151
|
Shih JW, Wang LY, Hung CL, Kung HJ, Hsieh CL. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism. Int J Mol Sci 2015; 16:28943-78. [PMID: 26690121 PMCID: PMC4691085 DOI: 10.3390/ijms161226138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.
Collapse
Affiliation(s)
- Jing-Wen Shih
- Integrated Translational Lab, The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| | - Hsing-Jien Kung
- Integrated Translational Lab, The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
152
|
Iglesias-Gato D, Wikström P, Tyanova S, Lavallee C, Thysell E, Carlsson J, Hägglöf C, Cox J, Andrén O, Stattin P, Egevad L, Widmark A, Bjartell A, Collins CC, Bergh A, Geiger T, Mann M, Flores-Morales A. The Proteome of Primary Prostate Cancer. Eur Urol 2015; 69:942-52. [PMID: 26651926 DOI: 10.1016/j.eururo.2015.10.053] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Clinical management of the prostate needs improved prognostic tests and treatment strategies. Because proteins are the ultimate effectors of most cellular reactions, are targets for drug actions and constitute potential biomarkers; a quantitative systemic overview of the proteome changes occurring during prostate cancer (PCa) initiation and progression can result in clinically relevant discoveries. OBJECTIVES To study cellular processes altered in PCa using system-wide quantitative analysis of changes in protein expression in clinical samples and to identify prognostic biomarkers for disease aggressiveness. DESIGN, SETTING, AND PARTICIPANTS Mass spectrometry was used for genome-scale quantitative proteomic profiling of 28 prostate tumors (Gleason score 6-9) and neighboring nonmalignant tissue in eight cases, obtained from formalin-fixed paraffin-embedded prostatectomy samples. Two independent cohorts of PCa patients (summing 752 cases) managed by expectancy were used for immunohistochemical evaluation of proneuropeptide-Y (pro-NPY) as a prognostic biomarker. RESULTS AND LIMITATIONS Over 9000 proteins were identified as expressed in the human prostate. Tumor tissue exhibited elevated expression of proteins involved in multiple anabolic processes including fatty acid and protein synthesis, ribosomal biogenesis and protein secretion but no overt evidence of increased proliferation was observed. Tumors also showed increased levels of mitochondrial proteins, which was associated with elevated oxidative phosphorylation capacity measured in situ. Molecular analysis indicated that some of the proteins overexpressed in tumors, such as carnitine palmitoyltransferase 2 (CPT2, fatty acid transporter), coatomer protein complex, subunit alpha (COPA, vesicle secretion), and mitogen- and stress-activated protein kinase 1 and 2 (MSK1/2, protein kinase) regulate the proliferation of PCa cells. Additionally, pro-NPY was found overexpressed in PCa (5-fold, p<0.05), but largely absent in other solid tumor types. Pro-NPY expression, alone or in combination with the ERG status of the tumor, was associated with an increased risk of PCa specific mortality, especially in patients with Gleason score ≤ 7 tumors. CONCLUSIONS This study represents the first system-wide quantitative analysis of proteome changes associated to localized prostate cancer and as such constitutes a valuable resource for understanding the complex metabolic changes occurring in this disease. We also demonstrated that pro-NPY, a protein that showed differential expression between high and low risk tumors in our proteomic analysis, is also a PCa specific prognostic biomarker associated with increased risk for disease specific death in patients carrying low risk tumors. PATIENT SUMMARY The identification of proteins whose expression change in prostate cancer provides novel mechanistic information related to the disease etiology. We hope that future studies will prove the value of this proteome dataset for development of novel therapies and biomarkers.
Collapse
Affiliation(s)
- Diego Iglesias-Gato
- IVS, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Cancer Society, Copenhagen, Denmark.
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umea University, Umea, Sweden
| | - Stefka Tyanova
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Charlotte Lavallee
- IVS, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Cancer Society, Copenhagen, Denmark
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umea University, Umea, Sweden
| | - Jessica Carlsson
- School of Health and Medical Sciences, Department of Urology, University of Örebro, Sweden
| | - Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umea University, Umea, Sweden
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Ove Andrén
- School of Health and Medical Sciences, Department of Urology, University of Örebro, Sweden
| | - Pär Stattin
- Departments of Surgery and Perioperative Sciences, Umea University, Umea, Sweden
| | - Lars Egevad
- Section of Urology, Department of Surgical Science, Karolinska Institutet, Stockholm, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, University of Lund, Lund, Sweden
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umea University, Umea, Sweden
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthias Mann
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Amilcar Flores-Morales
- IVS, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Cancer Society, Copenhagen, Denmark.
| |
Collapse
|
153
|
Li X, Pishdari B, Cui P, Hu M, Yang HP, Guo YR, Jiang HY, Feng Y, Billig H, Shao R. Regulation of Androgen Receptor Expression Alters AMPK Phosphorylation in the Endometrium: In Vivo and In Vitro Studies in Women with Polycystic Ovary Syndrome. Int J Biol Sci 2015; 11:1376-89. [PMID: 26681917 PMCID: PMC4671995 DOI: 10.7150/ijbs.13109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/12/2015] [Indexed: 11/05/2022] Open
Abstract
The failure of reproductive success in polycystic ovary syndrome (PCOS) patients could be in part due to endometrial dysfunction. However, no studies have investigated any causality between androgen, androgen receptor (AR) expression, and adenosine monophosphate activated protein kinase (AMPK) activation in the endometrium under physiological and pathological conditions. In the present study, we show that 1) endometrial AR expression levels fluctuate in non-PCOS and PCOS patients during the menstrual cycle; 2) the menstrual phase-dependent alteration of p-AMPKα expression occurs in non-PCOS patients but not in PCOS patients; 3) AR expression is higher in PCOS patients than non-PCOS patients during hyperplasia while AMPKα activation (indicated by the ratio of p-AMPKα to AMPKα); and 4) co-localization of AR and Ki-67 in epithelial cell nuclei is observed in endometrial hyperplasia. Importantly, using in vitro human tissue culture and an in vivo 5α-dihydrotestosterone-treated rat model, we show that the action of androgen on AMPKα activation is likely mediated through nuclear AR, especially in epithelial cells. Collectively, we present evidence that AR expression and AMPKα activation depend on menstrual cycle phase and the presence of PCOS, and the data suggest that AR-mediated regulation of AMPKα activation might play a role in the development of endometrial hyperplasia.
Collapse
Affiliation(s)
- Xin Li
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ; 2. Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; ; 3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Bano Pishdari
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peng Cui
- 4. Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College and Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institute of Brain Science, Fudan University, Shanghai, China
| | - Min Hu
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hong-Ping Yang
- 2. Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; ; 3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan-Rong Guo
- 2. Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; ; 3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hong-Yuan Jiang
- 2. Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; ; 3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yi Feng
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ; 4. Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College and Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institute of Brain Science, Fudan University, Shanghai, China
| | - Håkan Billig
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruijin Shao
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
154
|
Blessing AM, Ganesan S, Rajapakshe K, Ying Sung Y, Reddy Bollu L, Shi Y, Cheung E, Coarfa C, Chang JT, McDonnell DP, Frigo DE. Identification of a Novel Coregulator, SH3YL1, That Interacts With the Androgen Receptor N-Terminus. Mol Endocrinol 2015; 29:1426-39. [PMID: 26305679 DOI: 10.1210/me.2015-1079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nuclear receptor (NR)-mediated transcriptional activity is a dynamic process that is regulated by the binding of ligands that induce distinct conformational changes in the NR. These structural alterations lead to the differential recruitment of coregulators (coactivators or corepressors) that control the expression of NR-regulated genes. Here, we show that a stretch of proline residues located within the N-terminus of androgen receptor (AR) is a bona fide coregulator binding surface, the disruption of which reduces the androgen-dependent proliferation and migration of prostate cancer (PCa) cells. Using T7 phage display, we identified a novel AR-interacting protein, Src homology 3 (SH3)-domain containing, Ysc84-like 1 (SH3YL1), whose interaction with the receptor is dependent upon this polyproline domain. As with mutations within the AR polyproline domain, knockdown of SH3YL1 attenuated androgen-mediated cell growth and migration. RNA expression analysis revealed that SH3YL1 was required for the induction of a subset of AR-modulated genes. Notable was the observation that ubinuclein 1 (UBN1), a key member of a histone H3.3 chaperone complex, was a transcriptional target of the AR/SH3YL1 complex, correlated with aggressive PCa in patients, and was necessary for the maximal androgen-mediated proliferation and migration of PCa cells. Collectively, these data highlight the importance of an amino-terminal activation domain, its associated coregulator, and downstream transcriptional targets in regulating cellular processes of pathological importance in PCa.
Collapse
Affiliation(s)
- Alicia M Blessing
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Sathya Ganesan
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Kimal Rajapakshe
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Ying Ying Sung
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Lakshmi Reddy Bollu
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Yan Shi
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Edwin Cheung
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Cristian Coarfa
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Jeffrey T Chang
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Donald P McDonnell
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| | - Daniel E Frigo
- Center for Nuclear Receptors and Cell Signaling (A.M.B., Y.S., D.E.F.), Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204; R&D Compliance (S.G.), Grifols Therapeutics Inc, Research Triangle Park, North Carolina 27709; Department of Pharmacology and Cancer Biology (S.G., D.P.M.), Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular and Cellular Biology (K.R., C.C.), Baylor College of Medicine, Houston, Texas 77030; Cancer Biology and Pharmacology (Y.Y.S., E.C.), Genome Institute of Singapore, A*STAR, Singapore 138672; Department of Clinical Cancer Prevention (L.R.B.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Faculty of Health Sciences (E.C.), University of Macau, Taipa, Macau, China, 9999078; Department of Integrative Biology and Pharmacology (J.T.C.), School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030; and Genomic Medicine Program (D.E.F.), The Houston Methodist Research Institute, Houston, Texas 77030
| |
Collapse
|
155
|
Qiu B, Simon MC. Oncogenes strike a balance between cellular growth and homeostasis. Semin Cell Dev Biol 2015; 43:3-10. [PMID: 26277544 DOI: 10.1016/j.semcdb.2015.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 12/28/2022]
Abstract
Altered tumor cell metabolism is now firmly established as a hallmark of human cancer. Downstream of oncogenic events, metabolism is re-wired to support cellular energetics and supply the building blocks for biomass. Rapid, uncontrolled proliferation results in tumor growth beyond the reach of existing vasculature and triggers cellular adaptations to overcome limiting nutrient and oxygen delivery. However, oncogenic activation and metabolic re-programming also elicit cell intrinsic stresses, independent of the tumor microenvironment. To ensure metabolic robustness and stress resistance, pro-growth signals downstream of oncogene activation or tumor suppressor loss simultaneously activate homeostatic processes. Here, we summarize recent literature describing the adaptive mechanisms co-opted by common oncogenes, including mTOR, MYC, and RAS. Recurrent themes in our review include: (1) coordination of oncogene-induced changes in protein and lipid metabolism to sustain endoplasmic reticulum homeostasis, (2) maintenance of mitochondrial functional capacity to support anabolic metabolism, (3) adaptations to sustain intracellular metabolite concentrations required for growth, and (4) prevention of oxidative stress. We also include a discussion of the hypoxia inducible factors (HIFs) and the AMP-dependent protein kinase (AMPK)--stress sensors that are co-opted to support tumor growth. Ultimately, an understanding of the adaptations required downstream of specific oncogenes could reveal targetable metabolic vulnerabilities.
Collapse
Affiliation(s)
- Bo Qiu
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
156
|
Shu Q, Cai T, Chen X, Zhu HH, Xue P, Zhu N, Xie Z, Wei S, Zhang Q, Niu L, Gao WQ, Yang F. Proteomic Comparison and MRM-Based Comparative Analysis of Metabolites Reveal Metabolic Shift in Human Prostate Cancer Cell Lines. J Proteome Res 2015; 14:3390-402. [PMID: 26147661 DOI: 10.1021/acs.jproteome.5b00464] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One of the major challenges in prostate cancer therapy remains the development of effective treatments for castration-resistant prostate cancer (CRPC), as the underlying mechanisms for its progression remain elusive. Previous studies showed that androgen receptor (AR) is crucially involved in regulation of metabolism in prostate cancer (PCa) cells throughout the transition from early stage, androgen-sensitive PCa to androgen-independent CRPC. AR achieves such metabolic rewiring directively either via its transcriptional activity or via interactions with AMP-activated protein kinase (AMPK). However, due to the heterogeneous expression and activity status of AR in PCa cells, it remains a challenge to investigate the links between AR status and metabolic alterations. To this end, we compared the proteomes of three pairs of androgen-sensitive (AS) and androgen-independent (AI) PCa cell lines, namely, PC3-AR(+)/PC3, 22Rv1/Du145, and LNCaP/C42B, using an iTRAQ labeling approach. Our results revealed that most of the differentially expressed proteins between each pair function in metabolism, indicating a metabolic shift between AS and AI cells, as further validated by multiple reaction monitoring (MRM)-based quantification of nucleotides and relative comparison of fatty acids between these cell lines. Furthermore, increased adenylate kinase isoenzyme 1 (AK1) in AS relative to AI cells may result in activation of AMPK, representing a major regulatory factor involved in the observed metabolic shift in PCa cells.
Collapse
Affiliation(s)
- Qingbo Shu
- ‡University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Helen He Zhu
- §State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | | | | | | | | | - Qing Zhang
- ‡University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Wei-Qiang Gao
- §State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | | |
Collapse
|
157
|
Lucarelli G, Rutigliano M, Galleggiante V, Giglio A, Palazzo S, Ferro M, Simone C, Bettocchi C, Battaglia M, Ditonno P. Metabolomic profiling for the identification of novel diagnostic markers in prostate cancer. Expert Rev Mol Diagn 2015; 15:1211-24. [PMID: 26174441 DOI: 10.1586/14737159.2015.1069711] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metabolomic profiling offers a powerful methodology for understanding the perturbations of biochemical systems occurring during a disease process. During neoplastic transformation, prostate cells undergo metabolic reprogramming to satisfy the demands of growth and proliferation. An early event in prostate cell transformation is the loss of capacity to accumulate zinc. This change is associated with a higher energy efficiency and increased lipid biosynthesis for cellular proliferation, membrane formation and cell signaling. Moreover, recent studies have shown that sarcosine, an N-methyl derivative of glycine, was significantly increased during disease progression from normal to localized to metastatic prostate cancer. Mapping the metabolomic profiles to their respective biochemical pathways showed an upregulation of androgen-induced protein synthesis, an increased amino acid metabolism and a perturbation of nitrogen breakdown pathways, along with high total choline-containing compounds and phosphocholine levels. In this review, the role of emerging biomarkers is summarized, based on the current understanding of the prostate cancer metabolome.
Collapse
Affiliation(s)
- Giuseppe Lucarelli
- a 1 Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Is 5´-AMP-Activated Protein Kinase Both Jekyll and Hyde in Bladder Cancer? Int Neurourol J 2015; 19:55-66. [PMID: 26126434 PMCID: PMC4490316 DOI: 10.5213/inj.2015.19.2.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
The 5´-AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and energy homeostasis in mammalian tissues. Metabolic adaptation is a critical step in ensuring cell survival during metabolic stress. Because of its critical role in the regulation of glucose homeostasis and carbohydrate, lipid, and protein metabolism, AMPK is involved in many human diseases, including cancers. Although AMPK signaling was originally characterized as a tumor-suppressive signaling pathway, several lines of evidence suggest that AMPK plays a much broader role and cannot simply be defined as either an oncogenic regulator or tumor suppressor. Notably, several recent studies demonstrated that the antitumorigenic effects of many indirect AMPK activators, such as metformin, do not depend on AMPK. Conversely, activation of AMPK induces the progression of cancers, emphasizing its oncogenic effect. Bladder cancer can be divided into two groups: non–muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). The molecular mechanisms underlying these two types of cancer are distinct: NMIBC is associated with activation of the Ras pathway, whereas MIBC is characterized by loss of major tumor suppressors. Importantly, both pathways are connected to the mammalian target of rapamycin (mTOR) pathway. In addition, our recent metabolomic findings suggest that β-oxidation of fatty acids is an important factor in the development of bladder cancer. Both mTOR and β-oxidation are tightly associated with the AMPK pathway. Here, I summarize and discuss the recent findings on the two distinct roles of AMPK in cancer, as well as the relationship between bladder cancer and AMPK.
Collapse
|
159
|
A New Combinatorial Optimization Approach for Integrated Feature Selection Using Different Datasets: A Prostate Cancer Transcriptomic Study. PLoS One 2015; 10:e0127702. [PMID: 26106884 PMCID: PMC4480358 DOI: 10.1371/journal.pone.0127702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/17/2015] [Indexed: 12/26/2022] Open
Abstract
Background The joint study of multiple datasets has become a common technique for increasing statistical power in detecting biomarkers obtained from smaller studies. The approach generally followed is based on the fact that as the total number of samples increases, we expect to have greater power to detect associations of interest. This methodology has been applied to genome-wide association and transcriptomic studies due to the availability of datasets in the public domain. While this approach is well established in biostatistics, the introduction of new combinatorial optimization models to address this issue has not been explored in depth. In this study, we introduce a new model for the integration of multiple datasets and we show its application in transcriptomics. Methods We propose a new combinatorial optimization problem that addresses the core issue of biomarker detection in integrated datasets. Optimal solutions for this model deliver a feature selection from a panel of prospective biomarkers. The model we propose is a generalised version of the (α,β)-k-Feature Set problem. We illustrate the performance of this new methodology via a challenging meta-analysis task involving six prostate cancer microarray datasets. The results are then compared to the popular RankProd meta-analysis tool and to what can be obtained by analysing the individual datasets by statistical and combinatorial methods alone. Results Application of the integrated method resulted in a more informative signature than the rank-based meta-analysis or individual dataset results, and overcomes problems arising from real world datasets. The set of genes identified is highly significant in the context of prostate cancer. The method used does not rely on homogenisation or transformation of values to a common scale, and at the same time is able to capture markers associated with subgroups of the disease.
Collapse
|
160
|
Zadra G, Batista JL, Loda M. Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies. Mol Cancer Res 2015; 13:1059-72. [PMID: 25956158 DOI: 10.1158/1541-7786.mcr-15-0068] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Abstract
The precise role of 5'AMP-activated kinase (AMPK) in cancer and its potential as a therapeutic target is controversial. Although it is well established that activation of this energy sensor inhibits the main anabolic processes that sustain cancer cell proliferation and growth, AMPK activation can confer on cancer cells the plasticity to survive under metabolic stress such as hypoxia and glucose deprivation, which are commonly observed in fast growing tumors. Thus, AMPK is referred to as both a "conditional" tumor suppressor and "contextual" oncogene. To add a further layer of complexity, AMPK activation in human cancer tissues and its correlation with tumor aggressiveness and progression appears to vary in different contexts. The current review discusses the different faces of this metabolic regulator, the therapeutic implications of its modulation, and provides an overview of the most relevant data available on AMPK activation and AMPK-activating drugs in human studies.
Collapse
Affiliation(s)
- Giorgia Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie L Batista
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School Boston, Massachusetts
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. The Broad Institute, Cambridge, Massachusetts. Division of Cancer Studies, King's College London, United Kingdom.
| |
Collapse
|
161
|
Popovics P, Schally AV, Szalontay L, Block NL, Rick FG. Targeted cytotoxic analog of luteinizing hormone-releasing hormone (LHRH), AEZS-108 (AN-152), inhibits the growth of DU-145 human castration-resistant prostate cancer in vivo and in vitro through elevating p21 and ROS levels. Oncotarget 2015; 5:4567-78. [PMID: 24994120 PMCID: PMC4147346 DOI: 10.18632/oncotarget.2146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Management of castration-resistant prostate cancer (CRPC) is challenging due to lack of efficacious therapy. Luteinizing hormone-releasing hormone (LHRH) analogs appear to act directly on cells based on the LHRH receptors on human prostate adenocarcinoma cells. We explored anticancer activity of a cytotoxic analog of LHRH, AEZS-108, consisting of LHRH agonist linked to doxorubicin. Nude mice bearing DU-145 tumors were used to compare antitumor effects of AEZS-108 with its individual constituents or their unconjugated combination. The tumor growth inhibition of conjugate was greatest among treatment groups (90.5% inhibition vs. 41% by [D-Lys(6)]LHRH+DOX). The presence of LHRH receptors on DU-145 cells was confirmed by immunocytochemistry. In vitro, AEZS-108 significantly inhibited cell proliferation (61.2% inhibition) and elevated apoptosis rates (by 46%). By the detection of the inherent doxorubicin fluorescence, unconjugated doxorubicin was seen in the nucleus; the conjugate was perinuclear and at cell membrane. Autophagy, visualized by GFP-tagged p62 reporter, was increased by AEZS-108 (7.9-fold vs. 5.3-fold by DOX+[D-Lys(6)]LHRH. AEZS-108 more effectively increased reactive oxygen species (ROS, 2-fold vs. 1.4-fold by DOX+[D-Lys(6)]LHRH) and levels of the apoptotic regulator p21 in vivo and in vitro. We demonstrate robust inhibitory effects of the targeted cytotoxic LHRH analog, AEZS-108, on LHRHR positive castration-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Petra Popovics
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Cardiovascular Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL; Department of Medicine III, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Andrew V Schally
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL; Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL; Endocrinology University of Miami, Miller School of Medicine, Miami, FL
| | - Luca Szalontay
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL
| | - Norman L Block
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL; Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL
| | - Ferenc G Rick
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Urology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| |
Collapse
|
162
|
Jurmeister S, Ramos-Montoya A, Neal DE, Fryer LGD. Transcriptomic analysis reveals inhibition of androgen receptor activity by AMPK in prostate cancer cells. Oncotarget 2015; 5:3785-99. [PMID: 25003216 PMCID: PMC4116520 DOI: 10.18632/oncotarget.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Metabolic alterations contribute to prostate cancer development and progression; however, the role of the central metabolic regulator AMP-activated protein kinase (AMPK) remains controversial. The androgen receptor (AR), a key driver of prostate cancer, regulates prostate cancer cell metabolism by driving the expression of a network of metabolic genes and activates AMPK through increasing the expression of one of its upstream kinases. To more clearly define the role of AMPK in prostate cancer, we performed expression profiling following pharmacologic activation of this kinase. We found that genes down-regulated upon AMPK activation were over-expressed in prostate cancer, consistent with a tumour suppressive function of AMPK. Strikingly, we identified the AR as one of the most significantly enriched transcription factors mediating gene expression changes downstream of AMPK signalling in prostate cancer cells. Activation of AMPK inhibited AR transcriptional activity and reduced androgen-dependent expression of known AR target genes. Conversely, knock-down of AMPK increased AR activity. Modulation of AR expression could not explain these effects. Instead, we observed that activation of AMPK reduced nuclear localisation of the AR. We thus propose the presence of a negative feedback loop in prostate cancer cells whereby AR activates AMPK and AMPK feeds back to limit AR-driven transcription.
Collapse
Affiliation(s)
- Sarah Jurmeister
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, UK
| | | | | | - Lee G D Fryer
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, UK
| |
Collapse
|
163
|
Yu W, Cao D, Zhou H, Hu Y, Guo T. PGC-1α is responsible for survival of multiple myeloma cells under hyperglycemia and chemotherapy. Oncol Rep 2015; 33:2086-92. [PMID: 25695395 DOI: 10.3892/or.2015.3809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
The association between hyperglycemia and outcomes during chemotherapy has been reported in several tumors, including multiple myeloma (MM). However, the underlying mechanism of how hyperglycemia affects the survival of MM cells during chemotherapy remain to be elucidated. MM cells were cultured in 10 mM glucose with or without chemotherapeutic agents. Following treatment of MM cells with dexamethasone or bortezomib, an MTT assay was used to evaluate the toxicity of dexamethasone or bortezomib on cell proliferation, and changes of reactive oxygen species (ROS) level were detected by flow cytometry (FCM) analysis. Small interference RNA (siRNA) was applied to inhibit the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Expressions of PGC-1α and antioxidant factors such as superoxide dismutase 2 (SOD‑2), glutathione peroxidase 1 (GPX-1), and catalase (CAT) were measured by RT-PCR prior to and following treatment. The results showed that the level of PGC-1α in MM cells cultured in high-glucose medium was upregulated prior to and following treatment of chemotherapeutic agents, and these cells showed less fold-change of ROS after insult of drugs, when compared to the control. Genes encoding antioxidant factors such as SOD-2 and CAT were also upregulated. Inhibition of PGC-1α enhanced the toxicity of antitumor agents, associated with reduced expression of antioxidant factors, and elevated level of ROS. The present findings suggested that hyperglycemia may influence the anticancer effect of chemotherapeutic agents in MM by upregulating the expression of PGC-1α and associated antioxidant factors. Inhibition of PGC-1α or control of hyperglycemia may be beneficial in improving the efficacy of chemotherapy in MM patients with diabetes.
Collapse
Affiliation(s)
- Wen Yu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Dedong Cao
- Institute of Cancer, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
164
|
Popovics P, Frigo DE, Schally AV, Rick FG. Targeting the 5'-AMP-activated protein kinase and related metabolic pathways for the treatment of prostate cancer. Expert Opin Ther Targets 2015; 19:617-32. [PMID: 25600663 DOI: 10.1517/14728222.2015.1005603] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Increasing evidence suggests that prostate cancer cells undergo unique metabolic reprogramming during transformation. A master regulator of cellular homeostasis, 5'-AMP-activated protein kinase (AMPK), directs metabolic adaptation that supports the growth demands of rapidly dividing cancer cells. The utilization of AMPK as a therapeutic target may therefore provide an effective strategy in the treatment of prostate cancer. AREAS COVERED Our review describes the regulation of AMPK by androgens and upstream kinases including the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in prostate cancer. Oncogenic, AMPK-regulated pathways that direct various metabolic processes are also addressed. Furthermore, we discuss the role of AMPK in growth arrest and autophagy as a potential survival pathway for cancer cells. In addition, by regulating non-metabolic pathways, AMPK may stimulate migration and mitosis. Finally, this review summarizes efforts to treat prostate cancer with pharmacological agents capable of modulating AMPK signaling. EXPERT OPINION Current research is primarily focused on developing drugs that activate AMPK as a treatment for prostate cancer. However, oncogenic aspects of AMPK signaling calls for caution about employing such therapies. We think that inhibitors of CaMKK2 or AMPK, or perhaps the modulation of downstream targets of AMPK, will gain importance in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Petra Popovics
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education , Research (151) 2A127, 1201 NW 16th St, Miami, FL 33125 , USA +1 305 5753477 ; +1 305 5753126 ;
| | | | | | | |
Collapse
|
165
|
The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch Pharm Res 2015; 38:346-57. [PMID: 25575627 DOI: 10.1007/s12272-015-0549-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
5'-AMP-activated protein kinase (AMPK) plays a pivotal role in maintaining energy and redox homeostasis under various metabolic stress conditions. Metabolic adaptation, which can be triggered by the activation of AMPK during metabolic stress, is the critical process for cell survival through the maintenance of ATP and NADPH levels. The importance of such regulation of fundamental process poses the AMPK signaling pathway in one of the most attractive therapeutic targets in many pathologies such as diabetes and cancer. In cancer, however, accumulating data suggest that the role of AMPK would not be simply defined as anti- or pro-tumorigenic, but it seems to have two faces like a double-edged sword. Importantly, recent studies showed that the anti-tumorigenic effects of many 'indirect' AMPK activators such as anti-diabetic biguanides are not dependent on AMPK; rather the activation of AMPK induces the resistance to their cytotoxic effects, emphasizing the pro-tumorigenic effect of AMPK. In this review, we summarize and discuss recent findings suggesting the two faces of AMPK in cancer, and discuss how we can exploit this unique feature of AMPK for novel therapeutic intervention.
Collapse
|
166
|
Popovics P, Schally AV, Block NL, Rick FG. Preclinical therapy of benign prostatic hyperplasia with neuropeptide hormone antagonists. World J Clin Urol 2014; 3:184-194. [DOI: 10.5410/wjcu.v3.i3.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/26/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a pathologic condition of the prostate described as a substantial increase in its number of epithelial and stromal cells. BPH may significantly reduce the quality of life due to the initiation of bladder outlet obstruction and lower urinary tract syndromes. Current medical therapies mostly consist of inhibitors of 5α-reductase or α1-adrenergic blockers; their efficacy is often insufficient. Antagonistic analogs of neuropeptide hormones are novel candidates for the management of BPH. At first, antagonists of luteinizing hormone-releasing hormone (LHRH) have been introduced to the therapy aimed to reduce serum testosterone levels. However, they have also been found to produce an inhibitory activity on local LHRH receptors in the prostate as well as impotence and other related side effects. Since then, several preclinical and clinical studies reported the favorable effects of LHRH antagonists in BPH. In contrast, antagonists of growth hormone-releasing hormone (GHRH) and gastrin-releasing peptide (GRP) have been tested only in preclinical settings and produce significant reduction in prostate size in experimental models of BPH. They act at least in part, by blocking the action of respective ligands produced locally on prostates through their respective receptors in the prostate, and by inhibition of autocrine insulin-like growth factors-I/II and epidermal growth factor production. GHRH and LHRH antagonists were also tested in combination resulting in a cumulative effect that was greater than that of each alone. This article will review the numerous studies that demonstrate the beneficial effects of antagonistic analogs of LHRH, GHRH and GRP in BPH, as well as suggesting a potential role for somatostatin analogs in experimental therapies.
Collapse
|
167
|
Andrzejewski S, Gravel SP, Pollak M, St-Pierre J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab 2014; 2:12. [PMID: 25184038 PMCID: PMC4147388 DOI: 10.1186/2049-3002-2-12] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metformin is widely used in the treatment of diabetes, and there is interest in 'repurposing' the drug for cancer prevention or treatment. However, the mechanism underlying the metabolic effects of metformin remains poorly understood. METHODS We performed respirometry and stable isotope tracer analyses on cells and isolated mitochondria to investigate the impact of metformin on mitochondrial functions. RESULTS We show that metformin decreases mitochondrial respiration, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, cells treated with metformin become energetically inefficient, and display increased aerobic glycolysis and reduced glucose metabolism through the citric acid cycle. Conflicting prior studies proposed mitochondrial complex I or various cytosolic targets for metformin action, but we show that the compound limits respiration and citric acid cycle activity in isolated mitochondria, indicating that at least for these effects, the mitochondrion is the primary target. Finally, we demonstrate that cancer cells exposed to metformin display a greater compensatory increase in aerobic glycolysis than nontransformed cells, highlighting their metabolic vulnerability. Prevention of this compensatory metabolic event in cancer cells significantly impairs survival. CONCLUSIONS Together, these results demonstrate that metformin directly acts on mitochondria to limit respiration and that the sensitivity of cells to metformin is dependent on their ability to cope with energetic stress.
Collapse
Affiliation(s)
- Sylvia Andrzejewski
- Goodman Cancer Research Centre, McGill University, 1160 Pine Ave. West, Montréal, QC H3A 1A3, Canada ; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| | - Simon-Pierre Gravel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Ave. West, Montréal, QC H3A 1A3, Canada ; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| | - Michael Pollak
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada ; Cancer Prevention Center, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada ; Department of Oncology, McGill University, 546 Pine Ave. W., Montréal, QC H2W 1S6, Canada
| | - Julie St-Pierre
- Goodman Cancer Research Centre, McGill University, 1160 Pine Ave. West, Montréal, QC H3A 1A3, Canada ; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|
168
|
Role of YY1 in the pathogenesis of prostate cancer and correlation with bioinformatic data sets of gene expression. Genes Cancer 2014; 5:71-83. [PMID: 25053986 PMCID: PMC4091534 DOI: 10.18632/genesandcancer.12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/10/2014] [Indexed: 11/25/2022] Open
Abstract
Current treatments of various cancers include chemotherapy, radiation, surgery, immunotherapy, and combinations. However, there is a need to develop novel diagnostic and therapeutic treatments for unresponsive patients. These may be achieved by the identification of novel diagnostic and prognostic biomarkers which will help in the stratification of patients' initial responses to particular treatments and circumvent resistance, relapses, metastasis, and death. We have been investigating human prostate cancer as a model tumor. We have identified Yin Yang 1 (YY1), a dysregulated transcription factor, whose overexpression correlated with tumor progression as well as in the regulation of drug resistance and the development of EMT. YY1 expression is upregulated in human prostate cancer cell lines and tissues. We postulated that YY1 may be a potential biomarker in prostate cancer for patients' stratification as well as a novel target for therapeutic intervention. We used Bioinformatic gene RNA array datasets for the expression of YY1 in prostate tumor tissues as compared to normal tissues. Interestingly, variations on the expression levels of YY1 mRNA in prostate cancer were reported by different investigators. This mini review summarizes the current reported studies and Bioinformatic analyses on the role of YY1 in the pathogenesis of prostate cancer.
Collapse
|
169
|
Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L, Frigo DE. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis 2014; 3:e103. [PMID: 24861463 PMCID: PMC4035695 DOI: 10.1038/oncsis.2014.18] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022] Open
Abstract
Cancer cells display an increased demand for glucose. Therefore, identifying the specific aspects of glucose metabolism that are involved in the pathogenesis of cancer may uncover novel therapeutic nodes. Recently, there has been a renewed interest in the role of the pentose phosphate pathway in cancer. This metabolic pathway is advantageous for rapidly growing cells because it provides nucleotide precursors and helps regenerate the reducing agent NADPH, which can contribute to reactive oxygen species (ROS) scavenging. Correspondingly, clinical data suggest glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, is upregulated in prostate cancer. We hypothesized that androgen receptor (AR) signaling, which plays an essential role in the disease, mediated prostate cancer cell growth in part by increasing flux through the pentose phosphate pathway. Here, we determined that G6PD, NADPH and ribose synthesis were all increased by AR signaling. Further, this process was necessary to modulate ROS levels. Pharmacological or molecular inhibition of G6PD abolished these effects and blocked androgen-mediated cell growth. Mechanistically, regulation of G6PD via AR in both hormone-sensitive and castration-resistant models of prostate cancer was abolished following rapamycin treatment, indicating that AR increased flux through the pentose phosphate pathway by the mammalian target of rapamycin (mTOR)-mediated upregulation of G6PD. Accordingly, in two separate mouse models of Pten deletion/elevated mTOR signaling, Pb-Cre;Pten(f/f) and K8-CreER(T2);Pten(f/f), G6PD levels correlated with prostate cancer progression in vivo. Importantly, G6PD levels remained high during progression to castration-resistant prostate cancer. Taken together, our data suggest that AR signaling can promote prostate cancer through the upregulation of G6PD and therefore, the flux of sugars through the pentose phosphate pathway. Hence, these findings support a vital role for other metabolic pathways (that is, not glycolysis) in prostate cancer cell growth and maintenance.
Collapse
Affiliation(s)
- E Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A S Khan
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - M A White
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - J J Han
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Y Shi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - F A Merchant
- Department of Engineering Technology, University of Houston, Houston, TX, USA
| | - M A Sharpe
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - L Xin
- 1] Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA [2] Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [3] Dan L. Duncan Cancer Center, Houston, TX, USA
| | - D E Frigo
- 1] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA [2] Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
170
|
Possik E, Jalali Z, Nouët Y, Yan M, Gingras MC, Schmeisser K, Panaite L, Dupuy F, Kharitidi D, Chotard L, Jones RG, Hall DH, Pause A. Folliculin regulates ampk-dependent autophagy and metabolic stress survival. PLoS Genet 2014; 10:e1004273. [PMID: 24763318 PMCID: PMC3998892 DOI: 10.1371/journal.pgen.1004273] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/14/2014] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of AMPK signaling has been implicated in many human diseases, which emphasizes the importance of characterizing AMPK regulators. The tumor suppressor FLCN, responsible for the Birt-Hogg Dubé renal neoplasia syndrome (BHD), is an AMPK-binding partner but the genetic and functional links between FLCN and AMPK have not been established. Strikingly, the majority of naturally occurring FLCN mutations predisposing to BHD are predicted to produce truncated proteins unable to bind AMPK, pointing to the critical role of this interaction in the tumor suppression mechanism. Here, we demonstrate that FLCN is an evolutionarily conserved negative regulator of AMPK. Using Caenorhabditis elegans and mammalian cells, we show that loss of FLCN results in constitutive activation of AMPK which induces autophagy, inhibits apoptosis, improves cellular bioenergetics, and confers resistance to energy-depleting stresses including oxidative stress, heat, anoxia, and serum deprivation. We further show that AMPK activation conferred by FLCN loss is independent of the cellular energy state suggesting that FLCN controls the AMPK energy sensing ability. Together, our data suggest that FLCN is an evolutionarily conserved regulator of AMPK signaling that may act as a tumor suppressor by negatively regulating AMPK function. The FLCN gene is responsible for the hereditary human tumor disease called Birt-Hogg-Dube syndrome (BHD). Patients that inherit an inactivating mutation in the FLCN gene develop lung collapse as well as tumors in the kidney, colon, and skin. It is not clear yet what the exact function of this protein is in the cell or an organism. In this study, we used a simple model organism (the round worm C. elegans) to study the function of FLCN. We found that it is involved in the regulation of energy metabolism in the cell. FLCN normally binds and blocks the action of another protein (AMPK), which is involved in the maintenance of energy levels. When energy levels fall, AMPK is activated and drives a recycling pathway called autophagy, where cellular components are recycled producing energy. In the absence of FLCN in worms and mammalian cells, like in tumors of BHD patients, AMPK and autophagy are chronically activated leading to an increased energy level, which makes the cells/organism very resistant to many stresses that would normally kill them, which in the end could lead to progression of tumorigenesis.
Collapse
Affiliation(s)
- Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Zahra Jalali
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Yann Nouët
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Ming Yan
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Marie-Claude Gingras
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Kathrin Schmeisser
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Lorena Panaite
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Fanny Dupuy
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Dmitri Kharitidi
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Laëtitia Chotard
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Russell G. Jones
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
171
|
Yan M, Gingras MC, Dunlop EA, Nouët Y, Dupuy F, Jalali Z, Possik E, Coull BJ, Kharitidi D, Dydensborg AB, Faubert B, Kamps M, Sabourin S, Preston RS, Davies DM, Roughead T, Chotard L, van Steensel MAM, Jones R, Tee AR, Pause A. The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J Clin Invest 2014; 124:2640-50. [PMID: 24762438 DOI: 10.1172/jci71749] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Warburg effect is a tumorigenic metabolic adaptation process characterized by augmented aerobic glycolysis, which enhances cellular bioenergetics. In normal cells, energy homeostasis is controlled by AMPK; however, its role in cancer is not understood, as both AMPK-dependent tumor-promoting and -inhibiting functions were reported. Upon stress, energy levels are maintained by increased mitochondrial biogenesis and glycolysis, controlled by transcriptional coactivator PGC-1α and HIF, respectively. In normoxia, AMPK induces PGC-1α, but how HIF is activated is unclear. Germline mutations in the gene encoding the tumor suppressor folliculin (FLCN) lead to Birt-Hogg-Dubé (BHD) syndrome, which is associated with an increased cancer risk. FLCN was identified as an AMPK binding partner, and we evaluated its role with respect to AMPK-dependent energy functions. We revealed that loss of FLCN constitutively activates AMPK, resulting in PGC-1α-mediated mitochondrial biogenesis and increased ROS production. ROS induced HIF transcriptional activity and drove Warburg metabolic reprogramming, coupling AMPK-dependent mitochondrial biogenesis to HIF-dependent metabolic changes. This reprogramming stimulated cellular bioenergetics and conferred a HIF-dependent tumorigenic advantage in FLCN-negative cancer cells. Moreover, this pathway is conserved in a BHD-derived tumor. These results indicate that FLCN inhibits tumorigenesis by preventing AMPK-dependent HIF activation and the subsequent Warburg metabolic transformation.
Collapse
|
172
|
Stable isotope tracer analysis in isolated mitochondria from mammalian systems. Metabolites 2014; 4:166-83. [PMID: 24957021 PMCID: PMC4101501 DOI: 10.3390/metabo4020166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/26/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are a focal point in metabolism, given that they play fundamental roles in catabolic, as well as anabolic reactions. Alterations in mitochondrial functions are often studied in whole cells, and metabolomics experiments using 13C-labeled substrates, coupled with mass isotopomer distribution analyses, represent a powerful approach to study global changes in cellular metabolic activities. However, little is known regarding the assessment of metabolic activities in isolated mitochondria using this technology. Studies on isolated mitochondria permit the evaluation of whether changes in cellular metabolic activities are due to modifications in the intrinsic properties of the mitochondria. Here, we present a streamlined approach to accurately determine 13C, as well as 12C enrichments in isolated mitochondria from mammalian tissues or cultured cells by GC/MS. We demonstrate the relevance of this experimental approach by assessing the effects of drugs perturbing mitochondrial functions on the mass isotopomer enrichment of metabolic intermediates. Furthermore, we investigate 13C and 12C enrichments in mitochondria isolated from cancer cells given the emerging role of metabolic alterations in supporting tumor growth. This original method will provide a very sensitive tool to perform metabolomics studies on isolated mitochondria.
Collapse
|
173
|
Demir U, Koehler A, Schneider R, Schweiger S, Klocker H. Metformin anti-tumor effect via disruption of the MID1 translational regulator complex and AR downregulation in prostate cancer cells. BMC Cancer 2014; 14:52. [PMID: 24484909 PMCID: PMC3929757 DOI: 10.1186/1471-2407-14-52] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/27/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Metformin is an approved drug prescribed for diabetes. Its role as an anti-cancer agent has drawn significant attention because of its minimal side effects and low cost. However, its mechanism of anti-tumour action has not yet been fully clarified. METHODS The effect on cell growth was assessed by cell counting. Western blot was used for analysis of protein levels, Boyden chamber assays for analyses of cell migration and co-immunoprecipitation (CoIP) followed by western blot, PCR or qPCR for analysis of protein-protein and protein-mRNA interactions. RESULTS Metformin showed an anti-proliferative effect on a wide range of prostate cancer cells. It disrupted the AR translational MID1 regulator complex leading to release of the associated AR mRNA and subsequently to downregulation of AR protein in AR positive cell lines. Inhibition of AR positive and negative prostate cancer cells by metformin suggests involvement of additional targets. The inhibitory effect of metformin was mimicked by disruption of the MID1-α4/PP2A protein complex by siRNA knockdown of MID1 or α4 whereas AMPK activation was not required. CONCLUSIONS Findings reported herein uncover a mechanism for the anti-tumor activity of metformin in prostate cancer, which is independent of its anti-diabetic effects. These data provide a rationale for the use of metformin in the treatment of hormone naïve and castration-resistant prostate cancer and suggest AR is an important indirect target of metformin.
Collapse
Affiliation(s)
- Ummuhan Demir
- Department of Urology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Andrea Koehler
- Institute of Biochemistry, Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Rainer Schneider
- Institute of Biochemistry, Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Susann Schweiger
- Institute for Human Genetics, Medical School, University of Mainz, 55131 Mainz, Germany
| | - Helmut Klocker
- Department of Urology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
174
|
Preclinical efficacy of growth hormone-releasing hormone antagonists for androgen-dependent and castration-resistant human prostate cancer. Proc Natl Acad Sci U S A 2014; 111:1084-9. [PMID: 24395797 DOI: 10.1073/pnas.1323102111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advanced hormone-sensitive prostate cancer responds to androgen-deprivation therapy (ADT); however, therapeutic options for recurrent castration-resistant disease are limited. Because growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) are regulated in an autocrine fashion in prostate cancer, inhibition of GHRH-R represents a compelling approach to treatment. We investigated the effects of the latest series of improved, highly potent GHRH antagonists--MIA-602, MIA-606, and MIA-690--on the growth of androgen-dependent as well as castration-resistant prostate cancer (CRPC) cells in vitro and in vivo. GHRH-R and its splice variant, SV1, were present in 22Rv1, LNCaP, and VCaP human prostate cancer cell lines. Androgen-dependent LNCaP and VCaP cells expressed higher levels of GHRH-R protein compared with castration-resistant 22Rv1 cells; however, 22Rv1 expressed higher levels of SV1. In vitro, MIA-602 decreased cell proliferation of 22Rv1, LNCaP, and VCaP prostate cancer cell lines by 70%, 61%, and 20%, respectively (all P < 0.05), indicating direct effects of MIA-602. In vivo, MIA-602 was more effective than MIA-606 and MIA-690 and decreased 22Rv1 xenograft tumor volumes in mice by 63% after 3 wk (P < 0.05). No noticeable untoward effects or changes in body weight occurred. In vitro, the VCaP cell line was minimally inhibited by MIA-602, but in vivo, this line showed a substantial reduction in growth of xenografts in response to MIA-602, indicating both direct and systemic inhibitory effects. MIA-602 also further inhibited VCaP xenografts when combined with ADT. This study demonstrates the preclinical efficacy of the GHRH antagonist MIA-602 for treatment of both androgen-dependent and CRPC.
Collapse
|
175
|
Desbats MA, Giacomini I, Prayer-Galetti T, Montopoli M. Iron granules in plasma cells. J Clin Pathol 1982; 10:281. [PMID: 32211323 PMCID: PMC7068907 DOI: 10.3389/fonc.2020.00281] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023]
Abstract
Resistance of cancer cells to chemotherapy is the first cause of cancer-associated death. Thus, new strategies to deal with the evasion of drug response and to improve clinical outcomes are needed. Genetic and epigenetic mechanisms associated with uncontrolled cell growth result in metabolism reprogramming. Cancer cells enhance anabolic pathways and acquire the ability to use different carbon sources besides glucose. An oxygen and nutrient-poor tumor microenvironment determines metabolic interactions among normal cells, cancer cells and the immune system giving rise to metabolically heterogeneous tumors which will partially respond to metabolic therapy. Here we go into the best-known cancer metabolic profiles and discuss several studies that reported tumors sensitization to chemotherapy by modulating metabolic pathways. Uncovering metabolic dependencies across different chemotherapy treatments could help to rationalize the use of metabolic modulators to overcome therapy resistance.
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- *Correspondence: Monica Montopoli
| |
Collapse
|
176
|
Cheng CF, Ku HC, Lin H. Functional alpha 1 protease inhibitor produced by a human hepatoma cell line. ACTA ACUST UNITED AC 1982; 19:ijms19113447. [PMID: 30400212 PMCID: PMC6274980 DOI: 10.3390/ijms19113447] [Citation(s) in RCA: 310] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Alpha 1 protease inhibitor antigen was identified in the culture medium of the human ascites hepatoma cell line SK-HEP-1. Trypsin inhibitory activity and alpha 1 Pl antigen accumulated in serum-free medium concomitantly over a period of several days. Radioactive alpha 1 Pl antigen was detected in conditioned medium from cultures supplemented with 35S-L-methionine, indicating a synthesis and release of the protein. Alpha 1 Pl antigen in conditioned medium appeared to be antigenically identical to that in human plasma, and the newly synthesized (radiolabeled) antigen co-migrated with plasma, alpha 1 Pl after immunoelectrophoresis or SDS-polyacrylamide gel electrophoresis. Moreover, evidence is presented that the synthesized inhibitor exhibits functional activity, since the 35S-labeled alpha 1 Pl in conditioned medium complexes with trypsin. We conclude that SK-HEP-1 cells in culture produce functionally active alpha 1 Pl which may be identical to that in plasma.
Collapse
Affiliation(s)
- Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
- Department of Pediatrics, Tzu Chi University, Hualien 97004, Taiwan.
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
| | - Heng Lin
- Institute of Pharmacology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|