151
|
Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, Mueller M, Flannery C, Huang Y, Taylor HS. H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med 2016; 7:996-1003. [PMID: 26089099 PMCID: PMC4551339 DOI: 10.15252/emmm.201505245] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Endometriosis affects approximately 15% of reproductive aged women and is associated with chronic pelvic pain and infertility. However, the molecular mechanisms by which endometriosis impacts fertility are poorly understood. The developmentally regulated, imprinted H19 long noncoding RNA (lncRNA) functions to reduce the bioavailability of microRNA let-7 by acting as a molecular sponge. Here we report that H19 expression is significantly decreased in the eutopic endometrium of women with endometriosis as compared to normal controls. We show that decreased H19 increases let-7 activity, which in turn inhibits Igf1r expression at the post-transcriptional level, thereby contributing to reduced proliferation of endometrial stromal cells. We propose that perturbation of this newly identified H19/Let-7/IGF1R regulatory pathway may contribute to impaired endometrial preparation and receptivity for pregnancy in women with endometriosis. Our finding represents the first example of a lncRNA-based mechanism in endometriosis and its associated infertility, thus holding potential in the development of novel therapeutics for women with endometriosis and infertility.
Collapse
Affiliation(s)
- Sanaz Ghazal
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Brett McKinnon
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland
| | - Jichun Zhou
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou Zhejiang, China
| | - Martin Mueller
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland
| | - Yi Men
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University, Chengdu Sichuan, China
| | - Lihua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Obstetrics and Gynecology Department, Tangshan Gongren Hospital, Tangshan Hebei, China
| | - Michael Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland
| | - Clare Flannery
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
152
|
H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR. Mol Cell Biol 2016; 36:1332-41. [PMID: 26884465 DOI: 10.1128/mcb.01030-15] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally.
Collapse
|
153
|
Palanichamy JK, Tran TM, Howard JM, Contreras JR, Fernando TR, Sterne-Weiler T, Katzman S, Toloue M, Yan W, Basso G, Pigazzi M, Sanford JR, Rao DS. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation. J Clin Invest 2016; 126:1495-511. [PMID: 26974154 DOI: 10.1172/jci80046] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Posttranscriptional control of gene expression is important for defining both normal and pathological cellular phenotypes. In vitro, RNA-binding proteins (RBPs) have recently been shown to play important roles in posttranscriptional regulation; however, the contribution of RBPs to cell specification is not well understood. Here, we determined that the RBP insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is specifically overexpressed in mixed lineage leukemia-rearranged (MLL-rearranged) B-acute lymphoblastic leukemia (B-ALL), which constitutes a subtype of this malignancy associated with poor prognosis and high risk of relapse. IGF2BP3 was required for the survival of B-ALL cell lines, as knockdown led to decreased proliferation and increased apoptosis. Enforced expression of IGF2BP3 provided murine BM cells with a strong survival advantage, led to proliferation of hematopoietic stem and progenitor cells, and skewed hematopoietic development to the B cell/myeloid lineage. Cross-link immunoprecipitation and high throughput sequencing uncovered the IGF2BP3-regulated transcriptome, which includes oncogenes MYC and CDK6 as direct targets. IGF2BP3 regulated transcripts via targeting elements within 3' untranslated regions (3'UTR), and enforced IGF2BP3 expression in mice resulted in enhanced expression of Myc and Cdk6 in BM. Together, our data suggest that IGF2BP3-mediated targeting of oncogenic transcripts may represent a critical pathogenetic mechanism in MLL-rearranged B-ALL and support IGF2BP3 and its cognate RNA-binding partners as potential therapeutic targets in this disease.
Collapse
|
154
|
Long noncoding RNAs related to the odontogenic potential of dental mesenchymal cells in mice. Arch Oral Biol 2016; 67:1-8. [PMID: 26986487 DOI: 10.1016/j.archoralbio.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The purpose of this study is to identify the lncRNAs that are associated with the odontogenic potential in mouse dental mesenchymal cells. DESIGN The odontogenic potential of dental mesenchymal cells was found to be lost in the course of in vitro culture, so the lncRNA profiles were subsequently compared between freshly-isolated and cultured dental mesenchymal cells using RNA-sequencing. A co-expression analysis of differentially expressed lncRNAs and coding RNAs was performed to understand their potential functions. The expression of several selected lncRNAs was also examined in developing tooth germs. RESULTS Compared with cultured dental mesenchymal cells, 108 lncRNAs were upregulated and 36 lncRNAs were downregulated in freshly-isolated dental mesenchymal cells. Coding genes correlated with the lncRNAs were mainly associated with DNA and protein metabolic processes and cytoskeletal anchorage. Meg3, Malat1, Xist, and Dlx1as were significantly downregulated in cultured dental mesenchymal cells but were upregulated in odontogenic dental mesenchymal tissues. Moreover, the levels of Dlx1as were negatively correlated with that of Dlx1 in dental mesenchymal cells and dental mesenchymal tissues. CONCLUSIONS The lncRNA profiles of dental mesenchymal cells are significantly changed during culturing, and the dysregulation of lncRNAs is associated with the loss of odontogenic potential.
Collapse
|
155
|
Abstract
Precise and dynamic regulation of gene expression is a key feature of immunity. In recent years, rapid advances in transcriptome profiling analysis have led to recognize long non-coding RNAs (lncRNAs) as an additional layer of gene regulation context. In the immune system, lncRNAs are found to be widely expressed in immune cells including monocytes, macrophages, dendritic cells (DC), neutrophils, T cells and B cells during their development, differentiation and activation. However, the functional importance of immune-related lncRNAs is just emerging to be characterized. In this review, we discuss the up-to-date knowledge of lncRNAs in immune regulation.
Collapse
Affiliation(s)
- Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Corresponding author. Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 217, Chicago, IL 60611, USA. Tel.: +1 (773) 755 6380; fax: +1 (773) 755 6581.
| |
Collapse
|
156
|
Matouk IJ, Halle D, Raveh E, Gilon M, Sorin V, Hochberg A. The role of the oncofetal H19 lncRNA in tumor metastasis: orchestrating the EMT-MET decision. Oncotarget 2016; 7:3748-65. [PMID: 26623562 PMCID: PMC4826167 DOI: 10.18632/oncotarget.6387] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/15/2015] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) genes are emerging as key players in the metastatic cascade. Current evidence indicate that H19 lncRNA and the microRNA(miRNA) miR-675, which is processed from it, play crucial roles in metastasis, through the regulation of critical events specifically the epithelial to mesenchymal (EMT) and the mesenchymal to epithelial transitions (MET). This review summarizes recent mechanistic pathways and tries to put together seemingly conflicting data from different reports under one proposed general scheme underlying the various roles of H19/miR-675 in the metastatic cascade. We propose several approaches to harnessing this knowledge for translational medicine.
Collapse
Affiliation(s)
- Imad J. Matouk
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem, West Bank
| | - David Halle
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Raveh
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Gilon
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vladimir Sorin
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avraham Hochberg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
157
|
Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med 2015; 13:385. [PMID: 26691922 PMCID: PMC4687119 DOI: 10.1186/s12967-015-0746-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N6-methyladenosine (m6A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m6A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner milk exosomes may transfer DCMEC-derived miRNA-29s and bovine FTO mRNA to the milk consumer amplifying FTO expression. There is compelling evidence that obesity, T2DM, prostate and breast cancer, and neurodegenerative diseases are all associated with increased FTO expression. Maximization of lactation performance by veterinary medicine with enhanced miRNA-29s and FTO expression associated with increased exosomal miRNA-29 and FTO mRNA transfer to the milk consumer may represent key epigenetic mechanisms promoting FTO/mTORC1-mediated diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
158
|
Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, Xie J, Giang K, Chung H, Sun X, Lu L, Carmichael GG, Taylor HS, Huang Y. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun 2015; 6:10221. [PMID: 26687445 PMCID: PMC4703905 DOI: 10.1038/ncomms10221] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023] Open
Abstract
DNA methylation is essential for mammalian development and physiology. Here we report that the developmentally regulated H19 lncRNA binds to and inhibits S-adenosylhomocysteine hydrolase (SAHH), the only mammalian enzyme capable of hydrolysing S-adenosylhomocysteine (SAH). SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases that methylate diverse cellular components, including DNA, RNA, proteins, lipids and neurotransmitters. We show that H19 knockdown activates SAHH, leading to increased DNMT3B-mediated methylation of an lncRNA-encoding gene Nctc1 within the Igf2-H19-Nctc1 locus. Genome-wide methylation profiling reveals methylation changes at numerous gene loci consistent with SAHH modulation by H19. Our results uncover an unanticipated regulatory circuit involving broad epigenetic alterations by a single abundantly expressed lncRNA that may underlie gene methylation dynamics of development and diseases and suggest that this mode of regulation may extend to other cellular components.
Collapse
Affiliation(s)
- Jichun Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Lihua Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics and Gynecology, Tianjin Renmin Hospital, Tianjin 300000, China
| | - Tianyu Zhong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Martin Mueller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics and Gynecology, University Hospital, Bern 3012, Switzerland
| | - Yi Men
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Head and Neck Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Juanke Xie
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Reproductive Medical Center, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Karolyn Giang
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Hunter Chung
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Xueguang Sun
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Lingeng Lu
- Department of Chronic Diseases Epidemiology, Yale School of Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
159
|
The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long noncoding RNA in human cancers. Tumour Biol 2015; 37:1437-44. [PMID: 26634743 DOI: 10.1007/s13277-015-4521-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which refer to a group of RNAs with length more than 200 nucleotides and limited protein-coding potential, play a widespread role in regulating biological processes, such as cell differentiation, proliferation, apoptosis, and migration. LncRNAs are dysregulated in multiple cancers, playing an either oncogenic or tumor-suppressive role. LncRNA GAS5 is a recently identified tumor suppressor involved in several cancers, like breast cancer, prostate cancer, lung cancer, and colorectal cancer. The low-expression pattern confers tumor cells elevated capacity of proliferation and predicts poorer prognosis. Existing studies mirror that lncRNA GAS5 promises to be a novel diagnostic biomarker, therapy target, as well as prognostic biomarker. In this review, we will summarize the current knowledge about this vital lncRNA, from its discovery, characteristics, and biological function to molecular mechanism in various neoplasms.
Collapse
|
160
|
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are changing how researchers view eukaryotic gene regulation. Once considered to be non-functional products of low-level aberrant transcription from non-coding regions of the genome, lncRNAs are now viewed as important epigenetic regulators and several lncRNAs have now been demonstrated to be critical players in the development and/or maintenance of cancer. Similarly, the emerging variety of interactions between lncRNAs and MYC, a well-known oncogenic transcription factor linked to most types of cancer, have caught the attention of many biomedical researchers. Investigations exploring the dynamic interactions between lncRNAs and MYC, referred to as the lncRNA-MYC network, have proven to be especially complex. Genome-wide studies have shown that MYC transcriptionally regulates many lncRNA genes. Conversely, recent reports identified lncRNAs that regulate MYC expression both at the transcriptional and post-transcriptional levels. These findings are of particular interest because they suggest roles of lncRNAs as regulators of MYC oncogenic functions and the possibility that targeting lncRNAs could represent a novel avenue to cancer treatment. Here, we briefly review the current understanding of how lncRNAs regulate chromatin structure and gene transcription, and then focus on the new developments in the emerging field exploring the lncRNA-MYC network in cancer.
Collapse
Affiliation(s)
- Michael J. Hamilton
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Matthew D. Young
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Silvia Sauer
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
161
|
Ruan X. Long Non-Coding RNA Central of Glucose Homeostasis. J Cell Biochem 2015; 117:1061-5. [DOI: 10.1002/jcb.25427] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangbo Ruan
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH; Bethesda 20892 Maryland
| |
Collapse
|
162
|
Raveh E, Matouk IJ, Gilon M, Hochberg A. The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol Cancer 2015; 14:184. [PMID: 26536864 PMCID: PMC4632688 DOI: 10.1186/s12943-015-0458-2] [Citation(s) in RCA: 416] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
The imprinted oncofetal long non-coding RNA (lncRNA) H19 is expressed in the embryo, down-regulated at birth and then reappears in tumors. Its role in tumor initiation and progression has long been a subject of controversy, although accumulating data suggest that H19 is one of the major genes in cancer. It is actively involved in all stages of tumorigenesis and is expressed in almost every human cancer. In this review we delineate the various functions of H19 during the different stages in the complex process of tumor progression. H19 up-regulation allows cells to enter a "selfish" survival mode in response to stress conditions, such as destabilization of the genome and hypoxia, by accelerating their proliferation rate and increasing overall cellular resistance to stress. This response is tightly correlated with nullification, dysfunction or significant down-regulation of the master tumor suppressor gene P53. The growing evidence of H19's involvement in both proliferation and differentiation processes, together with its involvement in epithelial to mesenchymal transition (EMT) and also mesenchymal to epithelial transition (MET), has led us to conclude that some of the recent disputes and discrepancies arising from current research findings can be resolved from a viewpoint supporting the oncogenic properties of H19. According to a holistic approach, the versatile, seemingly contradictory functions of H19 are essential to, and differentially harnessed by, the tumor cell depending on its context within the process of tumor progression.
Collapse
Affiliation(s)
- Eli Raveh
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Imad J Matouk
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Michal Gilon
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Abraham Hochberg
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
163
|
Yokoyama NN, Denmon A, Uchio EM, Jordan M, Mercola D, Zi X. When Anti-Aging Studies Meet Cancer Chemoprevention: Can Anti-Aging Agent Kill Two Birds with One Blow? ACTA ACUST UNITED AC 2015; 1:420-433. [PMID: 26756023 DOI: 10.1007/s40495-015-0039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence has strongly supported that the rate of aging is controlled, at least to some extent, by evolutionarily conserved nutrient sensing pathways (e.g. the insulin/IGF-1-signaling, mTOR, AMPK, and sirtuins) from worms to humans. These pathways are also commonly involved in carcinogenesis and cancer metabolism. Agents (e.g. metformin, resveratrol, and Rhodiola) that target these nutrient sensing pathways often have both anti-aging and anti-cancer efficacy. These agents not only reprogram energy metabolism of malignant cells, but also target normal postmitotic cells by suppressing their conversion into senescent cells, which confers systematic metabolism benefits. These agents are fundamentally different from chemotherapy (e.g. paclitaxel and doxorubicin) or radiation therapy that causes molecular damage (e.g. DNA and protein damages) and thereby no selection resistance may be expected. By reviewing molecular mechanisms of action, epidemiological evidence, experimental data in tumor models, and early clinical study results, this review provides information supporting the promising use of agents with both anti-aging and anti-cancer efficacy for cancer chemoprevention.
Collapse
Affiliation(s)
- Noriko N Yokoyama
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Andria Denmon
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Edward M Uchio
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Mark Jordan
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA; Department of Pharmacology, University of California, Irvine, Orange, CA 92868, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|
164
|
Morlando M, Ballarino M, Fatica A. Long Non-Coding RNAs: New Players in Hematopoiesis and Leukemia. Front Med (Lausanne) 2015; 2:23. [PMID: 25927065 PMCID: PMC4396502 DOI: 10.3389/fmed.2015.00023] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/27/2015] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators of gene expression that influence almost every step in the life cycle of genes, from transcription to mRNA splicing, RNA decay, and translation. Besides their participation to normal physiology, lncRNA expression and function have been already associated to cancer development and progression. Here, we review the functional role and mechanisms of action of lncRNAs in normal hematopoiesis and how their misregulation may be implicated in the development of blood cell cancer, such as leukemia.
Collapse
Affiliation(s)
- Mariangela Morlando
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
165
|
Matouk IJ, Halle D, Gilon M, Hochberg A. The non-coding RNAs of the H19-IGF2 imprinted loci: a focus on biological roles and therapeutic potential in Lung Cancer. J Transl Med 2015; 13:113. [PMID: 25884481 PMCID: PMC4397711 DOI: 10.1186/s12967-015-0467-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/18/2015] [Indexed: 12/15/2022] Open
Abstract
Since it was first described, the imprinted cluster 11p15.5 has been reported to be deregulated in a variety of pediatric and adult cancers including that of the lung. Both protein coding and non-coding genes functioning as oncogenes or as tumor suppressor genes reside within this cluster. Oncomirs that can function as oncogenes or as tumor suppressors have also been reported. While a complete account of the role played by the 11p15.5 imprinted cluster in lung cancer is beyond the scope of this review, we will focus on the role of the non-coding RNAs processed from the H19-IGF2 loci. A special emphasis will be given to the H19/miR-675 gene locus. Their potential diagnostic and therapeutic use in lung cancer will be described.
Collapse
Affiliation(s)
- Imad J Matouk
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - David Halle
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Michal Gilon
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Abraham Hochberg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
166
|
Gao W, Zhu M, Wang H, Zhao S, Zhao D, Yang Y, Wang ZM, Wang F, Yang ZJ, Lu X, Wang LS. Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutat Res 2015; 772:15-22. [PMID: 25772106 DOI: 10.1016/j.mrfmmm.2014.12.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
H19 is an imprinted gene transcribing a long non-coding RNA and is downregulated postnatally. Re-expression of H19 has been observed in patients with atherosclerosis. However, to date, no data has been published on the association of H19 polymorphisms with the risk of coronary artery disease (CAD). In this study, four polymorphisms, rs217727, rs2067051, rs2251375, rs4929984, were analyzed in 701 CAD patients and 873 age- and sex-matched control subjects. Polymorphisms were genotyped by TaqMan technology. Our data showed that the T variant of rs217727 was associated with an increased risk of CAD [additive model: odds ratio (OR)=2.05, 95%CI=1.35-3.12; dominant model: OR=1.46, 95% confidence interval (CI)=1.12-1.90; recessive model: OR=1.75, 95%CI=1.18-2.58], while A variant of rs2067051 was associated with a decreased risk of CAD (additive model: OR=0.66, 95%CI=0.45-0.96; recessive model: OR=0.71, 95%CI=0.50-0.99). Combined analysis showed that subjects carrying 3 or 4 risk alleles had a significantly increased risk of CAD, relative to those with 0-2 risk alleles (OR=1.61, 95%CI=1.20-2.15). Moreover, CAD patients with 3 or 4 risk alleles also had significantly higher Gensini scores than those with 0-2 risk alleles (P=0.001). Further haplotype-based analysis revealed that individuals with C-G-C-C, T-G-A-A, and T-A-A-A haplotypes indicated a higher prevalence of CAD (OR=1.88, 95%CI=1.03-3.43; OR=2.26, 95%CI=1.19-4.31; OR=2.66, 95%CI=1.34-5.25, respectively), compared to individuals with the most common C-G-A-C haplotype. In conclusion, our study demonstrates for the first time that common polymorphisms of H19 are associated with the risk and severity of CAD in a Chinese population. Future studies are needed to explore the underlying mechanisms of our findings.
Collapse
Affiliation(s)
- Wei Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shan Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Jian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
167
|
Obesity is associated with a decrease in expression but not with the hypermethylation of thermogenesis-related genes in adipose tissues. J Transl Med 2015; 13:31. [PMID: 25622596 PMCID: PMC4314800 DOI: 10.1186/s12967-015-0395-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/14/2015] [Indexed: 01/10/2023] Open
Abstract
Background Impaired thermogenesis can promote obesity. Therefore, the aim of this study was to investigate whether the expression of thermogenesis-related genes is altered in adipose tissues of obese individuals and whether excessive methylation of their promoters is involved in this phenomenon. Methods The expression of genes encoding β adrenergic receptors (ADRBs), thyroid hormone receptors (THRs), 5’-iodothyronine deiodinases (DIOs), and uncoupling proteins (UCPs) was measured by real-time PCR in visceral and in subcutaneous adipose tissues of 58 obese (BMI >40 kg/m2) and 50 slim (BMI 20-24.9 kg/m2) individuals. The methylation status of these genes was studied by the methylation-sensitive digestion/real-time PCR method. Results The expression of ADRB2, ADRB3, THRA, THRB, DIO2, UCP2 was significantly lower in the adipose tissues of obese patients than in tissues of normal-weight individuals (P < 0.00001). In the obese, the expression of ADRB2, ADRB3, DIO2 was lower in visceral adipose tissue than in subcutaneous adipose tissue (P = 0.008, P = 0.002, P = 0.001, respectively). However, the mean methylation of CpG islands of these genes was similar in tissues with their high and low expression, and there was no correlation between the level of expression and the level of methylation. Conclusions Decreased expression of thermogenesis-related genes in adipose tissues of obese patients might result in the reduced reactivity to both hormonal and adrenergic stimuli and therefore in a lower potential to activate thermogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0395-2) contains supplementary material, which is available to authorized users.
Collapse
|
168
|
Gao Y, Wu F, Zhou J, Yan L, Jurczak MJ, Lee HY, Yang L, Mueller M, Zhou XB, Dandolo L, Szendroedi J, Roden M, Flannery C, Taylor H, Carmichael GG, Shulman GI, Huang Y. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res 2014; 42:13799-811. [PMID: 25399420 PMCID: PMC4267628 DOI: 10.1093/nar/gku1160] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA Department of Gynecology and Obstetrics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Fuju Wu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA Department of Obstetrics and Gynecology, Jilin University, Changchun, Jilin 130021, P. R. China
| | - Jichun Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P. R. China
| | - Lei Yan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P. R. China
| | - Michael J Jurczak
- Howard Hughes Medical Institute and Departments of Internal Medicine, Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hui-Young Lee
- Howard Hughes Medical Institute and Departments of Internal Medicine, Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lihua Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA Obstetrics and Gynecology Department, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P. R. China
| | - Martin Mueller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA Department of Obstetrics and Gynecology, University Hospital, 3012 Bern, Switzerland
| | - Xiao-Bo Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA Department of Immunology and Pathogenic Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Luisa Dandolo
- Department of Genetics and Development, Institut Cochin, U1016 Paris, France
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, 40225 Dusseldorf, Germany Department of Metabolic Diseases, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, 40225 Dusseldorf, Germany Department of Metabolic Diseases, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Clare Flannery
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hugh Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gordon G Carmichael
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gerald I Shulman
- Howard Hughes Medical Institute and Departments of Internal Medicine, Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|