent developments that utilise different mathematical modelling approaches to provide quantitative insights into the function of miRNAs in the regulation of gene expression. Key miRNA regulation features that have been elucidated via modelling include: (i) the role of miRNA-mediated feedback and feedforward loops in fine-tuning of gene expression; (ii) the miRNA–target interaction properties determining the effectiveness of miRNA-mediated gene repression; and (iii) the competition for shared miRNAs leading to the cross-regulation of genes. However, there is still lack of mechanistic understanding of many other properties of miRNA regulation like unconventional miRNA–target interactions, miRNA regulation at different sub-cellular locations and functional miRNA variant, which will need future modelling efforts to deal with. This review provides an overview of recent developments and challenges in this field.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumour Immunology, Department of Dermatology, Erlangen University Hospital and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, 18051, Germany Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, 7600, South Africa
| | - Julio Vera
- Laboratory of Systems Tumour Immunology, Department of Dermatology, Erlangen University Hospital and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| |
Collapse
|
154
|
Wu SQ, Zhang LH, Huang HB, Li YP, Niu WY, Zhan R. miR-299-5p promotes cell growth and regulates G1/S transition by targeting p21Cip1/Waf1 in acute promyelocytic leukemia. Oncol Lett 2016; 12:741-747. [PMID: 27347210 DOI: 10.3892/ol.2016.4621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/15/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) are often located in genomic breakpoint regions and are hypothesized to be important regulators involved in the regulation of critical cell processes, including cell apoptosis, proliferation and differentiation. miR-299 has been reported to be upregulated in acute promyelocytic leukemia (APL); however, the function and mechanistic role of miR-299 in APL remains unknown. The present study demonstrated mir-299 significantly induced cell growth and cell cycle progression at the G1/S transition in APL cells. Notably, the present study revealed that miR-299-5p induces these effects, whereas miR-299-3p does not. Additional studies demonstrated that in APL cells the tumor suppressor p21Cip1/Waf1 is a downstream target of miR-299; miR-299 binds directly to the 3' untranslated region of p21Cip1/Waf1, and reduces protein, but not mRNA, levels of p21Cip1/Waf1. The present findings demonstrate that miR-299 exerts growth-promoting effects in APL cells through the suppression of p21Cip1/Waf1. Overall, the present study demonstrates that p21Cip1/Waf1 is a direct functional target of miR-299 in APL.
Collapse
Affiliation(s)
- Shun-Quan Wu
- Fujian Institute of Hematology, Affiliated Union Hospital of Fujian Medical University, Fujian Provincial Key Laboratory on Hematology, Fuzhou, Fujian 350001, P.R. China
| | - Lang-Hui Zhang
- Fujian Institute of Hematology, Affiliated Union Hospital of Fujian Medical University, Fujian Provincial Key Laboratory on Hematology, Fuzhou, Fujian 350001, P.R. China
| | - Hao-Bo Huang
- Fujian Institute of Hematology, Affiliated Union Hospital of Fujian Medical University, Fujian Provincial Key Laboratory on Hematology, Fuzhou, Fujian 350001, P.R. China
| | - Ya-Ping Li
- Fujian Institute of Hematology, Affiliated Union Hospital of Fujian Medical University, Fujian Provincial Key Laboratory on Hematology, Fuzhou, Fujian 350001, P.R. China
| | - Wen-Yan Niu
- Fujian Institute of Hematology, Affiliated Union Hospital of Fujian Medical University, Fujian Provincial Key Laboratory on Hematology, Fuzhou, Fujian 350001, P.R. China
| | - Rong Zhan
- Fujian Institute of Hematology, Affiliated Union Hospital of Fujian Medical University, Fujian Provincial Key Laboratory on Hematology, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
155
|
Choy FC, Klarić TS, Koblar SA, Lewis MD. miR-744 and miR-224 Downregulate Npas4 and Affect Lineage Differentiation Potential and Neurite Development During Neural Differentiation of Mouse Embryonic Stem Cells. Mol Neurobiol 2016; 54:3528-3541. [PMID: 27189618 DOI: 10.1007/s12035-016-9912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
Neuronal PAS domain protein 4 (Npas4) is a brain-specific transcription factor whose expression is enriched in neurogenic regions of the brain. In addition, it was demonstrated that Npas4 expression is dynamic and highly regulated during neural differentiation of embryonic stem cells (ESCs). While these findings implicate a role for Npas4 in neurogenesis, the underlying mechanisms of regulation remain unknown. Given that growing evidence suggests that microRNAs (miRNAs) play important roles in both embryonic and adult neurogenesis, we reasoned that miRNAs are good candidates for regulating Npas4 expression during neural differentiation of ESCs. In this study, we utilized the small RNA sequencing method to profile miRNA expression during neural differentiation of mouse ESCs. Two differentially expressed miRNAs were identified to be able to significantly reduce reporter gene activity by targeting the Npas4 3'UTR, namely miR-744 and miR-224. More importantly, ectopic expression of these miRNAs during neural differentiation resulted in downregulation of endogenous Npas4 expression. Subsequent functional analysis revealed that overexpression of either miR-744 or miR-224 delayed early neural differentiation, reduced GABAergic neuron production and inhibited neurite outgrowth. Collectively, our findings indicate that Npas4 not only functions at the early stages of neural differentiation but may also, in part, contribute to neuronal subtype specification and neurite development.
Collapse
Affiliation(s)
- Fong Chan Choy
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Thomas S Klarić
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Simon A Koblar
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Martin D Lewis
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia. .,South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| |
Collapse
|
156
|
Seenprachawong K, Nuchnoi P, Nantasenamat C, Prachayasittikul V, Supokawej A. Computational identification of miRNAs that modulate the differentiation of mesenchymal stem cells to osteoblasts. PeerJ 2016; 4:e1976. [PMID: 27168985 PMCID: PMC4860310 DOI: 10.7717/peerj.1976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous noncoding RNAs that play an instrumental role in post-transcriptional modulation of gene expression. Genes related to osteogenesis (i.e., RUNX2, COL1A1 and OSX) is important in controlling the differentiation of mesenchymal stem cells (MSCs) to bone tissues. The regulated expression level of miRNAs is critically important for the differentiation of MSCs to preosteoblasts. The understanding of miRNA regulation in osteogenesis could be applied for future applications in bone defects. Therefore, this study aims to shed light on the mechanistic pathway underlying osteogenesis by predicting miRNAs that may modulate this pathway. This study investigates RUNX2, which is a major transcription factor for osteogenesis that drives MSCs into preosteoblasts. Three different prediction tools were employed for identifying miRNAs related to osteogenesis using the 3’UTR of RUNX2 as the target gene. Of the 1,023 miRNAs, 70 miRNAs were found by at least two of the tools. Candidate miRNAs were then selected based on their free energy values, followed by assessing the probability of target accessibility. The results showed that miRNAs 23b, 23a, 30b, 143, 203, 217, and 221 could regulate the RUNX2 gene during the differentiation of MSCs to preosteoblasts.
Collapse
Affiliation(s)
- Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Pornlada Nuchnoi
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| |
Collapse
|
157
|
Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol 2016; 138:1690-1700. [PMID: 27283384 DOI: 10.1016/j.jaci.2016.02.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/31/2016] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Air pollution's association with asthma may be due to its augmentation of allergenic effects, but the role of microRNA (miRNA) and gene expression in this synergy is unknown. OBJECTIVE We sought to determine whether exposure to allergen, exposure to diesel exhaust (DE), or coexposures modulate miRNA, gene expression, or inflammatory pathways and whether these measurements are correlated. METHODS Fifteen participants with atopy completed this controlled study of 2 hours of filtered air or DE (300 μg PM2.5/m3) exposure, followed by saline-controlled segmental bronchial allergen challenge. Gene and miRNA expression in bronchial brushings and lung inflammatory markers were measured 48 hours later, in study arms separated by approximately 4 weeks. Expression of miRNAs, messenger RNAs, and inflammatory markers and their interrelationships were determined using regression. RESULTS Robust linear models indicated that DE plus saline and DE plus allergen significantly modulated the highest number of miRNAs and messenger RNAs, respectively, relative to control (filtered air plus saline). In mixed models, allergen exposure modulated (q ≤ 0.2) miRNAs including miR-183-5p, miR-324-5p, and miR-132-3p and genes including NFKBIZ and CDKN1A, but DE did not significantly modify this allergenic effect. Repression of CDKN1A by allergen-induced miR-132-3p may contribute to shedding of bronchial epithelial cells. CONCLUSIONS Expression of specific miRNAs and genes associated with bronchial immune responses were significantly modulated by DE or allergen. However, DE did not augment the effect of allergen at 48 hours, suggesting that adjuvancy may be transient or require higher or prolonged exposure. In silico analysis suggested a possible mechanism contributing to epithelial wall damage following allergen exposure.
Collapse
|
158
|
Liu Z, Zhang J, Yuan X, Liu B, Liu Y, Li A, Zhang Y, Sun X, Tuo S. Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers. MOLECULAR BIOSYSTEMS 2016; 11:2227-37. [PMID: 26052692 DOI: 10.1039/c5mb00257e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) play an indispensable role in cancer initiation and progression. Different cancers have some common hallmarks in general. Analyzing miRNAs that consistently contribute to different cancers can help us to discover the relationship between miRNAs and traits shared by cancers. Most previous works focus on analyzing single miRNA. However, dysregulation of a single miRNA is generally not sufficient to contribute to complex cancer processes. In this study, we put emphasis on analyzing cooperation of miRNAs across cancers. We assume that miRNAs can cooperatively regulate oncogenic pathways and contribute to cancer hallmarks. Such a cooperation is modeled by a miRNA module referred to as a pan-cancer conserved miRNA module. The module consists of miRNAs which simultaneously regulate cancers and are significantly intra-correlated. A novel computational workflow for the module discovery is presented. Multiple modules are discovered from miRNA expression profiles using the method. The function of top two ranked modules are analyzed using the mRNAs which correlate to all the miRNAs in a module across cancers, inferring that the two modules function in regulating the cell cycle which relates to cancer hallmarks as self sufficiency in growth signals and insensitivity to antigrowth signals. Additionally, two novel miRNAs mir-590 and mir-629 are found to cooperate with well-known onco-miRNAs in the modules to contribute to cancers. We also found that PTEN, which is a well known tumor suppressor that regulates the cell cycle, is a common target of miRNAs in the top-one module and cooperative control of PTEN can be a reason for the miRNAs' cooperation. We believe that analyzing the cooperative mechanism of the miRNAs in modules rather than focusing on only single miRNAs may help us know more about the complicated relationship between miRNAs and cancers and develop more effective treatment strategies for cancers.
Collapse
Affiliation(s)
- Zhaowen Liu
- School of Computer Science and Technology, Xidian University, Xi'an 710071, Shannxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Yao S. MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol Proced Online 2016; 18:8. [PMID: 26966421 PMCID: PMC4785656 DOI: 10.1186/s12575-016-0037-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 01/07/2023] Open
Abstract
Stem cells are unspecialized/undifferentiated cells that exist in embryos and adult tissues or can be converted from somatic differentiated cells. Use of stem cells for tissue regeneration and tissue engineering has been a cornerstone of the regenerative medicine. Stem cells are also believed to exist in cancer tissues, namely cancer stem cells (CSCs). Growing evidence suggests that CSCs are the culprit of cancer dormancy, progression and recurrence, and thus have recently received great attention. MicroRNAs (miRNAs) are a group of short, non-coding RNAs that regulate expression of a wide range of genes at a post-transcriptional manner. They are emerging as key regulators of stem cell behaviors. This mini review summarizes the basic biogenesis and mode of actions of miRNAs, recent progress and discoveries of miRNAs in cellular reprogramming, stem cell differentiation and cellular communication, as well as miRNAs in CSCs. Some potential of miRNAs in future biomedical applications and research pertaining to stem cells are briefly discussed.
Collapse
Affiliation(s)
- Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803 USA
| |
Collapse
|
160
|
Cha MJ, Choi E, Lee S, Song BW, Yoon C, Hwang KC. The microRNA-dependent cell fate of multipotent stromal cells differentiating to endothelial cells. Exp Cell Res 2016; 341:139-146. [PMID: 26854694 DOI: 10.1016/j.yexcr.2016.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/15/2023]
Abstract
In the endothelial recovery process, bone marrow-derived MSCs are a potential source of cells for both research and therapy, and their capacities to self-renew and to differentiate into all the cell types in the human body make them a promising therapeutic agent for remodeling cellular differentiation and a valuable resource for the treatment of many diseases. Based on the results provided in a miRNA database, we selected miRNAs with unique targets in cell fate-related signaling pathways. The tested miRNAs targeting GSK-3β (miR-26a), platelet-derived growth factor receptor, and CD133 (miR-26a and miR-29b) induced MSC differentiation into functional ECs, whereas miRNAs targeting VEGF receptor (miR-15, miR-144, miR-145, and miR-329) inhibited MSC differentiation into ECs through VEGF stimulation. In addition, the expression levels of these miRNAs were correlated with in vivo physiological endothelial recovery processes. These findings indicate that the miRNA expression profile is distinct for cells in different stages of differentiation from MSCs to ECs and that specific miRNAs can function as regulators of endothelialization.
Collapse
Affiliation(s)
- Min-Ji Cha
- Institute for Integrative Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Republic of Korea; Comprehensive Care Hospital for Cancer Patients, Catholic Kwandong University International St. Mary's Hospital, Incheon 22711, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon 22711, Republic of Korea
| | - Eunhyun Choi
- Catholic Kwandong University International St. Mary's Hospital, Incheon 22711, Republic of Korea; Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Republic of Korea
| | - Seahyoung Lee
- Catholic Kwandong University International St. Mary's Hospital, Incheon 22711, Republic of Korea; Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Republic of Korea
| | - Byeong-Wook Song
- Institute for Integrative Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon 22711, Republic of Korea
| | - Cheesoon Yoon
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Republic of Korea; Department of Cardiovascular & Thoracic Surgery, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Republic of Korea
| | - Ki-Chul Hwang
- Catholic Kwandong University International St. Mary's Hospital, Incheon 22711, Republic of Korea; Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Republic of Korea.
| |
Collapse
|
161
|
Vargas-Torres SL, Portari EA, Silva AL, Klumb EM, da Rocha Guillobel HC, de Camargo MJ, Santos-Rebouças CB, Russomano FB, Macedo JMB. Roles of CDKN1A gene polymorphisms (rs1801270 and rs1059234) in the development of cervical neoplasia. Tumour Biol 2016; 37:10469-78. [PMID: 26846214 DOI: 10.1007/s13277-016-4850-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/13/2016] [Indexed: 12/16/2022] Open
Abstract
The CDKN1A gene product is a p53 downstream effector, which participates in cell differentiation, development process, repair, apoptosis, senescence, migration, and tumorigenesis. The objective of our study was investigated the importance of two polymorphisms in the CDKN1A gene, rs1801270 (31C>A) and rs1059234 (70C>T), for the development of cervical lesions in a Southeastern Brazilian population (283 cases, stratified by lesion severity, and 189 controls). CDKN1A genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and/or DNA sequencing. CDKN1A 31A allele presents a genetic pattern of protection for the development of high-grade cervical lesions (CC vs CA genotype: OR = 0.60; 95 % CI = 0.38-0.95; p = 0.029; CA+AA vs CC genotype: OR = 0.60; 95 % CI = 0.39-0.93; p = 0.021). Allele distributions of the CDKN1A 70C>T polymorphism were also different between the two study groups, with the CDKN1A 70T allele being less prevalent among cases. Moreover, the double heterozygote genotype combination 31CA-70CT decreases the chance of developing high-grade squamous intraepithelial lesion (HSIL) and cancer (OR = 0.55; 95 % CI = 0.32-0.93; p = 0.034) by 50 %, representing a protective factor against the development of more severe cervical lesions.
Collapse
Affiliation(s)
- Sandra Liliana Vargas-Torres
- Department of Biochemistry, Biology Institute, State University of Rio de Janeiro - UERJ, Av. 28 de Setembro, 87 fundos 4°. andar, Vila Isabel, Rio de Janeiro, RJ, Brazil, CEP 20551-030
| | - Elyzabeth Avvad Portari
- Department of Pathology, State University of Rio de Janeiro - UERJ, Rio de Janeiro, Brazil.,Department of Pathology, Fernandes Figueira Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | - Amanda Lima Silva
- Department of Biochemistry, Biology Institute, State University of Rio de Janeiro - UERJ, Av. 28 de Setembro, 87 fundos 4°. andar, Vila Isabel, Rio de Janeiro, RJ, Brazil, CEP 20551-030
| | - Evandro Mendes Klumb
- Department of Rheumatology, State University of Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brazil
| | | | - Maria José de Camargo
- Department of Gynecology, Fernandes Figueira Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Fábio Bastos Russomano
- Department of Gynecology, Fernandes Figueira Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | - Jacyara Maria Brito Macedo
- Department of Biochemistry, Biology Institute, State University of Rio de Janeiro - UERJ, Av. 28 de Setembro, 87 fundos 4°. andar, Vila Isabel, Rio de Janeiro, RJ, Brazil, CEP 20551-030.
| |
Collapse
|
162
|
Agnoletto C, Brunelli L, Melloni E, Pastorelli R, Casciano F, Rimondi E, Rigolin GM, Cuneo A, Secchiero P, Zauli G. The anti-leukemic activity of sodium dichloroacetate in p53mutated/null cells is mediated by a p53-independent ILF3/p21 pathway. Oncotarget 2016; 6:2385-96. [PMID: 25544776 PMCID: PMC4385858 DOI: 10.18632/oncotarget.2960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/09/2014] [Indexed: 11/25/2022] Open
Abstract
B-chronic lymphocytic leukemia (B-CLL) patients harboring p53 mutations are invariably refractory to therapies based on purine analogues and have limited treatment options and poor survival. Having recently demonstrated that the mitochondria-targeting small molecule sodium dichloroacetate (DCA) exhibits anti-leukemic activity in p53wild-type B-CLL cells, the aim of this study was to evaluate the effect of DCA in p53mutated B-CLL cells and in p53mutated/null leukemic cell lines. DCA exhibited comparable cytotoxicity in p53wild-type and p53mutated B-CLL patient cell cultures, as well as in p53mutated B leukemic cell lines (MAVER, MEC-1, MEC-2). At the molecular level, DCA promoted the transcriptional induction of p21 in all leukemic cell types investigated, including p53null HL-60. By using a proteomic approach, we demonstrated that DCA up-regulated the ILF3 transcription factor, which is a known regulator of p21 expression. The role of the ILF3/p21 axis in mediating the DCA anti-leukemic activity was underscored by knocking-down experiments. Indeed, transfection with ILF3 and p21 siRNAs significantly decreased both the DCA-induced p21 expression and the DCA-mediated cytotoxicity. Taken together, our results emphasize that DCA is a small molecule that merits further evaluation as a therapeutic agent also for p53mutated leukemic cells, by acting through the induction of a p53-independent pathway.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Laura Brunelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Roberta Pastorelli
- Institute of Pharmacological Researches, IRCCS "Mario Negri", Milano, Italy
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Gian Matteo Rigolin
- Department of Medical Sciences, University of Ferrara-Arcispedale S. Anna, Ferrara, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, University of Ferrara-Arcispedale S. Anna, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
163
|
Ma Y, Shan Z, Ma J, Wang Q, Chu J, Xu P, Qin A, Fan S. Validation of downregulated microRNAs during osteoclast formation and osteoporosis progression. Mol Med Rep 2016; 13:2273-80. [PMID: 26783047 DOI: 10.3892/mmr.2016.4765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/14/2015] [Indexed: 11/06/2022] Open
Abstract
Enhanced osteoclast formation and function have essential roles during post‑menopausal osteoporosis. A number of cytokines have been reported to regulate osteoclastogenesis and to be involved during the pathogenesis of osteoporosis. However, the regulation of osteolysis by microRNAs (miRNAs) has remained to be fully elucidated. The present study used a microarray analysis to identify a variety of miRNAs that are differentially expressed during osteoclast formation. Six down‑regulated miRNAs, miR‑21a‑5p, miR‑27a‑3p, let‑7i‑5p, miR‑22‑3p, miR‑340‑5p and miR‑23a‑5p, whose molecular mechanisms during osteoclast differentiation have not been reported previously, were further assessed. Using an osteoclast formation assay and a mouse model of progressive osteoporosis, the downregulation of these miRNAs was validated in vitro and in vivo. Of note, the expression patterns of these six miRNAs were associated with the progression of osteoporosis. Therefore, these miRNAs are of potential diagnostic and therapeutic value for osteolytic diseases.
Collapse
Affiliation(s)
- Yan Ma
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhi Shan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jianjun Ma
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Qiang Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Junjie Chu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Peiwei Xu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
164
|
Benz F, Roy S, Trautwein C, Roderburg C, Luedde T. Circulating MicroRNAs as Biomarkers for Sepsis. Int J Mol Sci 2016; 17:ijms17010078. [PMID: 26761003 PMCID: PMC4730322 DOI: 10.3390/ijms17010078] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022] Open
Abstract
Sepsis represents a major cause of lethality during intensive care unit (ICU) treatment. Pharmacological treatment strategies for sepsis are still limited and mainly based on the early initiation of antibiotic and supportive treatment. In this context, numerous clinical and serum based markers have been evaluated for the diagnosis, the severity, and the etiology of sepsis. However until now, few of these factors could be translated into clinical use. MicroRNAs (miRNAs) do not encode for proteins but regulate gene expression by inhibiting the translation or transcription of their target mRNAs. Recently it was demonstrated that miRNAs are released into the circulation and that the spectrum of circulating miRNAs might be altered during various pathologic conditions, such as inflammation, infection, and sepsis. By using array- and single PCR-based methods, a variety of deregulated miRNAs, including miR-25, miR-133a, miR-146, miR-150, and miR-223, were described in the context of sepsis. Some of the miRNAs correlated with the disease stage, as well as patients' short and long term prognosis. Here, we summarize the current findings on the role of circulating miRNAs in the diagnosis and staging of sepsis in critically ill patients. We compare data from patients with findings from animal models and, finally, highlight the challenges and drawbacks that currently prevent the use of circulating miRNAs as biomarkers in clinical routine.
Collapse
Affiliation(s)
- Fabian Benz
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Sanchari Roy
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen 52074, Germany.
| | | | | |
Collapse
|
165
|
Cataldo A, Cheung DG, Balsari A, Tagliabue E, Coppola V, Iorio MV, Palmieri D, Croce CM. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget 2016; 7:786-97. [PMID: 26623722 PMCID: PMC4808033 DOI: 10.18632/oncotarget.6381] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023] Open
Abstract
The identification of the molecular mechanisms involved in the establishment of the resistant phenotype represents a critical need for the development of new strategies to prevent or overcome cancer resistance to anti-neoplastic treatments.Breast cancer is the leading cause of cancer-related deaths in women, and resistance to chemotherapy negatively affects patient outcomes. Here, we investigated the potential role of miR-302b in the modulation of breast cancer cell resistance to cisplatin.miR-302b overexpression enhances sensitivity to cisplatin in breast cancer cell lines, reducing cell viability and proliferation in response to the treatment. We also identified E2F1, a master regulator of the G1/S transition, as a direct target gene of miR-302b. E2F1 transcriptionally activates ATM, the main cellular sensor of DNA damage. Through the negative regulation of E2F1, miR-302b indirectly affects ATM expression, abrogating cell-cycle progression upon cisplatin treatment. Moreover miR-302b, impairs the ability of breast cancer cells to repair damaged DNA, enhancing apoptosis activation following cisplatin treatment.These findings indicate that miR-302b plays a relevant role in breast cancer cell response to cisplatin through the modulation of the E2F1/ATM axis, representing a valid candidate as therapeutic tool to overcome chemotherapy resistance.
Collapse
Affiliation(s)
- Alessandra Cataldo
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Douglas G. Cheung
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrea Balsari
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Vincenzo Coppola
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Marilena V. Iorio
- Start Up Unit, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Dario Palmieri
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
166
|
MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity. PLoS One 2015; 10:e0144810. [PMID: 26693910 PMCID: PMC4691205 DOI: 10.1371/journal.pone.0144810] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression that are differentially regulated during development and in inflammatory diseases. A role for miRNAs in allergic asthma is emerging and further investigation is required to determine whether they may serve as potential therapeutic targets. We profiled miRNA expression in murine lungs from an ovalbumin-induced allergic airways disease model, and compared expression to animals receiving dexamethasone treatment and non-allergic controls. Our analysis identified 29 miRNAs that were significantly altered during allergic inflammation. Target prediction analysis revealed novel genes with altered expression in allergic airways disease and suggests synergistic miRNA regulation of target mRNAs. To assess the impacts of one induced miRNA on pathology, we targeted miR-155-5p using a specific antagomir. Antagomir administration successfully reduced miR-155-5p expression with high specificity, but failed to alter the disease phenotype. Interestingly, further investigation revealed that antagomir delivery has variable efficacy across different immune cell types, effectively targeting myeloid cell populations, but exhibiting poor uptake in lymphocytes. Our findings demonstrate that antagomir-based targeting of miRNA function in the lung is highly specific, but highlights cell-specificity as a key limitation to be considered for antagomir-based strategies as therapeutics.
Collapse
|
167
|
Fischer S, Handrick R, Aschrafi A, Otte K. Unveiling the principle of microRNA-mediated redundancy in cellular pathway regulation. RNA Biol 2015; 12:238-47. [PMID: 25826657 DOI: 10.1080/15476286.2015.1017238] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Understanding the multifaceted nature of microRNA (miRNA) function in mammalian cells is still a challenge. Commonly accepted principles of cooperativity and multiplicity of miRNA function imply that individual mRNAs can be targeted by several miRNAs whereas a single miRNA may concomitantly regulate a subset of different genes. However, there is a paucity of information whether multiple miRNAs regulate critical cellular events and thereby acting redundantly. To gain insight into this notion, we conducted an unbiased high-content miRNA screen by individually introducing 1139 miRNA mimics into Chinese hamster ovary (CHO) cells. We discovered that 66% of all miRNAs significantly impacted on proliferation, protein expression, apoptosis and necrosis. In summary, we provide evidence for a substantial degree of redundancy among miRNAs to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Simon Fischer
- a Institute of Applied Biotechnology; University of Applied Sciences Biberach ; Biberach , Germany
| | | | | | | |
Collapse
|
168
|
LI YIFAN, CHEN DUQUN, JIN LU, LIU JIAJU, SU ZHENGMING, LI YUCHI, GUI YAOTING, LAI YONGQING. MicroRNA-20b-5p functions as a tumor suppressor in renal cell carcinoma by regulating cellular proliferation, migration and apoptosis. Mol Med Rep 2015; 13:1895-901. [DOI: 10.3892/mmr.2015.4692] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 10/14/2015] [Indexed: 11/06/2022] Open
|
169
|
Fu X, Li T, Chen J, Dong Y, Qiu J, Kang K, Zhang W. Functional screen for microRNAs of Nilaparvata lugens reveals that targeting of glutamine synthase by miR-4868b regulates fecundity. JOURNAL OF INSECT PHYSIOLOGY 2015; 83:22-9. [PMID: 26546713 DOI: 10.1016/j.jinsphys.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/08/2015] [Accepted: 11/03/2015] [Indexed: 05/14/2023]
Abstract
Insect fecundity is regulated by the interaction of genotypes and the environment. MicroRNAs (miRNAs) also act in insect development and reproduction by regulating genes involved in these physiological processes. Although hundreds of insect miRNAs have been identified, the biological roles of most remain poorly understood. Here, we used a multi-algorithm approach for miRNA target prediction in 3'UTRs of fecundity-related genes in the brown planthopper (BPH) Nilaparvata lugens and identified 38 putative miRNAs targeting 9 fecundity-related genes. High-ranked miRNAs were selected for target validation. Using a dual luciferase reporter assay in S2 cells, we experimentally verified N. lugens glutamine synthetase (NlGS) as an authentic target of microRNA-4868b (miR-4868b). In the females, NlGS protein expression was down-regulated after injection of a miR-4868b mimic but up-regulated after injection of a miR-4868b inhibitor. In addition, overexpression of miR-4868b reduced fecundity, and disrupted ovary development and Vg expression in N. lugens. These findings showed that miR-4868b is involved in regulating N. lugens fecundity by targeting NlGS. Moreover, this study may lead to better understanding of the fecundity of this important agricultural insect pest.
Collapse
Affiliation(s)
- Xian Fu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tengchao Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Chen
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Dong
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jieqi Qiu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
170
|
Amin R, Morita-Fujimura Y, Tawarayama H, Semba K, Chiba N, Fukumoto M, Ikawa S. ΔNp63α induces quiescence and downregulates the BRCA1 pathway in estrogen receptor-positive luminal breast cancer cell line MCF7 but not in other breast cancer cell lines. Mol Oncol 2015; 10:575-93. [PMID: 26704768 DOI: 10.1016/j.molonc.2015.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/10/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022] Open
Abstract
Despite apparent resection of tumors, breast cancer patients often suffer relapse due to remnant dormant tumor cells. Although quiescence of cancer stem cells is thought as one of the mechanisms regulating dormancy, the mechanism underlying quiescence is unclear. Since ΔNp63α, an isoform of p51/p63, is crucial in the maintenance of stem cells within mammary epithelium, we investigated its roles in the regulation of dormancy in normal and malignant breast cells. Inducible expression of ΔNp63α in MCF7 estrogen receptor positive (ER+) luminal breast cancer cells led to quiescence and acquisition of progenitor-like properties. Judging from mRNA-microRNA microarray analysis, activation of bone morphogenetic protein (BMP) signaling and inhibition of Wnt signaling emerged as prominent mechanisms underlying ΔNp63α-dependent induction of quiescence and acquisition of stemness in MCF7. More interestingly, through Ingenuity Pathway analysis, we found for the first time that BRCA1 pathway was the most significantly downregulated pathway by ΔNp63α expression in quiescent MCF7 cells, where miR-205 was a downstream mediator. Furthermore, ΔNp63α-expressing MCF7 cells exhibited resistance to paclitaxel and doxorubicin. Expression of ΔNp63α in normal MCF10A basal cells increased proliferation and stemness, but did not affect more aggressive luminal (T47D) and basal (MDA-MB-231) cells with p53 mutation. Gene expression datasets analyses suggested that ΔNp63 expression is associated with relapse-free survival of luminal A/B-type patients, but not of the other subtypes. Our results established a cell type-specific function of ΔNp63α in induction of quiescence and downregulation of the BRCA1 pathway which suggested a role of ΔNp63α in the dormancy of luminal breast cancers.
Collapse
Affiliation(s)
- Ruhul Amin
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan; Department of Pathology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yuiko Morita-Fujimura
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
| | - Hiroshi Tawarayama
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Shuntaro Ikawa
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.
| |
Collapse
|
171
|
Sokolova V, Fiorino A, Zoni E, Crippa E, Reid JF, Gariboldi M, Pierotti MA. The Effects of miR-20a on p21: Two Mechanisms Blocking Growth Arrest in TGF-β-Responsive Colon Carcinoma. J Cell Physiol 2015; 230:3105-14. [PMID: 26012475 DOI: 10.1002/jcp.25051] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/19/2015] [Indexed: 12/18/2022]
Abstract
Loss of response to TGF-β is a central event in the genesis of colorectal cancer (CRC), a disease that, in the majority cases, is refractory to growth inhibition induced by this cytokine. However, inactivating mutations at receptors and transducers from the TGF-β cascade occur only in approximately half of CRCs, suggesting the involvement of additional mechanisms altering the response to the cytokine. We have recently described the amplification of the 13q31 locus, where the miR-17-92 cluster maps, associated with overexpression of its members. In this study, we address the potential role of miR-20a, from the miR-17-92 cluster, in the suppression of TGF-β cytostatic response in CRC. Using the poorly tumorigenic and TGF-β-sensitive FET cell line that expresses low miR-20a levels, we first confirmed that miR-20a downmodulated CDKN1A expression, both at mRNA and protein level, through direct binding to its 3'-UTR. We demonstrated that miR-20a significantly diminished cell response to TGF-β by preventing its delay of G1/S transition and promoting progression into cell cycle. Moreover, besides modulating CDKN1A, miR-20a blocked TGF-β-induced transactivation of its promoter without affecting the post-receptor activation of Smad3/4 effectors directly. Finally, miR-20a abrogated the TGF-β-mediated c-Myc repression, a direct inhibitor of the CDKN1A promoter activation, most likely by reducing the expression of specific MYC-regulating genes from the Smad/E2F-based core repressor complex. Our experiments indicate that miR-20a interferes with the colonic epithelium homeostasis by disrupting the regulation of Myc/p21 by TGF-β, which is essential for its malignant transformation.
Collapse
Affiliation(s)
- Viktorija Sokolova
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonio Fiorino
- Department of Predictive and Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eugenio Zoni
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Crippa
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - James F Reid
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Gariboldi
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco A Pierotti
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
172
|
Huang H, Fan L, Zhan R, Wu S, Niu W. Expression of microRNA-10a, microRNA-342-3p and their predicted target gene TIAM1 in extranodal NK/T-cell lymphoma, nasal type. Oncol Lett 2015; 11:345-351. [PMID: 26870215 DOI: 10.3892/ol.2015.3831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 09/14/2015] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) may act as oncogenes or tumor suppressor genes in different types of human cancer. T-lymphoma invasion and metastasis inducing factor 1 (TIAM1) participates in the development of several types of human cancer. However, the expression of miRNAs and TIAM1 in extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKTCL) remains poorly understood. In the present study, the association between the expression levels of miR-10a and miR-342-3p and the protein expression levels of TIAM1 was examined in ENKTCL tissues. The expression levels of miR-10a, miR-22, miR-340, miR-342-3p and miR-590-5p in 15 primary ENKTCL tissues were analyzed using quantitative polymerase chain reaction, and the protein expression levels of TIAM1 in 21 primary ENKTCL tissues were analyzed using immunohistochemistry. The expression levels of miR-10a and miR-342-3p were lower in ENKTCL tissues than in normal NK cells, but no significant differences were observed in the expression levels of miR-22, miR-340 and miR-590-5p in ENKTCL tissues, compared with normal NK cells. The low expression levels of miR-10a detected in the tissues of patients with ENKTCL were inversely correlated with the age of the patients, whereas the low expression levels of miR-342-3p measured in these samples were not correlated with any demographic or clinical features of the patients. The protein expression levels of TIAM1 were higher in ENKTCL tissues than in normal and reactive lymph node hyperplasia tissues, and positively correlated with the Ann Arbor stage and international prognostic index score of the tumors. Furthermore, the expression levels of miRNA-10a and miRNA-342-3p were inversely correlated with the protein expression levels of TIAM1 in ENKTCL tissues. These data suggest that TIAM1 may contribute to the pathogenesis of ENKTCL, and miRNA-10a and miRNA-342-3p may be involved in the development of ENKTCL via the TIAM1 pathway.
Collapse
Affiliation(s)
- Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Rong Zhan
- Department of Hematology, Fujian Medical University Union Hospital and Fujian Institute of Hematology, Fuzhou, Fujian 350001, P.R. China
| | - Shunquan Wu
- Department of Hematology, Fujian Medical University Union Hospital and Fujian Institute of Hematology, Fuzhou, Fujian 350001, P.R. China
| | - Wenyan Niu
- Department of Hematology, Fujian Medical University Union Hospital and Fujian Institute of Hematology, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
173
|
Characterization and profiling of MicroRNAs in posterior silk gland of the silkworm (Bombyx mori). Genes Genomics 2015. [DOI: 10.1007/s13258-015-0300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
174
|
Pontes TB, Moreira-Nunes CDFA, Maués JHDS, Lamarão LM, de Lemos JAR, Montenegro RC, Burbano RMR. The miRNA Profile of Platelets Stored in a Blood Bank and Its Relation to Cellular Damage from Storage. PLoS One 2015; 10:e0129399. [PMID: 26121269 PMCID: PMC4486185 DOI: 10.1371/journal.pone.0129399] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 05/07/2015] [Indexed: 12/19/2022] Open
Abstract
Millions of blood products are transfused each year, and many lives are directly affected by transfusion. Platelet concentrate (PC) is one of the main products derived from blood. Even under good storage conditions, PC is likely to suffer cell damage. The shape of platelets changes after 5 to 7 days of storage at 22°C. Taking into consideration that some platelet proteins undergo changes in their shape and functionality during PC storage. Sixteen PC bags were collected and each PC bag tube was cut into six equal pieces to perform experiments with platelets from six different days of storage. Thus, on the first day of storage, 1/6 of the tube was used for miRNA extraction, and the remaining 5/6 was stored under the same conditions until extraction of miRNAs on each the following five days. Samples were sequenced on an Illumina Platform to demonstrate the most highly expressed miRNAs. Three miRNAs, mir127, mir191 and mir320a were validated by real-time quantitative PCR (RQ-PCR) in 100 PC bags tubes. Our method suggests, the use of the miRNAs mir127 and mir320a as biomarkers to assess the "validity period" of PC bags stored in blood banks for long periods. Thus, bags can be tested on the 5th day of storage for the relative expression levels of mir127 and mir320a. Thus, we highlight candidate miRNAs as biomarkers of storage damage that can be used as tools to evaluate the quality of stored PC. The use of miRNAs as biomarkers of damage is unprecedented and will contribute to improved quality of blood products for transfusions.
Collapse
Affiliation(s)
- Thaís Brilhante Pontes
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075110, Brazil
| | | | - Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075110, Brazil
| | - Letícia Martins Lamarão
- Laboratory of Genetics and Molecular Biology, Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA), Belém, PA, 66033–000, Brazil
| | - José Alexandre Rodrigues de Lemos
- Laboratory of Genetics and Molecular Biology, Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA), Belém, PA, 66033–000, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075110, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075110, Brazil
| | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075110, Brazil
- * E-mail:
| |
Collapse
|
175
|
Weill N, Lisi V, Scott N, Dallaire P, Pelloux J, Major F. MiRBooking simulates the stoichiometric mode of action of microRNAs. Nucleic Acids Res 2015; 43:6730-8. [PMID: 26089388 PMCID: PMC4538818 DOI: 10.1093/nar/gkv619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/02/2015] [Indexed: 12/21/2022] Open
Abstract
In eucaryotes, gene expression is regulated by microRNAs (miRNAs) which bind to messenger RNAs (mRNAs) and interfere with their translation into proteins, either by promoting their degradation or inducing their repression. We study the effect of miRNA interference on each gene using experimental methods, such as microarrays and RNA-seq at the mRNA level, or luciferase reporter assays and variations of SILAC at the protein level. Alternatively, computational predictions would provide clear benefits. However, no algorithm toward this task has ever been proposed. Here, we introduce a new algorithm to predict genome-wide expression data from initial transcriptome abundance. The algorithm simulates the miRNA and mRNA hybridization competition that occurs in given cellular conditions, and derives the whole set of miRNA::mRNA interactions at equilibrium (microtargetome). Interestingly, solving the competition improves the accuracy of miRNA target predictions. Furthermore, this model implements a previously reported and fundamental property of the microtargetome: the binding between a miRNA and a mRNA depends on their sequence complementarity, but also on the abundance of all RNAs expressed in the cell, i.e. the stoichiometry of all the miRNA sites and all the miRNAs given their respective abundance. This model generalizes the miRNA-induced synchronistic silencing previously observed, and described as sponges and competitive endogenous RNAs.
Collapse
Affiliation(s)
- Nathanaël Weill
- Institute for Research in Immunology and Cancer, and Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Véronique Lisi
- Institute for Research in Immunology and Cancer, and Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Nicolas Scott
- Institute for Research in Immunology and Cancer, and Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Paul Dallaire
- Institute for Research in Immunology and Cancer, and Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Julie Pelloux
- Institute for Research in Immunology and Cancer, and Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, and Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
176
|
Su X, Wang H, Ge W, Yang M, Hou J, Chen T, Li N, Cao X. An In Vivo Method to Identify microRNA Targets Not Predicted by Computation Algorithms: p21 Targeting by miR-92a in Cancer. Cancer Res 2015; 75:2875-85. [DOI: 10.1158/0008-5472.can-14-2218] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
|
177
|
Luo Z, Feng X, Wang H, Xu W, Zhao Y, Ma W, Jiang S, Liu D, Huang J, Songyang Z. Mir-23a induces telomere dysfunction and cellular senescence by inhibiting TRF2 expression. Aging Cell 2015; 14:391-9. [PMID: 25753893 PMCID: PMC4406668 DOI: 10.1111/acel.12304] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2014] [Indexed: 12/28/2022] Open
Abstract
Telomeric repeat binding factor 2 (TRF2) is essential for telomere maintenance and has been implicated in DNA damage response and aging. Telomere dysfunction induced by TRF2 inhibition can accelerate cellular senescence in human fibroblasts. While previous work has demonstrated that a variety of factors can regulate TRF2 expression transcriptionally and post-translationally, whether microRNAs (miRNAs) also participate in post-transcriptionally modulating TRF2 levels remains largely unknown. To better understand the regulatory pathways that control TRF2, we carried out a large-scale luciferase reporter screen using a miRNA expression library and identified four miRNAs that could target human TRF2 and significantly reduce the level of endogenous TRF2 proteins. In particular, our data revealed that miR-23a could directly target the 3′ untranslated region (3′UTR) of TRF2. Overexpression of miR-23a not only reduced telomere-bound TRF2 and increased telomere dysfunction-induced foci (TIFs), but also accelerated senescence of human fibroblast cells, which could be rescued by ectopically expressed TRF2. Our findings demonstrate that TRF2 is a specific target of miR-23a, and uncover a previously unknown role for miR-23a in telomere regulation and cellular senescence.
Collapse
Affiliation(s)
- Zhenhua Luo
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
- SYSU‐BCM Joint Research Center for Biomedical Sciences and Institute of Healthy Aging Research School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Xuyang Feng
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
- SYSU‐BCM Joint Research Center for Biomedical Sciences and Institute of Healthy Aging Research School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Haoli Wang
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
| | - Weiyi Xu
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
- SYSU‐BCM Joint Research Center for Biomedical Sciences and Institute of Healthy Aging Research School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
- SYSU‐BCM Joint Research Center for Biomedical Sciences and Institute of Healthy Aging Research School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Songshan Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
| | - Dan Liu
- Cell‐Based Assay Screening Core One Baylor Plaza Houston TX 77030 USA
- Dan L. Duncan Cancer Center One Baylor Plaza Houston TX 77030 USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
- SYSU‐BCM Joint Research Center for Biomedical Sciences and Institute of Healthy Aging Research School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education Key Laboratory of Reproductive Medicine of Guangdong Province School of Life Sciences and the First Affiliated Hospital Sun Yat‐sen University Guangzhou 510275 China
- SYSU‐BCM Joint Research Center for Biomedical Sciences and Institute of Healthy Aging Research School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine One Baylor Plaza Houston TX 77030 USA
| |
Collapse
|
178
|
Cammaerts S, Strazisar M, De Rijk P, Del Favero J. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet 2015; 6:186. [PMID: 26052338 PMCID: PMC4439572 DOI: 10.3389/fgene.2015.00186] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented.
Collapse
Affiliation(s)
- Sophia Cammaerts
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp Antwerp, Belgium
| | - Mojca Strazisar
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp Antwerp, Belgium
| | - Peter De Rijk
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp Antwerp, Belgium
| | - Jurgen Del Favero
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp Antwerp, Belgium ; Multiplicom N.V., Niel Belgium
| |
Collapse
|
179
|
The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Res 2015; 1623:110-22. [PMID: 25982598 DOI: 10.1016/j.brainres.2015.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Despite accumulated understanding on the mechanisms of early brain injury and improved management of subarachnoid hemorrhage (SAH), it is still one of the serious and refractory health problems around the world. Traditionally, pericyte, served as capillary contraction handler, is recently considered as the main participant of microcirculation regulation in SAH pathophysiology. However, accumulate evidences indicate that pericyte is much more than we already know. Therefore, we briefly review the characteristics, regulation pathways and functions of pericyte, aim to summarize the evolving new pathophysiological roles of pericyte that are implicated in early brain injury after SAH and to improve our understanding in order to explore potential novel therapeutic options for patients with SAH. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
180
|
Deficiency in WT1-targeting microRNA-125a leads to myeloid malignancies and urogenital abnormalities. Oncogene 2015; 35:1003-14. [PMID: 25961914 DOI: 10.1038/onc.2015.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 03/23/2015] [Accepted: 04/03/2015] [Indexed: 11/08/2022]
Abstract
The Wilms' tumor gene WT1 is overexpressed in leukemia and solid tumors and has an oncogenic role in leukemogenesis and tumorigenesis. However, precise regulatory mechanisms of WT1 overexpression remain undetermined. In the present study, microRNA-125a (miR-125a) was identified as a miRNA that suppressed WT1 expression via binding to the WT1-3'UTR. MiR-125a knockout mice overexpressed WT1, developed myeloproliferative disorder (MPD) characterized by expansion of myeloid cells in bone marrow (BM), spleen and peripheral blood, and displayed urogenital abnormalities. Silencing of WT1 expression in hematopoietic stem/progenitor cells of miR-125a knockout MPD mice by short-hairpin RNA inhibited myeloid colony formation in vitro. Furthermore, the incidence and severity of MPD were lower in miR-125a (-/-) mice than in miR-125a (+/-) mice, indicating the operation of compensatory mechanisms for the complete loss of miR-125a. To elucidate the compensatory mechanisms, miRNA array was performed. MiR-486 was occasionally induced in compete loss of miR-125a and inhibited WT1 expression instead of miR-125a, resulting in the cancellation of MPD occurrence. These results showed for the first time the post-transcriptional regulatory mechanisms of WT1 by both miR-125a and miR-486 and should contribute to the elucidation of mechanisms of normal hematopoiesis and kidney development.
Collapse
|
181
|
ZHOU JUN, XIE MING, SHI YING, LUO BAIHUA, GONG GUANGHUI, LI JUANNI, WANG JUNPU, ZHAO WENJIAN, ZI YUAN, WU XIAOYING, WEN JIFANG. MicroRNA-153 functions as a tumor suppressor by targeting SET7 and ZEB2 in ovarian cancer cells. Oncol Rep 2015; 34:111-20. [DOI: 10.3892/or.2015.3952] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/31/2015] [Indexed: 11/05/2022] Open
|
182
|
Kushwaha D, Ramakrishnan V, Ng K, Steed T, Nguyen T, Futalan D, Akers JC, Sarkaria J, Jiang T, Chowdhury D, Carter BS, Chen CC. A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas. Oncotarget 2015; 5:4026-39. [PMID: 24994119 PMCID: PMC4147303 DOI: 10.18632/oncotarget.1974] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
MGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens. We identified 15 candidate miRNAs and characterized the top candidate, miR-603. Transfection of miR-603 suppressed MGMT mRNA/protein expression in vitro and in vivo; this effect was reversed by transfection with antimiR-603. miR-603 affinity-precipitated with MGMT mRNA and suppressed luciferase activity in an MGMT-3'UTR-luciferase assay, suggesting direct interaction between miR-603 and MGMT 3'UTR. miR-603 transfection enhanced the temozolomide (TMZ) sensitivity of MGMT-expressing glioblastoma cell lines. Importantly, miR-603 mediated MGMT suppression and TMZ resistance were reversed by expression of an MGMT cDNA. In a collection of 74 clinical glioblastoma specimens, both miR-603 and miR-181d levels inversely correlated with MGMT expression. Moreover, a combined index of the two miRNAs better reflected MGMT expression than each individually. These results suggest that MGMT is co-regulated by independent miRNAs. Characterization of these miRNAs should contribute toward strategies for enhancing the efficacy of DNA alkylating agents.
Collapse
Affiliation(s)
- Deepa Kushwaha
- Dept. of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA; These authors contributed equally as first authors
| | - Valya Ramakrishnan
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, San Diego, CA. These authors contributed equally as first authors
| | - Kimberly Ng
- Dept. of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tyler Steed
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, San Diego, CA
| | - Thien Nguyen
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, San Diego, CA
| | - Diahnn Futalan
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, San Diego, CA
| | - Johnny C Akers
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, San Diego, CA
| | - Jann Sarkaria
- Mayo Clinic, Department of Radiation Oncology, Rochester, MN
| | - Tao Jiang
- Department of Neurosurgery, Tiantan Medical Center, Beijing, China
| | | | - Bob S Carter
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, San Diego, CA
| | - Clark C Chen
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, San Diego, CA
| |
Collapse
|
183
|
Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes. Mol Ther 2015; 23:1201-1210. [PMID: 25896246 DOI: 10.1038/mt.2015.65] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Tissue injury transiently silences miRNA-dependent posttranscriptional gene silencing in its effort to unleash adult tissue repair. Once the wound is closed, miRNA biogenesis is induced averting neoplasia. In this work, we report that Dicer plays an important role in reestablishing the barrier function of the skin post-wounding via a miRNA-dependent mechanism. MicroRNA expression profiling of skin and wound-edge tissue revealed global upregulation of miRNAs following wound closure at day 14 post-wounding with significant induction of Dicer expression. Barrier function of the skin, as measured by trans-epidermal water loss, was compromised in keratinocyte-specific conditional (K14/Lox-Cre) Dicer-ablated mice because of malformed cornified epithelium lacking loricrin expression. Studies on human keratinocytes recognized that loricrin expression was inversely related to the expression of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Compared to healthy epidermis, wound-edge keratinocytes from Dicer-ablated skin epidermis revealed elevated p21(Waf1/Cip1) expression. Adenoviral and pharmacological suppression of p21(Waf1/Cip1) in keratinocyte-specific conditional Dicer-ablated mice improved wound healing indicating a role of Dicer in the suppression of p21(Waf1/Cip1). This work upholds p21(Waf1/Cip1) as a druggable target to restore barrier function of skin suffering from loss of Dicer function as would be expected in diabetes and other forms of oxidant insult.
Collapse
|
184
|
Sinigaglia A, Lavezzo E, Trevisan M, Sanavia T, Di Camillo B, Peta E, Scarpa M, Castagliuolo I, Guido M, Sarcognato S, Cappellesso R, Fassina A, Cardin R, Farinati F, Palù G, Barzon L. Changes in microRNA expression during disease progression in patients with chronic viral hepatitis. Liver Int 2015; 35:1324-33. [PMID: 25417901 DOI: 10.1111/liv.12737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) have been involved in hepatocarcinogenesis, but little is known on their role in the progression of chronic viral hepatitis. Aim of this study was to identify miRNA signatures associated with stages of disease progression in patients with chronic viral hepatitis. METHODS MiRNA expression profile was investigated in liver biopsies from patients with chronic viral hepatitis and correlated with clinical, virological and histopathological features. Relevant miRNAs were further investigated. RESULTS Most of the significant changes in miRNA expression were associated with liver fibrosis stages and included the significant up-regulation of a group of miRNAs that were demonstrated to target the master regulators of epithelial-mesenchymal transition ZEB1 and ZEB2 and involved in the preservation of epithelial cell differentiation, but also in cell proliferation and fibrogenesis. In agreement with miRNA data, immunostaining of liver biopsies showed that expression of the epithelial marker E-cadherin was maintained in severe fibrosis/cirrhosis while expression of ZEBs and other markers of epithelial-mesenchymal transition were low or absent. Severe liver fibrosis was also significantly associated with the down-regulation of miRNAs with antiproliferative and tumour suppressor activity. Similar changes in miRNA and target gene expression were demonstrated along with disease progression in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, suggesting that they might represent a general response to liver injury. CONCLUSION Chronic viral hepatitis progression is associated with the activation of miRNA pathways that promote cell proliferation and fibrogenesis, but preserve the differentiated hepatocyte phenotype.
Collapse
Affiliation(s)
- Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, Padova, Italy; IOV Istituto Oncologico Veneto, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Eulalio A, Mano M. MicroRNA Screening and the Quest for Biologically Relevant Targets. ACTA ACUST UNITED AC 2015; 20:1003-17. [DOI: 10.1177/1087057115578837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a class of genome-encoded small RNAs that post-transcriptionally regulate gene expression by repressing target transcripts containing partially or fully complementary binding sites. Despite their relatively low number, miRNAs have been shown to directly regulate a large fraction of the transcriptome. In agreement with their pervasive role in the regulation of eukaryotic gene expression, miRNAs have been implicated in virtually all biological processes, including different pathologies. The use of screening technologies to systematically analyze miRNA function in cell-based assays offers a unique opportunity to gain new insights into complex biological and disease-relevant processes. Given the low complexity of the miRNome and the similarities to small interfering RNA (siRNA) screening experimental approaches, phenotypic screening using genome-wide libraries of miRNA mimics or inhibitors is not, per se, technically challenging. The identification of miRNA targets and, more importantly, the characterization of their mechanisms of action through the identification of the key targets underlying observed phenotypes remain the major challenges of this approach. This article provides an overview of cell-based screenings for miRNA function that were performed in different biological contexts. The advantages and limitations of computational and experimental approaches commonly used to identify miRNA targets are also discussed.
Collapse
Affiliation(s)
- Ana Eulalio
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
186
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
187
|
Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sültmann H, Scheffner M, Hoppe-Seyler K, Hoppe-Seyler F. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog 2015; 11:e1004712. [PMID: 25760330 PMCID: PMC4356518 DOI: 10.1371/journal.ppat.1004712] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/28/2015] [Indexed: 02/07/2023] Open
Abstract
Specific types of human papillomaviruses (HPVs) cause cervical cancer. Cervical cancers exhibit aberrant cellular microRNA (miRNA) expression patterns. By genome-wide analyses, we investigate whether the intracellular and exosomal miRNA compositions of HPV-positive cancer cells are dependent on endogenous E6/E7 oncogene expression. Deep sequencing studies combined with qRT-PCR analyses show that E6/E7 silencing significantly affects ten of the 52 most abundant intracellular miRNAs in HPV18-positive HeLa cells, downregulating miR-17-5p, miR-186-5p, miR-378a-3p, miR-378f, miR-629-5p and miR-7-5p, and upregulating miR-143-3p, miR-23a-3p, miR-23b-3p and miR-27b-3p. The effects of E6/E7 silencing on miRNA levels are mainly not dependent on p53 and similarly observed in HPV16-positive SiHa cells. The E6/E7-regulated miRNAs are enriched for species involved in the control of cell proliferation, senescence and apoptosis, suggesting that they contribute to the growth of HPV-positive cancer cells. Consistently, we show that sustained E6/E7 expression is required to maintain the intracellular levels of members of the miR-17~92 cluster, which reduce expression of the anti-proliferative p21 gene in HPV-positive cancer cells. In exosomes secreted by HeLa cells, a distinct seven-miRNA-signature was identified among the most abundant miRNAs, with significant downregulation of let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, miR-92a-3p and upregulation of miR-21-5p, upon E6/E7 silencing. Several of the E6/E7-dependent exosomal miRNAs have also been linked to the control of cell proliferation and apoptosis. This study represents the first global analysis of intracellular and exosomal miRNAs and shows that viral oncogene expression affects the abundance of multiple miRNAs likely contributing to the E6/E7-dependent growth of HPV-positive cancer cells.
Collapse
Affiliation(s)
- Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Schilling
- Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sandra Bastian
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Sponagel
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Kuryshev
- Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
188
|
Venza M, Visalli M, Biondo C, Oteri R, Agliano F, Morabito S, Caruso G, Caffo M, Teti D, Venza I. Epigenetic effects of cadmium in cancer: focus on melanoma. Curr Genomics 2015; 15:420-35. [PMID: 25646071 PMCID: PMC4311387 DOI: 10.2174/138920291506150106145932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Cadmium is a highly toxic heavy metal, which has a destroying impact on organs. Exposure to cadmium causes severe health problems to human beings due to its ubiquitous environmental presence and features of the pathologies associated with pro-longed exposure. Cadmium is a well-established carcinogen, although the underlying mechanisms have not been fully under-stood yet. Recently, there has been considerable interest in the impact of this environmental pollutant on the epigenome. Be-cause of the role of epigenetic alterations in regulating gene expression, there is a potential for the integration of cadmium-induced epigenetic alterations as critical elements in the cancer risk assessment process. Here, after a brief review of the ma-jor diseases related to cadmium exposure, we focus our interest on the carcinogenic potential of this heavy metal. Among the several proposed pathogenetic mechanisms, particular attention is given to epigenetic alterations, including changes in DNA methylation, histone modifications and non-coding RNA expression. We review evidence for a link between cadmium-induced epigenetic changes and cell transformation, with special emphasis on melanoma. DNA methylation, with reduced expression of key genes that regulate cell proliferation and apoptosis, has emerged as a possible cadmium-induced epigenetic mechanism in melanoma. A wider comprehension of mechanisms related to this common environmental contaminant would allow a better cancer risk evaluation.
Collapse
Affiliation(s)
- Mario Venza
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Biondo
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Agliano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Silvia Morabito
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Gerardo Caruso
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Maria Caffo
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Diana Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Isabella Venza
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| |
Collapse
|
189
|
Abstract
c-Met, a member of the receptor tyrosine kinase family, is involved in a wide range of cellular processes, including tumor survival, cell growth, angiogenesis and metastasis, and resulting in overexpression in many human cancers, leading to a constitutive activation of the downstream pathways. Recently identified MicroRNAs are a family of small noncoding RNA molecules, extensively studied in cancer, that exert their action by inhibiting gene expression at the posttranscriptional level in several biological processes. Aberrant regulation of microRNAs expression has been implicated in the pathogenesis of different human neoplasia. Several publications point out the connections between c-Met and its ligand hepatocyte growth factor (HGF) and microRNAs. This review summarizes the current knowledge about the interplay between c-Met/HGF and microRNAs and provides evidence that microRNAs are a novel and additional system to regulate c-Met expression in tumors. In the future, microRNAs connected to c-Met may provide an additional option to inhibiting this oncogene from orchestrating an invasive growth program.
Collapse
|
190
|
Abernathy DG, Yoo AS. MicroRNA-dependent genetic networks during neural development. Cell Tissue Res 2015; 359:179-85. [PMID: 24865244 PMCID: PMC4247364 DOI: 10.1007/s00441-014-1899-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
The development of the structurally and functionally diverse mammalian nervous system requires the integration of numerous levels of gene regulation. Accumulating evidence suggests that microRNAs are key mediators of genetic networks during neural development. Importantly, microRNAs are found to regulate both feedback and feedforward loops during neural development leading to large changes in gene expression. These repressive interactions provide an additional mechanism that facilitates the establishment of complexity within the nervous system. Here, we review studies that have enabled the identification of microRNAs enriched in the brain and discuss the way that genetic networks in neural development depend on microRNAs.
Collapse
Affiliation(s)
- Daniel G Abernathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
191
|
Ding J, Li X, Hu H. MicroRNA modules prefer to bind weak and unconventional target sites. ACTA ACUST UNITED AC 2014; 31:1366-74. [PMID: 25527098 PMCID: PMC4410656 DOI: 10.1093/bioinformatics/btu833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/13/2014] [Indexed: 11/13/2022]
Abstract
Motivation: MicroRNAs (miRNAs) play critical roles in gene regulation. Although it is well known that multiple miRNAs may work as miRNA modules to synergistically regulate common target mRNAs, the understanding of miRNA modules is still in its infancy. Results: We employed the recently generated high throughput experimental data to study miRNA modules. We predicted 181 miRNA modules and 306 potential miRNA modules. We observed that the target sites of these predicted modules were in general weaker compared with those not bound by miRNA modules. We also discovered that miRNAs in predicted modules preferred to bind unconventional target sites rather than canonical sites. Surprisingly, contrary to a previous study, we found that most adjacent miRNA target sites from the same miRNA modules were not within the range of 10–130 nucleotides. Interestingly, the distance of target sites bound by miRNAs in the same modules was shorter when miRNA modules bound unconventional instead of canonical sites. Our study shed new light on miRNA binding and miRNA target sites, which will likely advance our understanding of miRNA regulation. Availability and implementation: The software miRModule can be freely downloaded at http://hulab.ucf.edu/research/projects/miRNA/miRModule. Supplementary information:Supplementary data are available at Bioinformatics online. Contact:haihu@cs.ucf.edu or xiaoman@mail.ucf.edu.
Collapse
Affiliation(s)
- Jun Ding
- Department of Electrical Engineering and Computer Science and Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaoman Li
- Department of Electrical Engineering and Computer Science and Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Haiyan Hu
- Department of Electrical Engineering and Computer Science and Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
192
|
van Heesch S, Simonis M, van Roosmalen MJ, Pillalamarri V, Brand H, Kuijk EW, de Luca KL, Lansu N, Braat AK, Menelaou A, Hao W, Korving J, Snijder S, van der Veken LT, Hochstenbach R, Knegt AC, Duran K, Renkens I, Alekozai N, Jager M, Vergult S, Menten B, de Bruijn E, Boymans S, Ippel E, van Binsbergen E, Talkowski ME, Lichtenbelt K, Cuppen E, Kloosterman WP. Genomic and functional overlap between somatic and germline chromosomal rearrangements. Cell Rep 2014; 9:2001-10. [PMID: 25497101 DOI: 10.1016/j.celrep.2014.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/20/2014] [Accepted: 11/15/2014] [Indexed: 12/17/2022] Open
Abstract
Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted.
Collapse
Affiliation(s)
- Sebastiaan van Heesch
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marieke Simonis
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Vamsee Pillalamarri
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Harrison Brand
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ewart W Kuijk
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Kim L de Luca
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Nico Lansu
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - A Koen Braat
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Androniki Menelaou
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Wensi Hao
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Simone Snijder
- Department of Clinical Genetics, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Lars T van der Veken
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ron Hochstenbach
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Alida C Knegt
- Department of Clinical Genetics, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Karen Duran
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ivo Renkens
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Najla Alekozai
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Myrthe Jager
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Ewart de Bruijn
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sander Boymans
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Elly Ippel
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Michael E Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Klaske Lichtenbelt
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Edwin Cuppen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| | - Wigard P Kloosterman
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
193
|
Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril 2014; 102:1751-61.e1. [DOI: 10.1016/j.fertnstert.2014.08.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022]
|
194
|
Wu J, Lv Q, He J, Zhang H, Mei X, Cui K, Huang N, Xie W, Xu N, Zhang Y. MicroRNA-188 suppresses G1/S transition by targeting multiple cyclin/CDK complexes. Cell Commun Signal 2014; 12:66. [PMID: 25304455 PMCID: PMC4200121 DOI: 10.1186/s12964-014-0066-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Accelerated cell cycle progression is the common feature of most cancers. MiRNAs can act as oncogenes or tumor suppressors by directly modulating cell cycle machinery. It has been shown that miR-188 is upregulated in UVB-irradiated mouse skin and human nasopharyngeal carcinoma CNE cells under hypoxic stress. However, little is known about the function of miR-188 in cell proliferation and growth control. RESULTS Overexpression of miR-188 inhibits cell proliferation, tumor colony formation and G1/S cell cycle transition in human nasopharyngeal carcinoma CNE cells. Using bioinformatics approach, we identify a series of genes regulating G1/S transition as putative miR-188 targets. MiR-188 inhibits both mRNA and protein expression of CCND1, CCND3, CCNE1, CCNA2, CDK4 and CDK2, suppresses Rb phosphorylation and downregulates E2F transcriptional activity. The expression level of miR-188 also inversely correlates with the expression of miR-188 targets in human nasopharyngeal carcinoma (NPC) tissues. Moreover, studies in xenograft mouse model reveal that miR-188 is capable of inhibiting tumor initiation and progression by suppressing target genes expression and Rb phosphorylation. CONCLUSIONS This study demonstrates that miR-188 exerts anticancer effects, via downregulation of multiple G1/S related cyclin/CDKs and Rb/E2F signaling pathway.
Collapse
Affiliation(s)
- Jiangbin Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China. .,Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Qing Lv
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China. .,Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Jie He
- Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Haoxiang Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China. .,Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Xueshuang Mei
- ENT Department, Peking University Shenzhen Hospital, Shenzhen, 518055, PR China.
| | - Kai Cui
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China. .,Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Nunu Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China. .,Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Weidong Xie
- Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Naihan Xu
- Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Yaou Zhang
- Division of Life Science, Key Lab in Healthy Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
195
|
Role of microRNAs in arbovirus/vector interactions. Viruses 2014; 6:3514-34. [PMID: 25251636 PMCID: PMC4189037 DOI: 10.3390/v6093514] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/20/2022] Open
Abstract
The role of microRNAs (miRNAs) as small non-coding RNAs in regulation of gene expression has been recognized. They appear to be involved in regulation of a wide range of cellular pathways that affect several biological processes such as development, the immune system, survival, metabolism and host-pathogen interactions. Arthropod-borne viruses impose great economic and health risks around the world. Recent advances in miRNA biology have shed some light on the role of these small RNAs in vector-virus interactions. In this review, I will reflect on our current knowledge on the role of miRNAs in arbovirus-vector interactions and the potential avenues for their utilization in limiting virus replication and/or transmission.
Collapse
|
196
|
Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ 2014; 22:22-33. [PMID: 25190144 DOI: 10.1038/cdd.2014.112] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/10/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023] Open
Abstract
Since their discovery 20 years ago, miRNAs have attracted much attention from all areas of biology. These short (∼22 nt) non-coding RNA molecules are highly conserved in evolution and are present in nearly all eukaryotes. They have critical roles in virtually every cellular process, particularly determination of cell fate in development and regulation of the cell cycle. Although it has long been known that miRNAs bind to mRNAs to trigger translational repression and degradation, there had been much debate regarding their precise mode of action. It is now believed that translational control is the primary event, only later followed by mRNA destabilisation. This review will discuss the most recent advances in our understanding of the molecular underpinnings of miRNA-mediated repression. Moreover, we highlight the multitude of regulatory mechanisms that modulate miRNA function.
Collapse
Affiliation(s)
- A Wilczynska
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | - M Bushell
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| |
Collapse
|
197
|
Regulation of microRNAs by natural agents: new strategies in cancer therapies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:804510. [PMID: 25254214 PMCID: PMC4165563 DOI: 10.1155/2014/804510] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short noncoding RNA which regulate gene expression by messenger RNA (mRNA) degradation or translation repression. The plethora of published reports in recent years demonstrated that they play fundamental roles in many biological processes, such as carcinogenesis, angiogenesis, programmed cell death, cell proliferation, invasion, migration, and differentiation by acting as tumour suppressor or oncogene, and aberrations in their expressions have been linked to onset and progression of various cancers. Furthermore, each miRNA is capable of regulating the expression of many genes, allowing them to simultaneously regulate multiple cellular signalling pathways. Hence, miRNAs have the potential to be used as biomarkers for cancer diagnosis and prognosis as well as therapeutic targets. Recent studies have shown that natural agents such as curcumin, resveratrol, genistein, epigallocatechin-3-gallate, indole-3-carbinol, and 3,3′-diindolylmethane exert their antiproliferative and/or proapoptotic effects through the regulation of one or more miRNAs. Therefore, this review will look at the regulation of miRNAs by natural agents as a means to potentially enhance the efficacy of conventional chemotherapy through combinatorial therapies. It is hoped that this would provide new strategies in cancer therapies to improve overall response and survival outcome in cancer patients.
Collapse
|
198
|
Liu Q, Chen J, Wang J, Amos C, Killary AM, Sen S, Wei C, Frazier ML. Putative tumor suppressor gene SEL1L was downregulated by aberrantly upregulated hsa-mir-155 in human pancreatic ductal adenocarcinoma. Mol Carcinog 2014; 53:711-721. [PMID: 23661430 PMCID: PMC3887131 DOI: 10.1002/mc.22023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 01/18/2013] [Accepted: 02/04/2013] [Indexed: 01/02/2023]
Abstract
Sel-1-like (SEL1L) is a putative tumor suppressor gene that is significantly downregulated in human pancreatic ductal adenocarcinoma (PDA). The mechanism of the downregulation is unclear. Here, we investigated whether aberrantly upregulated microRNAs (miRNAs) repressed the expression of SEL1L. From reported miRNA microarray studies on PDA and predicted miRNA targets, we identified seven aberrantly upregulated miRNAs that potentially target SEL1L. We assessed the expression levels of SEL1L mRNA and the seven miRNAs in human PDA tumors and normal adjacent tissues using real-time quantitative polymerase chain reaction. Then statistical methods were applied to evaluate the association between SEL1L mRNA and the miRNAs. Furthermore, the interaction was explored by functional analysis, including luciferase assay and transient miRNA overexpression. SEL1L mRNA expression levels were found to correlate inversely with the expression of hsa-mir-143, hsa-mir-155, and hsa-mir-223 (P < 0.0001, P < 0.0001, and P = 0.002, respectively). As the number of these overexpressed miRNAs increased, SEL1L mRNA expression progressively decreased (Ptrend = 0.001). Functional analysis revealed that hsa-mir-155 acted as a suppressor of SEL1L in PDA cell lines. Our study combined statistical analysis with biological approaches to determine the relationships between several miRNAs and the SEL1L gene. The finding that the expression of the putative tumor suppressor SEL1L is repressed by upregulation of hsa-mir-155 helps to elucidate the mechanism for SEL1L downregulation in some human PDA cases. Our results suggest a role for specific miRNAs in the pathogenesis of PDA and indicate that miRNAs have potential as therapeutic targets for PDA.
Collapse
Affiliation(s)
- Qian Liu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Affinity purification of binding miRNAs for messenger RNA fused with a common tag. Int J Mol Sci 2014; 15:14753-65. [PMID: 25153630 PMCID: PMC4159880 DOI: 10.3390/ijms150814753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/09/2014] [Accepted: 08/01/2014] [Indexed: 11/16/2022] Open
Abstract
Prediction of microRNA-mRNA interaction typically relies on bioinformatic methods, but these methods only suggest the possibility of microRNA binding and may miss important interactions as well as falsely predict others. A major obstacle to the miRNA research has been the lack of experimental procedures for the identification of miRNA-mRNA interactions. Recently, a few studies have attempted to explore experimental methods to isolate and identify miRNA targets or miRNAs targeting a single gene. Here, we developed an more convenient experimental approach for the isolation and identification of miRNAs targeting a single gene by applying short biotinylated DNA anti-sense oligonucleotides mix to enhanced green fluorescent protein (EGFP) mRNA which was fused to target gene mRNA. This method does not require a design of different anti-sense oligonucleotides to any mRNA. This is a simple and an efficient method to potentially identify miRNAs targeting specific gene mRNA combined with chip screen.
Collapse
|
200
|
Sequencing of Captive Target Transcripts Identifies the Network of Regulated Genes and Functions of Primate-Specific miR-522. Cell Rep 2014; 8:1225-39. [DOI: 10.1016/j.celrep.2014.07.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/07/2014] [Accepted: 07/16/2014] [Indexed: 11/22/2022] Open
|