151
|
Trinidad CV, Tetlow AL, Bantis LE, Godwin AK. Reducing Ovarian Cancer Mortality Through Early Detection: Approaches Using Circulating Biomarkers. Cancer Prev Res (Phila) 2021; 13:241-252. [PMID: 32132118 DOI: 10.1158/1940-6207.capr-19-0184] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
More than two-thirds of all women diagnosed with epithelial ovarian cancer (EOC) will die from the disease (>14,000 deaths annually), a fact that has not changed considerably in the last three decades. Although the 5-year survival rates for most other solid tumors have improved steadily, ovarian cancer remains an exception, making it the deadliest of all gynecologic cancers and five times deadlier than breast cancer. When diagnosed early, treatment is more effective, with a 5-year survival rate of up to 90%. Unfortunately, most cases are not detected until after the cancer has spread, resulting in a dismal 5-year survival rate of less than 30%. Current screening methods for ovarian cancer typically use a combination of a pelvic examination, transvaginal ultrasonography, and serum cancer antigen 125 (CA125), but these have made minimal impact on improving mortality. Thus, there is a compelling unmet need to develop new molecular tools that can be used to diagnose early-stage EOC and/or assist in the clinical management of the disease after a diagnosis, given that more than 220,000 women are living with ovarian cancer in the United States and are at risk of recurrence. Here, we discuss the state of advancing liquid-based approaches for improving the early detection of ovarian cancer.See all articles in this Special Collection Honoring Paul F. Engstrom, MD, Champion of Cancer Prevention.
Collapse
Affiliation(s)
- Camille V Trinidad
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ashley L Tetlow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Leonidas E Bantis
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas. .,The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
152
|
Galardi F, De Luca F, Biagioni C, Migliaccio I, Curigliano G, Minisini AM, Bonechi M, Moretti E, Risi E, McCartney A, Benelli M, Romagnoli D, Cappadona S, Gabellini S, Guarducci C, Conti V, Biganzoli L, Di Leo A, Malorni L. Circulating tumor cells and palbociclib treatment in patients with ER-positive, HER2-negative advanced breast cancer: results from a translational sub-study of the TREnd trial. Breast Cancer Res 2021; 23:38. [PMID: 33761970 PMCID: PMC7992319 DOI: 10.1186/s13058-021-01415-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Circulating tumor cells (CTCs) are prognostic in patients with advanced breast cancer (ABC). However, no data exist about their use in patients treated with palbociclib. We analyzed the prognostic role of CTC counts in patients enrolled in the cTREnd study, a pre-planned translational sub-study of TREnd (NCT02549430), that randomized patients with ABC to palbociclib alone or palbociclib plus the endocrine therapy received in the prior line of treatment. Moreover, we evaluated RB1 gene expression on CTCs and explored its prognostic role within the cTREnd subpopulation. Methods Forty-six patients with ER-positive, HER2-negative ABC were analyzed. Blood samples were collected before starting palbociclib treatment (timepoint T0), after the first cycle of treatment (timepoint T1), and at disease progression (timepoint T2). CTCs were isolated and counted by CellSearch® System using the CellSearch™Epithelial Cell kit. Progression-free survival (PFS), clinical benefit (CB) during study treatment, and time to treatment failure (TTF) after study treatment were correlated with CTC counts. Samples with ≥ 5 CTCs were sorted by DEPArray system® (DA). RB1 and GAPDH gene expression levels were measured by ddPCR. Results All 46 patients were suitable for CTCs analysis. CTC count at T0 did not show significant prognostic value in terms of PFS and CB. Patients with at least one detectable CTC at T1 (n = 26) had a worse PFS than those with 0 CTCs (n = 16) (p = 0.02). At T1, patients with an increase of at least three CTCs showed reduced PFS compared to those with no increase (mPFS = 3 versus 9 months, (p = 0.004). Finally, patients with ≥ 5 CTCs at T2 (n = 6/23) who received chemotherapy as post-study treatment had a shorter TTF (p = 0.02). Gene expression data for RB1 were obtained from 19 patients. CTCs showed heterogeneous RB1 expression. Patients with detectable expression of RB1 at any timepoint showed better, but not statistically significant, outcomes than those with undetectable levels. Conclusions CTC count seems to be a promising modality in monitoring palbociclib response. Moreover, CTC count at the time of progression could predict clinical outcome post-palbociclib. RB1 expression analysis on CTCs is feasible and may provide additional prognostic information. Results should be interpreted with caution given the small studied sample size. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01415-w.
Collapse
Affiliation(s)
- Francesca Galardi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Francesca De Luca
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | | | - Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milan, Italy.,Department of Haematology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Alessandro M Minisini
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Martina Bonechi
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Erica Moretti
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Emanuela Risi
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Amelia McCartney
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | | | | | - Silvia Cappadona
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Stefano Gabellini
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Cristina Guarducci
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Angelo Di Leo
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy. .,"Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy.
| |
Collapse
|
153
|
Liu Y, Xu H, Li T, Wang W. Microtechnology-enabled filtration-based liquid biopsy: challenges and practical considerations. LAB ON A CHIP 2021; 21:994-1015. [PMID: 33710188 DOI: 10.1039/d0lc01101k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid biopsy, an important enabling technology for early diagnosis and dynamic monitoring of cancer, has drawn extensive attention in the past decade. With the rapid developments of microtechnology, it has been possible to manipulate cells at the single-cell level, which dramatically improves the liquid biopsy capability. As the microtechnology-enabled liquid biopsy matures from proof-of-concept demonstrations towards practical applications, a main challenge it is facing now is to process clinical samples which are usually of a large volume while containing very rare targeted cells in complex backgrounds. Therefore, a high-throughput liquid biopsy which is capable of processing liquid samples with a large volume in a reasonable time along with a high recovery rate of rare targeted cells from complex clinical liquids is in high demand. Moreover, the purity, viability and release feasibility of recovered targeted cells are the other three key impact factors requiring careful considerations. To date, among the developed techniques, micropore-type filtration has been acknowledged as the most promising solution to address the aforementioned challenges in practical applications. However, the presently reported studies about micropore-type filtration are mostly based on trial and error for device designs aiming at different cancer types, which requires lots of efforts. Therefore, there is an urgent need to investigate and elaborate the fundamental theories of micropore-type filtration and key features that influence the working performances in the liquid biopsy of real clinical samples to promote the application efficacy in practical applications. In this review, the state of the art of microtechnology-enabled filtration is systematically and comprehensively summarized. Four key features of the filtration, including throughput, purity, viability and release feasibility of the captured targeted cells, are elaborated to provide the guidelines for filter designs. The recent progress in the filtration mode modulation and sample standardization to improve the filtration performance of real clinical samples is also discussed. Finally, this review concludes with prospective views for future developments of filtration-based liquid biopsy to promote its application efficacy in clinical practice.
Collapse
Affiliation(s)
- Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | | | | | | |
Collapse
|
154
|
Relier S, Ripoll J, Guillorit H, Amalric A, Achour C, Boissière F, Vialaret J, Attina A, Debart F, Choquet A, Macari F, Marchand V, Motorin Y, Samalin E, Vasseur JJ, Pannequin J, Aguilo F, Lopez-Crapez E, Hirtz C, Rivals E, Bastide A, David A. FTO-mediated cytoplasmic m 6A m demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun 2021; 12:1716. [PMID: 33741917 PMCID: PMC7979729 DOI: 10.1038/s41467-021-21758-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer stem cells (CSCs) are a small but critical cell population for cancer biology since they display inherent resistance to standard therapies and give rise to metastases. Despite accruing evidence establishing a link between deregulation of epitranscriptome-related players and tumorigenic process, the role of messenger RNA (mRNA) modifications in the regulation of CSC properties remains poorly understood. Here, we show that the cytoplasmic pool of fat mass and obesity-associated protein (FTO) impedes CSC abilities in colorectal cancer through its N6,2'-O-dimethyladenosine (m6Am) demethylase activity. While m6Am is strategically located next to the m7G-mRNA cap, its biological function is not well understood and has not been addressed in cancer. Low FTO expression in patient-derived cell lines elevates m6Am level in mRNA which results in enhanced in vivo tumorigenicity and chemoresistance. Inhibition of the nuclear m6Am methyltransferase, PCIF1/CAPAM, fully reverses this phenotype, stressing the role of m6Am modification in stem-like properties acquisition. FTO-mediated regulation of m6Am marking constitutes a reversible pathway controlling CSC abilities. Altogether, our findings bring to light the first biological function of the m6Am modification and its potential adverse consequences for colorectal cancer management.
Collapse
Affiliation(s)
- Sébastien Relier
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Ripoll
- grid.121334.60000 0001 2097 0141LIRMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Hélène Guillorit
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France ,Stellate Therapeutics, Paris, France
| | - Amandine Amalric
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Cyrinne Achour
- grid.12650.300000 0001 1034 3451Wallenberg Centre for Molecular Medicine (WCMM), Umea University, Umea, Sweden ,grid.12650.300000 0001 1034 3451Department of Medical Biosciences, Umea University, Umea, Sweden
| | | | - Jérôme Vialaret
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France ,grid.121334.60000 0001 2097 0141INM, Univ. Montpellier, INSERM, Montpellier, France
| | - Aurore Attina
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France ,grid.121334.60000 0001 2097 0141INM, Univ. Montpellier, INSERM, Montpellier, France
| | - Françoise Debart
- grid.121334.60000 0001 2097 0141IBMM, CNRS, Univ. Montpellier, ENSCM, Montpellier, France
| | - Armelle Choquet
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Françoise Macari
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Virginie Marchand
- grid.29172.3f0000 0001 2194 6418Université de Lorraine, IMoPA UMR7365 CNRS-UL and UMS2008/US40 IBSLor, UL-CNRS-INSERM, BioPole, Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- grid.29172.3f0000 0001 2194 6418Université de Lorraine, IMoPA UMR7365 CNRS-UL and UMS2008/US40 IBSLor, UL-CNRS-INSERM, BioPole, Vandoeuvre-les-Nancy, France
| | - Emmanuelle Samalin
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France ,ICM, Montpellier, France
| | - Jean-Jacques Vasseur
- grid.121334.60000 0001 2097 0141IBMM, CNRS, Univ. Montpellier, ENSCM, Montpellier, France
| | - Julie Pannequin
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Francesca Aguilo
- grid.12650.300000 0001 1034 3451Wallenberg Centre for Molecular Medicine (WCMM), Umea University, Umea, Sweden ,grid.12650.300000 0001 1034 3451Department of Medical Biosciences, Umea University, Umea, Sweden
| | | | - Christophe Hirtz
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France ,grid.121334.60000 0001 2097 0141INM, Univ. Montpellier, INSERM, Montpellier, France
| | - Eric Rivals
- grid.121334.60000 0001 2097 0141LIRMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Amandine Bastide
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexandre David
- grid.121334.60000 0001 2097 0141IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France ,IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| |
Collapse
|
155
|
Que ZJ, Yang Y, Liu HT, Shang-Guan WJ, Yu P, Zhu LH, Li HG, Liu HM, Tian JH. Jinfukang regulates integrin/Src pathway and anoikis mediating circulating lung cancer cells migration. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113473. [PMID: 33068649 DOI: 10.1016/j.jep.2020.113473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metastasis is the main cause of death in lung cancer patients. Circulating tumor cells (CTCs) may be an important target of metastasis intervention. Previous studies have shown that Jinfukang could prevent the recurrence and metastasis of lung cancer, and we have established a circulating lung tumor cell line CTC-TJH-01. However, whether Jinfukang inhibition of lung cancer metastasis is related to CTCs is still unknown. AIM OF THE STUDY To further explore the mechanism of Jinfukang in anti-metastasis of lung cancer from the perspective of intervention of CTCs. MATERIALS AND METHODS CTC-TJH-01 and H1975 cells were treated with Jinfukang. Cell viability was detected by CCK8, and the cell apoptosis was detected by flow cytometry. Transwell was used to detected cell migration and invasion. Cell anoikis was detected by anoikis detection kit. Protein expression was analysis by Western blot. RESULTS Jinfukang could inhibit the proliferation, migration and invasion of CTC-TJH-01 and H1975 cells. Besides, Jinfukang could also induce anoikis in CTC-TJH-01 and H1975 cells. Analysis of the mRNA expression profile showed ECM-receptor interaction and focal adhesion were regulated by Jinfukang. Moreover, it was also find that Jinfukang significantly inhibited integrin/Src pathway in CTC-TJH-01 and H1975 cells. When suppress the expression of integrin with ATN-161, it could promote Jinfukang to inhibit migration and induce anoikis in CTC-TJH-01 and H1975 cells. CONCLUSIONS Our results indicate that the migration and invasion of CTCs are inhibited by Jinfukang, and the mechanism may involve the suppression of integrin/Src axis to induce anoikis. These data suggest that Jinfukang exerts anti-metastatic effects in lung cancer may through anoikis.
Collapse
Affiliation(s)
- Zu-Jun Que
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yun Yang
- Department of Oncology, Shanghai Traditional Chinese Medicine-Intergrated Hospital, Shanghai, China.
| | - Hai-Tao Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wen-Ji Shang-Guan
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pan Yu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li-Hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huai-Min Liu
- Department of Integrative Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Province, China.
| | - Jian-Hui Tian
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
156
|
Hou J, Li X, Xie KP. Coupled liquid biopsy and bioinformatics for pancreatic cancer early detection and precision prognostication. Mol Cancer 2021; 20:34. [PMID: 33593396 PMCID: PMC7888169 DOI: 10.1186/s12943-021-01309-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023] Open
Abstract
Early detection and diagnosis are the key to successful clinical management of pancreatic cancer and improve the patient outcome. However, due to the absence of early symptoms and the aggressiveness of pancreatic cancer, its 5-year survival rate remains below 5 %. Compared to tissue samples, liquid biopsies are of particular interest in clinical settings with respect to minimal invasiveness, repeated sampling, complete representation of the entire or multi-site tumor bulks. The potential of liquid biopsies in pancreatic cancer has been demonstrated by many studies which prove that liquid biopsies are able to detect early emergency of pancreatic cancer cells, residual disease, and recurrence. More interestingly, they show potential to delineate the heterogeneity, spatial and temporal, of pancreatic cancer. However, the performance of liquid biopsies for the diagnosis varies largely across different studies depending of the technique employed and also the type and stage of the tumor. One approach to improve the detect performance of liquid biopsies is to intensively inspect circulome and to define integrated biomarkers which simultaneously profile circulating tumor cells and DNA, extracellular vesicles, and circulating DNA, or cell free DNA and proteins. Moreover, the diagnostic validity and accuracy of liquid biopsies still need to be comprehensively demonstrated and validated.
Collapse
Affiliation(s)
- Jun Hou
- The South China University of Technology School of Medicine, 510006, Guangzhou, China
| | - XueTao Li
- The South China University of Technology School of Medicine, 510006, Guangzhou, China
| | - Ke-Ping Xie
- The University of Texas MD Anderson Cancer Center Houston , Texas, USA.
| |
Collapse
|
157
|
Gao W, Chen Y, Yang J, Zhuo C, Huang S, Zhang H, Shi Y. Clinical Perspectives on Liquid Biopsy in Metastatic Colorectal Cancer. Front Genet 2021; 12:634642. [PMID: 33584829 PMCID: PMC7876389 DOI: 10.3389/fgene.2021.634642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy, which generally refers to the analysis of biological components such as circulating nuclear acids and circulating tumor cells in body fluids, particularly in peripheral blood, has shown good capacity to overcome several limitations faced by conventional tissue biopsies. Emerging evidence in recent decades has confirmed the promising role of liquid biopsy in the clinical management of various cancers, including colorectal cancer, which is one of the most prevalent cancers and the second leading cause of cancer-related deaths worldwide. Despite the challenges and poor clinical outcomes, patients with metastatic colorectal cancer can expect potential clinical benefits with liquid biopsy. Therefore, in this review, we focus on the clinical prospects of liquid biopsy in metastatic colorectal cancer, specifically with regard to the recently discovered various biomarkers identified on liquid biopsy. These biomarkers have been shown to be potentially useful in multiple aspects of metastatic colorectal cancer, such as auxiliary diagnosis of metastasis, prognosis prediction, and monitoring of therapy response.
Collapse
Affiliation(s)
- Wei Gao
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yigui Chen
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jianwei Yang
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Changhua Zhuo
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Sha Huang
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Hui Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yi Shi
- Department of Molecular Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
158
|
Mehdipour P, Javan F, Jouibari MF, Khaleghi M, Mehrazin M. Evolutionary model of brain tumor circulating cells: Cellular galaxy. World J Clin Oncol 2021; 12:13-30. [PMID: 33552936 PMCID: PMC7829626 DOI: 10.5306/wjco.v12.i1.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although circulating tumor cells (CTCs) have been the focus of consideration for a decade, a categorized cell-based diagnostic strategy is unavailable. The personalized management and complementary/analytical-strategy of data require an alphabetic guide. Therefore, we aimed to determine the behavior of CTCs in tumor and blood in order to provide the hypothetical-based agenda in the brain neoplasms. Exploring the protein expression (PE) using a single cell-based method would clarify the heterogeneity and diversity in tumor and blood, which are key events in the evolution in brain tumors. In fact, heterogeneity, diversity, and evolution are required for cancer initiation and progression.
AIM To explore CTCs in brain tumors and blood cells and to assay intensity of PE through personalized insight.
METHODS The focal population included 14 patients with meningioma, and four patients with metastatic brain tumors (T). PE was assayed by immunofluorescence in tumors cells and CTCs in 18 patients with brain tumors. Ratio test was applied between the T cells and CTCs in tumor tissue and in vascular system. T/CTC ratio-based classification of PE in macrophage chemoattractant chemokine ligand 2 (CCL2), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), CD133, cyclin E, neurofilament marker, cytokeratin 19, and leukocyte common antigen (CD45) were investigated.
RESULTS Total analyzed cells ranged between 10794-92283 for tumor cells and between 117-2870 for CTCs. Characteristics of histopathologic and status of an ataxia-telangiectasia mutated polymorphism (D1853N) in 18 patients affected with brain tumors were also provided. The course of evolution and metastatic event relied on the elevated protein expression in CTCs, which could be considered as a prognostic value. Diverse protein expression of the migrated cells into the blood stream and the tumor was indicative of the occurrence of evolution. Besides, the harmonic co-expression between CCL2/EGF and CCL2/VEGF could facilitate the tumor progression including the metastatic event. Expression of these proteins in the migrated vasculature and into the buccal tissue offered a non-invasive follow-up detection in neoplastic disorders. PE-exploration of neurofilament marker/CD133/VEGF of the CTCs in meningioma and cytokeratin 19/CD45/ cyclin E in the patients with metastatic brain tumor would clarify the tumor biology of the brain neoplastic disorders.
CONCLUSION The alphabetical base of the evolutionary mechanisms relies on dual-, triple-, and multi-models with diverse intensity of expression. In fact, cross-talk between initiative and the complementary channels defines the evolutionary insight in cancer. A diverse-model of protein expression, including low, medium, and high intensity, is the key requirement for the completed model. The cluster of cells with diverse expression and remarkable co-expression between CCL2/EGF/VEGF and NM/CD133/VEGF in CTCs may be indicative of probable invasiveness of the tumor. Furthermore, the mode of cytokeratin-19+/CD45- can be traced in the metastatic patients.
Collapse
Affiliation(s)
- Parvin Mehdipour
- Department of Medical Genetics, Tehran University of Medical Sciences, School of Medicine, Tehran 1417613151, Tehran, Iran
| | - Firoozeh Javan
- Department of Medical Genetics, Tehran University of Medical Sciences, School of Medicine, Tehran 1417613151, Tehran, Iran
| | | | - Mehdi Khaleghi
- Shariati Hospital, Tehran University of Medical Sciences, Tehran 1417613151, Tehran, Iran
| | - Masoud Mehrazin
- Tehran University of Medical Science, Tehran 1417613151, Tehran, Iran
| |
Collapse
|
159
|
Adam T, Becker TM, Chua W, Bray V, Roberts TL. The Multiple Potential Biomarkers for Predicting Immunotherapy Response-Finding the Needle in the Haystack. Cancers (Basel) 2021; 13:cancers13020277. [PMID: 33451015 PMCID: PMC7828488 DOI: 10.3390/cancers13020277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are being increasingly utilised in a variety of advanced malignancies. Despite promising outcomes in certain patients, the majority will not derive benefit and are at risk of potentially serious immune-related adverse events (irAEs). The development of predictive biomarkers is therefore critical to personalise treatments and improve outcomes. A number of biomarkers have shown promising results, including from tumour (programmed cell death ligand 1 (PD-L1), tumour mutational burden (TMB), stimulator of interferon genes (STING) and apoptosis-associated speck-like protein containing a CARD (ASC)), from blood (peripheral blood mononuclear cells (PBMCs), circulating tumour DNA (ctDNA), exosomes, cytokines and metal chelators) and finally the microbiome.
Collapse
Affiliation(s)
- Tamiem Adam
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
- Correspondence: (T.A.); (T.L.R.)
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- University of New South Wales, Sydney, NSW 2170, Australia
| | - Wei Chua
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
| | - Victoria Bray
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- University of New South Wales, Sydney, NSW 2170, Australia
- Correspondence: (T.A.); (T.L.R.)
| |
Collapse
|
160
|
Identification of MicroRNAs as Diagnostic Biomarkers for Breast Cancer Based on the Cancer Genome Atlas. Diagnostics (Basel) 2021; 11:diagnostics11010107. [PMID: 33440868 PMCID: PMC7827427 DOI: 10.3390/diagnostics11010107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer among women worldwide. MicroRNAs (miRNAs or miRs) play an important role in tumorigenesis, and thus, they have been identified as potential targets for translational research with diagnostic, prognostic, and therapeutic markers. This study aimed to identify differentially expressed (DE) miRNAs in breast cancer using the Cancer Genome Atlas. The miRNA profiles of 755 breast cancer tissues and 86 adjacent non-cancerous breast tissues were analyzed using Multi Experiment Viewer; miRNA–mRNA network analyses and constructed KEGG pathways with the predicted target genes were performed. The clinical relevance of miRNAs was investigated using area under the receiver operating characteristic curve (AUC) analysis, sensitivity, and specificity. The analysis identified 28 DE miRNAs in breast cancer tissues, including nine upregulated and 19 downregulated miRNAs, compared to non-cancerous breast tissues (p < 0.001). The AUC for each DE miRNA, miR-10b, miR-21, miR-96, miR-99a, miR-100, miR-125b-1, miR-125b-2, miR-139, miR-141, miR-145, miR-182, miR-183, miR-195, miR-200a, miR-337, miR-429, and let-7c, exceeded 0.9, indicating excellent diagnostic performance in breast cancer. Moreover, 1381 potential target genes were predicted using the prediction database tool, miRNet. These genes are related to PD-L1 expression and PD-1 checkpoint in cancer, MAPK signaling, apoptosis, and TNF pathways; hence, they regulate the development, progression, and immune escape of cancer. Thus, these 28 miRNAs can serve as prospective biomarkers for the diagnosis of breast cancer. Taken together, these results provide insight into the pathogenic mechanisms and potential therapies for breast cancer.
Collapse
|
161
|
Mondelo-Macía P, García-González J, León-Mateos L, Castillo-García A, López-López R, Muinelo-Romay L, Díaz-Peña R. Current Status and Future Perspectives of Liquid Biopsy in Small Cell Lung Cancer. Biomedicines 2021; 9:48. [PMID: 33430290 PMCID: PMC7825645 DOI: 10.3390/biomedicines9010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Approximately 19% of all cancer-related deaths are due to lung cancer, which is the leading cause of mortality worldwide. Small cell lung cancer (SCLC) affects approximately 15% of patients diagnosed with lung cancer. SCLC is characterized by aggressiveness; the majority of SCLC patients present with metastatic disease, and less than 5% of patients are alive at 5 years. The gold standard of SCLC treatment is platinum and etoposide-based chemotherapy; however, its effects are short. In recent years, treatment for SCLC has changed; new drugs have been approved, and new biomarkers are needed for treatment selection. Liquid biopsy is a non-invasive, rapid, repeated and alternative tool to the traditional tumor biopsy that could allow the most personalized medicine into the management of SCLC patients. Circulating tumor cells (CTCs) and cell-free DNA (cfDNA) are the most commonly used liquid biopsy biomarkers. Some studies have reported the prognostic factors of CTCs and cfDNA in SCLC patients, independent of the stage. In this review, we summarize the recent SCLC studies of CTCs, cfDNA and other liquid biopsy biomarkers, and we discuss the future utility of liquid biopsy in the clinical management of SCLC.
Collapse
Affiliation(s)
- Patricia Mondelo-Macía
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
| | - Jorge García-González
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis León-Mateos
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - Rafael López-López
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Roberto Díaz-Peña
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
162
|
Yoo TK. Liquid Biopsy in Breast Cancer: Circulating Tumor Cells and Circulating Tumor DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:337-361. [PMID: 33983587 DOI: 10.1007/978-981-32-9620-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is associated with gene mutations, and the analysis of tumor-associated mutations is increasingly used for diagnostic, prognostic, and treatment purposes. These molecular landscapes of solid tumors are currently obtained from surgical or biopsy specimens. However, during cancer progression and treatment, selective pressures lead to additional genetic changes as tumors acquire drug resistance. Tissue sampling cannot be performed routinely owing to its invasive nature and a single biopsy only provides a limited snapshot of a tumor, which may fail to reflect spatial and temporal heterogeneity. This dilemma may be solved by analyzing cancer cells or cancer cell-derived DNA from blood samples, called liquid biopsy. Liquid biopsy is one of the most rapidly advancing fields in cancer diagnostics and recent technological advances have enabled the detection and detailed characterization of circulating tumor cells and circulating tumor DNA in blood samples.Liquid biopsy is an exciting area with rapid advances, but we are still at the starting line with many challenges to overcome. In this chapter we will explore how tumor cells and tumor-associated mutations detected in the blood can be used in the clinic. This will include detection of cancer, prediction of prognosis, monitoring systemic therapies, and stratification of patients for therapeutic targets or resistance mechanisms.
Collapse
Affiliation(s)
- Tae-Kyung Yoo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
163
|
Abstract
Despite recent therapeutic advances in cancer treatment, metastasis remains the principal cause of cancer death. Recent work has uncovered the unique biology of metastasis-initiating cells that results in tumor growth in distant organs, evasion of immune surveillance and co-option of metastatic microenvironments. Here we review recent progress that is enabling therapeutic advances in treating both micro- and macrometastases. Such insights were gained from cancer sequencing, mechanistic studies and clinical trials, including of immunotherapy. These studies reveal both the origins and nature of metastases and identify new opportunities for developing more effective strategies to target metastatic relapse and improve patient outcomes.
Collapse
Affiliation(s)
- Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Hospital, New York, NY, USA.
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
164
|
Peyre L, Meyer M, Hofman P, Roux J. TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: potential cell survival mechanisms. Br J Cancer 2021; 124:91-101. [PMID: 33257838 PMCID: PMC7782794 DOI: 10.1038/s41416-020-01177-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The continuing efforts to exploit the death receptor agonists, such as the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), for cancer therapy, have largely been impaired by the anti-apoptotic and pro-survival signalling pathways leading to drug resistance. Cell migration, invasion, differentiation, immune evasion and anoikis resistance are plastic processes sharing features of the epithelial-to-mesenchymal transition (EMT) that have been shown to give cancer cells the ability to escape cell death upon cytotoxic treatments. EMT has recently been suggested to drive a heterogeneous cellular environment that appears favourable for tumour progression. Recent studies have highlighted a link between EMT and cell sensitivity to TRAIL, whereas others have highlighted their effects on the induction of EMT. This review aims to explore the molecular mechanisms by which death signals can elicit an increase in response heterogeneity in the metastasis context, and to evaluate the impact of these processes on cell responses to cancer therapeutics.
Collapse
Affiliation(s)
- Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France.
| |
Collapse
|
165
|
Zhao L, Wu X, Zheng J, Dong D. DNA methylome profiling of circulating tumor cells in lung cancer at single base-pair resolution. Oncogene 2021; 40:1884-1895. [PMID: 33564067 PMCID: PMC7946637 DOI: 10.1038/s41388-021-01657-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
DNA methylation plays a pivotal role in regulating cellular processes, and altered DNA methylation pattern is a general hallmark of cancer. However, DNA methylome in circulating tumor cells (CTCs) is still a mystery due to the lack of proper analytical techniques. We introduced an efficient workflow, LCM-µWGBS, which can efficiently profile the DNA methylation of microdissected CTC samples. LCM-µWGBS combines the laser capture microdissection (LCM)-based CTC capture method and whole-genome bisulfite sequencing in very small CTC population (µWGBS) to gain insight into the DNA methylation landscape of CTCs. We herein profiled the DNA methylome of CTCs from lung cancer patients. Deriving from a comprehensive analysis of CTC methylome, a unique "CTC DNA methylation signature" that is distinct from primary lung cancer tissues was identified. Further analysis showed that promoter hypermethylation of epithelial genes is a hallmark of stable epithelial-mesenchymal transition process. Moreover, it has been suggested that CTCs are endowed with a stemness-related feature during dissemination and metastasis. This work constitutes a unique DNA methylation analysis of CTCs at single base-pair resolution, which might facilitate to propose noninvasive CTC DNA methylation biomarkers contributing to clinical diagnosis.
Collapse
Affiliation(s)
- Lei Zhao
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.413389.4Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China ,grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaohong Wu
- Department of General Surgery, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200 Jiangsu China
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.413389.4Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Dong
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.413389.4Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
166
|
Is It Possible to Personalize the Diagnosis and Treatment of Breast Cancer during Pregnancy? J Pers Med 2020; 11:jpm11010018. [PMID: 33379383 PMCID: PMC7823967 DOI: 10.3390/jpm11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
The main goal of precision medicine in patients with breast cancer is to tailor the treatment according to the particular genetic makeup and the genetic changes in the cancer cells. Breast cancer occurring during pregnancy (BCP) is a complex and difficult clinical problem. Although it is not very common, both maternal and fetal outcome must be always considered when planning treatment. Pregnancy represents a significant barrier to the implementation of personalized treatment for breast cancer. Tailoring therapy mainly takes into account the stage of pregnancy, the subtype of cancer, the stage of cancer, and the patient’s preference. Results of the treatment of breast cancer in pregnancy are as yet not very satisfactory because of often delayed diagnosis, and it usually has an unfavorable outcome. Treatment of patients with pregnancy-associated breast cancer should be centralized. Centralization may result in increased experience in diagnosis and treatment and accumulated data may help us to optimize the treatment approaches, modify general treatment recommendations, and improve the survival and quality of life of the patients.
Collapse
|
167
|
Zeng Z, Zhou R, Sun R, Zhang X, Cheng Z, Chen C, Zhu Q. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications. Biosens Bioelectron 2020; 173:112814. [PMID: 33197767 DOI: 10.1016/j.bios.2020.112814] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Hybridization chain reaction (HCR) can be divided into two categories: linear HCR and nonlinear HCR. In traditional linear HCR, the relatively slow kinetics and less sufficient sensitivity largely limit its scope of application. In the nonlinear HCR system, under the trigger of the initiator, the judicious designed substrate sequences (hairpin or hairpin-free) will self-assembly to dendritic or branched DNA nanostructures with exponential growth kinetics. Given the advantages of its enzyme-free, high-order growth kinetic, high sensitivity, and simple operation, nonlinear HCR is regarded as a powerful signal amplifier for the detection of biomarkers by integrating with versatile sensing platforms in the past few decades. In this review, we describe the basic features of nonlinear HCR mechanism and classify the nonlinear HCR into several categories based on their self-assembly mechanisms: the branched HCR, dendritic HCR, hydrogel-based clamped HCR, and other types of HCR. Then, we summarize the recent development of nonlinear HCR in biosensing, such as nucleic acid, protein, enzyme activities, and cancer cell detection, etc., and we also review the current applications of nonlinear HCR in bioimaging (mRNA in situ imaging). We choose several representative works to further illustrate the analysis mechanisms via various detection platforms, such as fluorescence, electrochemical, colorimetric, etc. At last, we also review the challenges and further perspectives of nonlinear HCR in the use of bioanalysis.
Collapse
Affiliation(s)
- Zhuoer Zeng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Rong Zhou
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, Hunan, China.
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, Hunan, China.
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
168
|
Zhang Q, Rong Y, Yi K, Huang L, Chen M, Wang F. Circulating tumor cells in hepatocellular carcinoma: single-cell based analysis, preclinical models, and clinical applications. Theranostics 2020; 10:12060-12071. [PMID: 33204329 PMCID: PMC7667686 DOI: 10.7150/thno.48918] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are shed into the bloodstream from primary tumors and metastatic lesions and provide significant information about tumor progression and metastasis. CTCs contribute to tumor metastasis through the epithelial-to-mesenchymal transition (EMT). CTC clusters and stem-like phenotypes lead to a more aggressive and metastatic potential. CTCs retain the heterogeneity and imitate the nature of corresponding primary tumors. Therefore, it is important to use single-cell based analysis to obtain information on tumor heterogeneity and biology. CTCs are also good candidates for building preclinical models (especially 3D organoid cultures) for drug screening, disease modeling, genome editing, tumor immunity research, and organ-like biobank establishment. In this article, we summarize the current CTC capture technology, dissect the phenotypes associated with CTC metastasis, and review the progress in single-cell based analysis and preclinical modeling of the pattern and kinetics of CTCs. In particular, we discuss the use of CTCs to assess the progression of hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | | | | | | | | | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
169
|
O'Leary BR, Alexander MS, Du J, Moose DL, Henry MD, Cullen JJ. Pharmacological ascorbate inhibits pancreatic cancer metastases via a peroxide-mediated mechanism. Sci Rep 2020; 10:17649. [PMID: 33077776 PMCID: PMC7572461 DOI: 10.1038/s41598-020-74806-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Pharmacological ascorbate (P-AscH−, high-dose, intravenous vitamin C) is cytotoxic to tumor cells in doses achievable in humans. Phase I studies in pancreatic cancer (PDAC) utilizing P-AscH− have demonstrated increases in progression free survival, suggesting a reduction in metastatic disease burden. The purpose of this study was to determine the effects of P-AscH− on metastatic PDAC. Several in vitro and in vivo mechanisms involved in PDAC metastases were investigated following treatment with P-AscH−. Serum from PDAC patients in clinical trials with P-AscH− were tested for the presence and quantity of circulating tumor cell-derived nucleases. P-AscH− inhibited invasion, basement membrane degradation, decreased matrix metalloproteinase expression, as well as clonogenic survival and viability during exposure to fluid shear stress. In vivo, P-AscH− significantly decreased formation of ascites, tumor burden over time, circulating tumor cells, and hepatic metastases. Both in vitro and in vivo findings were reversed with the addition of catalase suggesting that the effect of P-AscH− on metastatic disease is mediated by hydrogen peroxide. Finally, P-AscH− decreased CTC-derived nucleases in subjects with stage IV PDAC in a phase I clinical trial. We conclude that P-AscH− attenuates the metastatic potential of PDAC and may prove to be effective for treating advanced disease.
Collapse
Affiliation(s)
- Brianne R O'Leary
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew S Alexander
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Juan Du
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Devon L Moose
- Department of Molecular Physiology and Biophsics, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophsics, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, The University of Iowa Carver College of Medicine, 1528 JCP, 200 Hawkins Drive, Iowa City, IA, 52242, USA.,Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph J Cullen
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA, USA. .,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, The University of Iowa Carver College of Medicine, 1528 JCP, 200 Hawkins Drive, Iowa City, IA, 52242, USA. .,Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
170
|
Herrero C, Abal M, Muinelo-Romay L. Circulating Extracellular Vesicles in Gynecological Tumors: Realities and Challenges. Front Oncol 2020; 10:565666. [PMID: 33178595 PMCID: PMC7591787 DOI: 10.3389/fonc.2020.565666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Although liquid biopsy can be considered a reality for the clinical management of some cancers, such as lung or colorectal cancer, it remains a promising field in gynecological tumors. In particular, circulating extracellular vesicles (cEVs) secreted by tumor cells represent a scarcely explored type of liquid biopsy in gynecological tumors. Importantly, these vesicles are responsible for key steps in tumor development and dissemination and are recognized as major players in cell-to-cell communication between the tumor and the microenvironment. However, limited work has been reported about the biologic effects and clinical value of EVs in gynecological tumors. Therefore, here we review the promising but already relatively limited data on the role of circulating EVs in promoting gynecological tumor spread and also their value as non-invasive biomarkers to improve the management of these type of tumors.
Collapse
Affiliation(s)
- Carolina Herrero
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Nasasbiotech, S.L., A Coruña, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Nasasbiotech, S.L., A Coruña, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
171
|
Guan Y, Xu F, Wang Y, Tian J, Wan Z, Wang Z, Chong T. Identification of key genes and functions of circulating tumor cells in multiple cancers through bioinformatic analysis. BMC Med Genomics 2020; 13:140. [PMID: 32972417 PMCID: PMC7513313 DOI: 10.1186/s12920-020-00795-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background Circulating tumor cells (CTCs) play a key role in cancer progression, especially metastasis, due to the rarity and heterogeneity of CTCs, fewer researches have been conducted on them at the molecular level. However, through the Gene Expression Omnibus (GEO) database, this kind of minority researches can be well integrated, the gene expression differences between CTCs and primary tumors can be identified, and molecular targets for CTCs can be found. Methods We analyzed 7 sets of gene chips (GSE82198, GSE99394, GSE31023, GSE65505, GSE67982, GSE76250, GSE50746) obtained by GEO. Analysis of differentially expressed genes (DEGs) between CTCs and corresponding primary tumors by NetworkAnalyst. Metascape tool for Gene Ontology (GO) / Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differential genes and visual display. Cytoscape performs protein-protein interaction (PPI) analysis and obtains the hub genes. Renal cancer patients’ clinical specimens to verify the correctness of enrichment results. Prognostic analysis of hub genes in kidney cancer patients using the Kaplan–Meier plotter survival analysis tool. Results We obtained a total of 589 DEGs. The GO / KEGG enrichment results indicate that the DEGs are mainly concentrated in cell adhesion, epithelial-mesenchymal transition (EMT), and apoptosis. Renal cancer clinical specimens suggest that CTCs have epithelial and mesenchymal types. At the same time, PSMC2 can be used as a poor prognostic indicator for renal cancer patients. Conclusions In summary, our study suggests that compared with primary tumors, CTCs mainly change cell adhesion, EMT, and apoptosis. PSMC2 can be used as a poor prognostic factor.
Collapse
Affiliation(s)
- Yibing Guan
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi Province, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Fangshi Xu
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi Province, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yiyuan Wang
- Department of Stomatology, the Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Juanhua Tian
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi Province, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ziyan Wan
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi Province, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Zhenlong Wang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi Province, China
| | - Tie Chong
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi Province, China.
| |
Collapse
|
172
|
Positron Emission Tomography for Response Evaluation in Microenvironment-Targeted Anti-Cancer Therapy. Biomedicines 2020; 8:biomedicines8090371. [PMID: 32972006 PMCID: PMC7556039 DOI: 10.3390/biomedicines8090371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic response is evaluated using the diameter of tumors and quantitative parameters of 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET). Tumor response to molecular-targeted drugs and immune checkpoint inhibitors is different from conventional chemotherapy in terms of temporal metabolic alteration and morphological change after the therapy. Cancer stem cells, immunologically competent cells, and metabolism of cancer are considered targets of novel therapy. Accumulation of FDG reflects the glucose metabolism of cancer cells as well as immune cells in the tumor microenvironment, which differs among patients according to the individual immune function; however, FDG-PET could evaluate the viability of the tumor as a whole. On the other hand, specific imaging and cell tracking of cancer cell or immunological cell subsets does not elucidate tumor response in a complexed interaction in the tumor microenvironment. Considering tumor heterogeneity and individual variation in therapeutic response, a radiomics approach with quantitative features of multimodal images and deep learning algorithm with reference to pathologic and genetic data has the potential to improve response assessment for emerging cancer therapy.
Collapse
|
173
|
Lozar T, Jesenko T, Kloboves Prevodnik V, Cemazar M, Hosta V, Jericevic A, Nolde N, Grasic Kuhar C. Preclinical and Clinical Evaluation of Magnetic-Activated Cell Separation Technology for CTC Isolation in Breast Cancer. Front Oncol 2020; 10:554554. [PMID: 33042837 PMCID: PMC7522616 DOI: 10.3389/fonc.2020.554554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023] Open
Abstract
Circulating tumor cell (CTC) count is an independent prognostic factor in early breast cancer. CTCs can be found in the blood of 20% of patients prior to neoadjuvant therapy. We aimed to assess the suitability of magnetic-activated cell separation (MACS) technology for isolation and cytological characterization of CTCs. In the preclinical part of the study, cell lines were spiked into buffy coat samples derived from healthy donors, and isolated using MACS. Breast cancer cells with preserved cell morphology were successfully isolated. In the clinical part, blood for CTC isolation was drawn from 44 patients with early and locally advanced breast cancer prior to neoadjuvant chemotherapy. Standard Giemsa, Papanicolaou and pancytokeratin staining was applied. 2.3% of samples contained cells that meet both the morphological and immunocytochemical criteria for CTC. In 32.6% of samples, partially degenerated pancytokeratin negative cells with morphological features of tumor cells were observed. In 65.1% of samples, CTCs were not found. In conclusion, our results demonstrate that morphologically intact tumor cells can be isolated using MACS technology. However, morphologically intact tumor cells were not detected in the clinical part of the study. At present, MACS technology does not appear suitable for use in a clinical cytopathology laboratory.
Collapse
Affiliation(s)
- Taja Lozar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronika Kloboves Prevodnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Violeta Hosta
- Department of Dermatovenereology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Anja Jericevic
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Natasa Nolde
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Cvetka Grasic Kuhar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
174
|
Rossi T, Gallerani G, Angeli D, Cocchi C, Bandini E, Fici P, Gaudio M, Martinelli G, Rocca A, Maltoni R, Fabbri F. Single-Cell NGS-Based Analysis of Copy Number Alterations Reveals New Insights in Circulating Tumor Cells Persistence in Early-Stage Breast Cancer. Cancers (Basel) 2020; 12:cancers12092490. [PMID: 32887501 PMCID: PMC7565733 DOI: 10.3390/cancers12092490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) are crucial for the identification of patients with a higher risk of relapse, including those diagnosed with breast cancer (BC). The aim of this study was to explore their molecular aspects in 11 early-stage BC patients during patient management, focusing on copy number alterations (CNAs) and exploiting a single-CTC next-generation sequencing approach. CTCs showed different degrees of aberration based on access time. Moreover, CTCs, in particular those persisting even months after tumor resection, shared CNAs with matched tumor tissue. Enrichment analyses of CNAs on CTCs highlighted peculiar aberrations, especially associated with interferon (IFN)-associated terms. The study of CTCs CNAs can provide information about the molecular mechanisms involving CTC-related processes and their survival ability in occult niches, supporting the goal of exploiting their application in patients’ surveillance and follow-up. Abstract Circulating tumor cells (CTCs) are a rare population of cells representing a key player in the metastatic cascade. They are recognized as a validated tool for the identification of patients with a higher risk of relapse, including those diagnosed with breast cancer (BC). However, CTCs are characterized by high levels of heterogeneity that also involve copy number alterations (CNAs), structural variations associated with gene dosage changes. In this study, single CTCs were isolated from the peripheral blood of 11 early-stage BC patients at different time points. A label-free enrichment of CTCs was performed using OncoQuick, and single CTCs were isolated using DEPArray. Libraries were prepared from single CTCs and DNA extracted from matched tumor tissues for a whole-genome low-coverage next-generation sequencing (NGS) analysis using the Ion Torrent S5 System. The analysis of the CNA burden highlighted that CTCs had different degrees of aberration based on the time point and subtype. CTCs were found even six months after surgery and shared CNAs with matched tumor tissue. Tumor-associated CNAs that were recurrent in CTCs were patient-specific, and some alterations involved regions associated with BC and survival (i.e., gains at 1q21-23 and 5p15.33). The enrichment analysis emphasized the involvement of aberrations of terms, associated in particular with interferon (IFN) signaling. Collectively, our findings reveal that these aberrations may contribute to understanding the molecular mechanisms involving CTC-related processes and their survival ability in occult niches, supporting the goal of exploiting their application in patients’ surveillance and follow-up.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.G.); (C.C.); (E.B.); (P.F.); (F.F.)
- Correspondence: ; Tel.: +39-05-4373-9982
| | - Giulia Gallerani
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.G.); (C.C.); (E.B.); (P.F.); (F.F.)
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Claudia Cocchi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.G.); (C.C.); (E.B.); (P.F.); (F.F.)
| | - Erika Bandini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.G.); (C.C.); (E.B.); (P.F.); (F.F.)
| | - Pietro Fici
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.G.); (C.C.); (E.B.); (P.F.); (F.F.)
| | - Michele Gaudio
- Pathology Unit, AUSL Romagna, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Giovanni Martinelli
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Andrea Rocca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.R.); (R.M.)
| | - Roberta Maltoni
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.R.); (R.M.)
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.G.); (C.C.); (E.B.); (P.F.); (F.F.)
| |
Collapse
|
175
|
Hasanain A, Blanco BA, Yu J, Wolfgang CL. The importance of circulating and disseminated tumor cells in pancreatic cancer. Surg Open Sci 2020; 1:49-55. [PMID: 32754693 PMCID: PMC7391911 DOI: 10.1016/j.sopen.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/24/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is a lethal disease in a large part due to the systemic nature at the time of diagnosis. In those patients who undergo a potentially curative resection of pancreatic cancer, the overwhelming majority will have systemic relapse. Circulating tumor cells are an important mediator of the development of metastases. Circulating tumor cells have been identified in patients with clinically localized resectable pancreatic cancer and exist as several phenotypes. Mesenchymal and stem cell-like phenotypes of circulating tumor cells predict early recurrence and worse survival. This review focuses on the current understanding of circulating tumor cells in pancreatic cancer and how this information can be used in developing more effective therapy in the future.
Collapse
Affiliation(s)
- Alina Hasanain
- Department of Surgery, Division of Surgical Oncology, Johns Hopkins University, Baltimore, MD 21287.,The Johns Hopkins Pancreatic Cancer Precision Medicine Program
| | | | - Jun Yu
- Department of Surgery, Division of Surgical Oncology, Johns Hopkins University, Baltimore, MD 21287.,The Johns Hopkins Pancreatic Cancer Precision Medicine Program
| | - Christopher L Wolfgang
- Department of Surgery, Division of Surgical Oncology, Johns Hopkins University, Baltimore, MD 21287.,The Johns Hopkins Pancreatic Cancer Precision Medicine Program
| |
Collapse
|
176
|
Campenni M, May AN, Boddy A, Harris V, Nedelcu AM. Agent-based modelling reveals strategies to reduce the fitness and metastatic potential of circulating tumour cell clusters. Evol Appl 2020; 13:1635-1650. [PMID: 32821275 PMCID: PMC7428819 DOI: 10.1111/eva.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis-the ability of cancer cells to disperse throughout the body and establish new tumours at distant locations-is responsible for most cancer-related deaths. Although both single and clusters of circulating tumour cells (CTCs) have been isolated from cancer patients, CTC clusters are generally associated with higher metastatic potential and worse prognosis. From an evolutionary perspective, being part of a cluster can provide cells with several benefits both in terms of survival (e.g. protection) and reproduction (group dispersal). Thus, strategies aimed at inducing cluster dissociation could decrease the metastatic potential of CTCs. However, finding agents or conditions that induce the dissociation of CTC clusters is hampered by the fact that their detection, isolation and propagation remain challenging. Here, we used a mechanistic agent-based model to (a) investigate the response of CTC clusters of various sizes and densities to different challenges-in terms of cell survival and cluster stability, and (b) make predictions as to the combination of factors and parameter values that could decrease the fitness and metastatic potential of CTC clusters. Our model shows that the resilience and stability of CTC clusters are dependent on both their size and density. Also, CTC clusters of distinct sizes and densities respond differently to changes in resource availability, with high-density clusters being least affected. In terms of responses to microenvironmental threats (such as drugs), increasing their intensity is, generally, least effective on high-density clusters. Lastly, we found that combining various levels of resource availability and threat intensity can be more effective at decreasing the survival of CTC clusters than each factor alone. We suggest that the complex effects that cluster density and size showed on both the resilience and stability of the CTC clusters are likely to have significant consequences for their metastatic potential and responses to therapies.
Collapse
Affiliation(s)
- Marco Campenni
- BiosciencesUniversity of ExeterPenrynUK
- Department of PsychologyArizona State UniversityTempeAZUSA
| | - Alexander N. May
- Research Casting InternationalQuinte WestONCanada
- Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Amy Boddy
- Biodesign InstituteArizona State UniversityTempeAZUSA
- Department of AnthropologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | | | | |
Collapse
|
177
|
Habli Z, AlChamaa W, Saab R, Kadara H, Khraiche ML. Circulating Tumor Cell Detection Technologies and Clinical Utility: Challenges and Opportunities. Cancers (Basel) 2020; 12:cancers12071930. [PMID: 32708837 PMCID: PMC7409125 DOI: 10.3390/cancers12071930] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
The potential clinical utility of circulating tumor cells (CTCs) in the diagnosis and management of cancer has drawn a lot of attention in the past 10 years. CTCs disseminate from tumors into the bloodstream and are believed to carry vital information about tumor onset, progression, and metastasis. In addition, CTCs reflect different biological aspects of the primary tumor they originate from, mainly in their genetic and protein expression. Moreover, emerging evidence indicates that CTC liquid biopsies can be extended beyond prognostication to pharmacodynamic and predictive biomarkers in cancer patient management. A key challenge in harnessing the clinical potential and utility of CTCs is enumerating and isolating these rare heterogeneous cells from a blood sample while allowing downstream CTC analysis. That being said, there have been serious doubts regarding the potential value of CTCs as clinical biomarkers for cancer due to the low number of promising outcomes in the published results. This review aims to present an overview of the current preclinical CTC detection technologies and the advantages and limitations of each sensing platform, while surveying and analyzing the published evidence of the clinical utility of CTCs.
Collapse
Affiliation(s)
- Zeina Habli
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.H.); (W.A.)
| | - Walid AlChamaa
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.H.); (W.A.)
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, 77030 TX, USA;
| | - Massoud L. Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.H.); (W.A.)
- Correspondence:
| |
Collapse
|
178
|
Kim J, Park S, Hwang D, Kim SI, Lee H. Diagnostic Value of Circulating miR-202 in Early-Stage Breast Cancer in South Korea. ACTA ACUST UNITED AC 2020; 56:medicina56070340. [PMID: 32659906 PMCID: PMC7404566 DOI: 10.3390/medicina56070340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Background and objectives: Breast cancer is the most common cancer among women worldwide. Early stage diagnosis is important for predicting increases in treatment success rates and decreases in patient mortality. Recently, circulating biomarkers such as circulating tumor cells, circulating tumor DNA, exosomes, and circulating microRNAs have been examined as blood-based markers for the diagnosis of breast cancer. Although miR-202 has been studied for its function or expression in breast cancer, its potential diagnostic value in a clinical setting remains elusive and miR-202 has not been investigated in South Korea. In this study, we aimed to evaluate the diagnostic utility of miR-202 in plasma samples of breast cancer patients in South Korea. Materials and Methods: We investigated miR-202 expression in the plasma of 30 breast cancer patients during diagnosis along with 30 healthy controls in South Korea by quantitative reverse transcription PCR. Results: The results showed that circulating miR-202 levels were significantly elevated in the breast cancer patients compared with those in healthy controls (p < 0.001). The sensitivity and specificity of circulating miR-202 were 90.0% and 93.0%, respectively. Additionally, circulating miR-202 showed high positivity at early stage. The positive rate of miR-202 was as follows: 100% (10/10) for stage I, 90% (9/10) for stage II, and 80% (8/10) for stage III. miR-202 was also a predictor of a 9.6-fold high risk for breast cancer (p < 0.001). Conclusions: Additional alternative molecular biomarkers for diagnosis and management of pre-cancer patients are needed. Circulating miR-202 might be potential diagnostic tool for detecting early stage breast cancer.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea;
| | - Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Gangwon, Korea; (S.P.); (D.H.)
- School of Mechanical Engineering, Yonsei University, Seoul 03772, Korea
| | - Dasom Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Gangwon, Korea; (S.P.); (D.H.)
| | - Seung Il Kim
- Department of Surgery, College of Medicine, Yonsei University, Seoul 03772, Korea
- Correspondence: (S.I.K.); (H.L.); Tel.: +82-2-2228-2100 (S.I.K.); +82-33-760-2740 (H.L.)
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Gangwon, Korea; (S.P.); (D.H.)
- Correspondence: (S.I.K.); (H.L.); Tel.: +82-2-2228-2100 (S.I.K.); +82-33-760-2740 (H.L.)
| |
Collapse
|
179
|
Kaur P, Campo D, Porras TB, Ring A, Lu J, Chairez Y, Su Y, Kang I, Lang JE. A Pilot Study for the Feasibility of Exome-Sequencing in Circulating Tumor Cells Versus Single Metastatic Biopsies in Breast Cancer. Int J Mol Sci 2020; 21:ijms21144826. [PMID: 32650480 PMCID: PMC7402350 DOI: 10.3390/ijms21144826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
The comparison of the landscape of somatic alterations in circulating tumor cells (CTCs) versus metastases is challenging. Here, we comprehensively characterized the somatic landscape in bulk (amplified and non-amplified), spike-in breast cancer cells, CTCs, and metastases from breast cancer patients using whole-exome sequencing (WES). We determined the level of genomic concordance for somatic nucleotide variants (SNVs), copy number alterations (CNAs), and structural variants (SVs). The variant allele fractions (VAFs) of somatic variants were remarkably similar between amplified and non-amplified cell line samples as technical replicates. In clinical samples, a significant fraction of somatic variants had low VAFs in CTCs compared to metastases. The most frequently recurrent gene mutations in clinical samples were associated with an elevated C > T mutational signature. We found complex rearrangement patterns including intra- and inter-chromosomal rearrangements, singleton, and recurrent gene fusions, and tandem duplications. We observed high molecular discordance for somatic alterations between paired samples consistent with marked heterogeneity of the somatic landscape. The most prevalent copy number calls were focal deletion events in CTCs and metastases. Our results demonstrate the feasibility of an integrated workflow for the identification of a complete repertoire of somatic alterations and highlight the intrapatient genomic differences that occur between CTCs and metastases.
Collapse
Affiliation(s)
- Pushpinder Kaur
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (P.K.); (Y.S.)
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; (J.L.); (I.K.)
| | - Daniel Campo
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Tania B. Porras
- Cancer and Blood Disease Institute, Children Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA;
| | - Alexander Ring
- Department of Oncology and Hematology, UniversitätsSpital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland;
| | - Janice Lu
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; (J.L.); (I.K.)
- Division of Medical Oncology, Department of Medicine and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Yvonne Chairez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Yunyun Su
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (P.K.); (Y.S.)
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; (J.L.); (I.K.)
| | - Irene Kang
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; (J.L.); (I.K.)
- Division of Medical Oncology, Department of Medicine and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Julie E. Lang
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (P.K.); (Y.S.)
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; (J.L.); (I.K.)
- Correspondence: ; Tel.: +1-(323)-442-8140
| |
Collapse
|
180
|
Fitzgerald JE, Byrd BK, Patil RA, Strawbridge RR, Davis SC, Bellini C, Niedre M. Heterogeneity of circulating tumor cell dissemination and lung metastases in a subcutaneous Lewis lung carcinoma model. BIOMEDICAL OPTICS EXPRESS 2020; 11:3633-3647. [PMID: 33014556 PMCID: PMC7510907 DOI: 10.1364/boe.395289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 05/07/2023]
Abstract
Subcutaneous (s.c.) tumor models are widely used in pre-clinical cancer metastasis research. Despite this, the dynamics and natural progression of circulating tumor cells (CTCs) and CTC clusters (CTCCs) in peripheral blood are poorly understood in these models. In this work, we used a new technique called 'diffuse in vivo flow cytometry' (DiFC) to study CTC and CTCC dissemination in an s.c. Lewis lung carcinoma (LLC) model in mice. Tumors were grown in the rear flank and we performed DiFC up to 31 days after inoculation. At the study endpoint, lungs were excised and bioluminescence imaging (BLI) was performed to determine the extent of lung metastases. We also used fluorescence macro-cryotome imaging to visualize infiltration and growth of the primary tumor. DiFC revealed significant heterogeneity in CTC and CTCC numbers amongst all mice studied, despite using clonally identical LLC cells and tumor placement. Maximum DiFC count rates corresponded to 0.1 to 14 CTCs per mL of peripheral blood. In general, CTC numbers did not necessarily increase monotonically over time and were poorly correlated with tumor volume. However, there was a good correlation between CTC and CTCC numbers in peripheral blood and lung metastases. We attribute the differences in CTC numbers primarily due to growth patterns of the primary tumor. This study is one of the few reports of CTC shedding dynamics in sub-cutaneous metastasis models and underscores the value of in vivo methods for continuous, non-invasive CTC monitoring.
Collapse
Affiliation(s)
- Jessica E. Fitzgerald
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Brook K. Byrd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Roshani A. Patil
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rendall R. Strawbridge
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
181
|
León-Mateos L, Abalo A, Casas H, Anido U, Rapado-González Ó, Vieito M, Suárez-Cunqueiro M, Gómez-Tato A, Abal M, López-López R, Muinelo-Romay L. Global Gene Expression Characterization of Circulating Tumor Cells in Metastasic Castration-Resistant Prostate Cancer Patients. J Clin Med 2020; 9:jcm9072066. [PMID: 32630240 PMCID: PMC7408664 DOI: 10.3390/jcm9072066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Current therapeutic options in the course of metastatic castration-resistant prostate cancers (mCRPC) reinforce the need for reliable tools to characterize the tumor in a dynamic way. Circulating tumor cells (CTCs) have emerged as a viable solution to the problem, whereby patients with a variety of solid tumors, including PC, often do not have recent tumor tissue available for analysis. The biomarker characterization in CTCs could provide insights into the current state of the disease and an overall picture of the intra-tumor heterogeneity. Methods: in the present study, we applied a global gene expression characterization of the CTC population from mCRPC (n = 9), with the goal to better understand the biology of these cells and identify the relevant molecules favoring this tumor progression. Results: This analysis allowed the identification of 50 genes specifically expressed in CTCs from patients. Six of these markers (HOXB13, QKI, MAOA, MOSPD1, SDK1, and FGD4), were validated in a cohort of 28 mCRPC, showing clinical interest for the management of these patients. Of note, the activity of this CTC signature was related to the regulation of MYC, a gene strongly implicated in the biology of mCRPC. Conclusions: Overall, our results represent new evidence on the great value of CTCs as a non-invasive biopsy to characterize PC.
Collapse
Affiliation(s)
- Luis León-Mateos
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alicia Abalo
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (A.A.); (H.C.)
| | - Helena Casas
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (A.A.); (H.C.)
| | - Urbano Anido
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
| | - Óscar Rapado-González
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (A.A.); (H.C.)
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Vieito
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Mercedes Suárez-Cunqueiro
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Gómez-Tato
- School of Mathematics, University of Santiago de Compostela (Campus Vida), 15782 Santiago de Compostela, Spain;
| | - Miguel Abal
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Rafael López-López
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence: (R.L.-L.); (L.M.-R.)
| | - Laura Muinelo-Romay
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (A.A.); (H.C.)
- Correspondence: (R.L.-L.); (L.M.-R.)
| |
Collapse
|
182
|
Ohannesian N, Gunawardhana L, Misbah I, Rakhshandehroo M, Lin SH, Shih WC. Commercial and emerging technologies for cancer diagnosis and prognosis based on circulating tumor exosomes. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab8699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Exosomes are nano-sized extracellular vesicles excreted by mammalian cells that circulate freely in the bloodstream of living organisms. Exosomes have a lipid bilayer that encloses genetic material used in intracellular communication (e.g. double-stranded DNA, micro-RNAs, and messenger RNA). Recent evidence suggests that dysregulation of this genetic content within exosomes has a major role in tumor progression in the surrounding microenvironment. Motivated by this discovery, we focused here on using exosomal biomarkers as a diagnostic and prognostic tool for cancer. In this review, we discuss recently discovered exosome-derived proteomic and genetic biomarkers used in cancer diagnosis and prognosis. Although several genetic biomarkers have been validated for their diagnostic values, proteomic biomarkers are still being actively pursued. We discuss both commercial technologies and emerging technologies for exosome isolation and analysis. Emerging technologies can be classified into optical and non-optical methods. The working principle of each method is briefly discussed as well as advantages and limitations.
Collapse
|
183
|
The Significance of Circulating Tumor Cells in Patients with Hepatocellular Carcinoma: Real-Time Monitoring and Moving Targets for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071734. [PMID: 32610709 PMCID: PMC7408113 DOI: 10.3390/cancers12071734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is ranked as the sixth most common cancer around the world. With the emergence of the state-of-the-art modalities lately, such as liver transplantation, image-guided ablation, and chemoembolization, the death rate is still high due to high metastasis rate after therapy. Observation by biannual ultrasonography allows effective diagnosis at an early stage for candidates with no extrahepatic metastasis, but its effectiveness still remains unsatisfactory. Developing a new test with improved effectiveness and specificity is urgently needed for HCC diagnosis, especially for patients after first line therapy. Circulating tumor cells (CTCs) are a small sub-population of tumor cells in human peripheral blood, they release from the primary tumor and invade into the blood circulatory system, thereby residing into the distal tissues and survive. As CTCs have specific and aggressive properties, they can evade from immune defenses, induce gene alterations, and modulate signal transductions. Ultimately, CTCs can manipulate tumor behaviors and patient reactions to anti-tumor treatment. Given the fact that in HCC blood is present around the immediate vicinity of the tumor, which allows thousands of CTCs to release into the blood circulation daily, so CTCs are considered to be the main cause for HCC occurrence, and are also a pivotal factor for HCC prognosis. In this review, we highlight the characteristics and enrichment strategies of CTCs, and focus on the use of CTCs for tumor evaluation and management in patients with HCC.
Collapse
|
184
|
Rao V, Arakeri G, Subash A, Bagadia RK, Thakur S, Kudpaje AS, Nayar R, Patil S, Paiva Fonseca F, Gomez RS, Brennan PA. Circulating tumour cells in head and neck cancers: Biological insights. J Oral Pathol Med 2020; 49:842-848. [PMID: 32526815 DOI: 10.1111/jop.13075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumour metastasis is one of the leading cause of cancer-related mortality. Circulating tumour cells (CTCs) have been implicated in loco-regional and distant metastasis and its role is being extensively studied in various malignancies, including those from the head and neck region. The main challenge in understanding their significance lies in the rarity of these cells in the blood. However, newer technologies have attempted to overcome these pitfalls. This review explores the evolution of CTC research and other related areas, including its biological significance, sustainability within the circulating vascular environment and possible clinical implications.
Collapse
Affiliation(s)
- Vishal Rao
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Gururaj Arakeri
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India.,Department of Oral and maxillofacial Surgery, Navodaya Dental College and Hospital, Raichur, India
| | - Anand Subash
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Ritvi K Bagadia
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Shalini Thakur
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Akshay S Kudpaje
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Ravi Nayar
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Shekar Patil
- Department of Medical Oncology, HCG Cancer Hospital, Bengaluru, India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo S Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter A Brennan
- Department of Oral & Maxillofacial Surgery, Queen Alexandra Hospital, Portsmouth, UK
| |
Collapse
|
185
|
Cocco S, Piezzo M, Calabrese A, Cianniello D, Caputo R, Di Lauro V, Fusco G, di Gioia G, Licenziato M, de Laurentiis M. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:E4579. [PMID: 32605126 PMCID: PMC7369987 DOI: 10.3390/ijms21134579] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by aggressive behavior, high risk of distant recurrence, and poor survival. Chemotherapy is still the main therapeutic approach for this subgroup of patients, therefore, progress in the treatment of TNBC remains an important challenge. Data derived from molecular technologies have identified TNBCs with different gene expression and mutation profiles that may help developing targeted therapies. So far, however, only a few of these have shown to improve the prognosis and outcomes of TNBC patients. Robust predictive biomarkers to accelerate clinical progress are needed. Herein, we review prognostic and predictive biomarkers in TNBC, discuss the current evidence supporting their use, and look at the future of this research field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michelino de Laurentiis
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Napoli NA, Italy; (S.C.); (M.P.); (A.C.); (D.C.); (R.C.); (V.D.L.); (G.F.); (G.d.G.); (M.L.)
| |
Collapse
|
186
|
Yang D, Yang X, Li Y, Zhao P, Fu R, Ren T, Hu P, Wu Y, Yang H, Guo N. Clinical significance of circulating tumor cells and metabolic signatures in lung cancer after surgical removal. J Transl Med 2020; 18:243. [PMID: 32552826 PMCID: PMC7301449 DOI: 10.1186/s12967-020-02401-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023] Open
Abstract
Background Lung cancer (LC) remains the deadliest form of cancer globally. While surgery remains the optimal treatment strategy for individuals with early-stage LC, what the metabolic consequences are of such surgical intervention remains uncertain. Methods Negative enrichment-fluorescence in situ hybridization (NE-FISH) was used in an effort to detect circulating tumor cells (CTCs) in pre- and post-surgery peripheral blood samples from 51 LC patients. In addition, targeted metabolomics analyses, multivariate statistical analyses, and pathway analyses were used to explore surgery-associated metabolic changes. Results LC patients had significantly higher CTC counts relative to healthy controls with 66.67% of LC patients having at least 1 detected CTC before surgery. CTC counts were associated with clinical outcomes following surgery. In a targeted metabolomics analysis, we detected 34 amino acids, 147 lipids, and 24 fatty acids. When comparing LC patients before and after surgery to control patients, metabolic shifts were detected via PLS-DA and pathway analysis. Further surgery-associated metabolic changes were identified when comparing LA (LC patients after surgery) and LB (LC patients before surgery) groups. We identified SM 42:4, Ser, Sar, Gln, and LPC 18:0 for inclusion in a biomarker panel for early-stage LC detection based upon an AUC of 0.965 (95% CI 0.900–1.000). This analysis revealed that SM 42:2, SM 35:1, PC (16:0/14:0), PC (14:0/16:1), Cer (d18:1/24:1), and SM 38:3 may offer diagnostic and prognostic benefits in LC. Conclusions These findings suggest that CTC detection and plasma metabolite profiling may be an effective means of diagnosing early-stage LC and identifying patients at risk for disease recurrence.
Collapse
Affiliation(s)
- Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, People's Republic of China
| | - Xiaofang Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, People's Republic of China
| | - Peige Zhao
- Department of Respiratory Medicine, Liaocheng People's Hospital, Liaocheng, 252000, People's Republic of China
| | - Rao Fu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, People's Republic of China
| | - Tianying Ren
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, People's Republic of China
| | - Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, People's Republic of China
| | - Yaping Wu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, People's Republic of China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China. .,State Key Laboratory of Generic Manufacture Technology of Traditional Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Shandong, 276006, People's Republic of China.
| |
Collapse
|
187
|
Wistuba-Hamprecht K, Gouttefangeas C, Weide B, Pawelec G. Immune Signatures and Survival of Patients With Metastatic Melanoma, Renal Cancer, and Breast Cancer. Front Immunol 2020; 11:1152. [PMID: 32582215 PMCID: PMC7296133 DOI: 10.3389/fimmu.2020.01152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Despite remarkable recent progress in treating solid cancers, especially the success of immunomodulatory antibody therapies for numerous different cancer types, it remains the case that many patients fail to respond to treatment. It is therefore of immense importance to identify biomarkers predicting clinical responses to treatment and patient survival, which would not only assist in targeting treatments to patients most likely to benefit, but might also provide mechanistic insights into the reasons for success or failure of the therapy. Several peripheral blood or tumor tissue diagnostic and predictive biomarkers known to be informative for cancer patient survival may be applicable for this purpose. The use of peripheral blood ("liquid biopsy") offers numerous advantages not only for predicting treatment responses at baseline but also for monitoring patients on-therapy. Assessment of the tumor microenvironment and infiltrating immune cells also delivers important information on cancer-host interactions but the requirement for tumor tissues makes this more challenging, especially for monitoring sequential changes in the individual patient. In this contribution, we will review our findings on immune signatures potentially informative for clinical outcome in melanoma, breast cancer and renal cell carcinoma, particularly the outcome of checkpoint blockade, by applying multiparametric flow cytometry and mass cytometry, routine clinical monitoring and functional testing for predicting and following individual patient responses to therapy.
Collapse
Affiliation(s)
- Kilian Wistuba-Hamprecht
- Division of Dermatooncology, Department of Dermatology, University Medical Centre Tübingen, Tübingen, Germany
- Immunoguiding Workgroup of the Cancer Immunotherapy Association (CIP/CIMT), Mainz, Germany
| | - Cécile Gouttefangeas
- Immunoguiding Workgroup of the Cancer Immunotherapy Association (CIP/CIMT), Mainz, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Germany and German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Benjamin Weide
- Division of Dermatooncology, Department of Dermatology, University Medical Centre Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Germany and German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
188
|
Chelakkot C, Ryu J, Kim MY, Kim JS, Kim D, Hwang J, Park SH, Ko SB, Park JW, Jung MY, Kim RN, Song K, Kim YJ, Choi YL, Lee HS, Shin YK. An Immune-Magnetophoretic Device for the Selective and Precise Enrichment of Circulating Tumor Cells from Whole Blood. MICROMACHINES 2020; 11:mi11060560. [PMID: 32486306 PMCID: PMC7345362 DOI: 10.3390/mi11060560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Here, we validated the clinical utility of our previously developed microfluidic device, GenoCTC, which is based on bottom magnetophoresis, for the isolation of circulating tumor cells (CTCs) from patient whole blood. GenoCTC allowed 90% purity, 77% separation rate, and 80% recovery of circulating tumor cells at a 90 μL/min flow rate when tested on blood spiked with epithelial cell adhesion molecule (EpCAM)-positive Michigan Cancer Foundation-7 (MCF7) cells. Clinical studies were performed using blood samples from non-small cell lung cancer (NSCLC) patients. Varying numbers (2 to 114) of CTCs were found in each NSCLC patient, and serial assessment of CTCs showed that the CTC count correlated with the clinical progression of the disease. The applicability of GenoCTC to different cell surface biomarkers was also validated in a cholangiocarcinoma patient using anti-EPCAM, anti-vimentin, or anti-tyrosine protein kinase MET (c-MET) antibodies. After EPCAM-, vimentin-, or c-MET-positive cells were isolated, CTCs were identified and enumerated by immunocytochemistry using anti-cytokeratin 18 (CK18) and anti-CD45 antibodies. Furthermore, we checked the protein expression of PDL1 and c-MET in CTCs. A study in a cholangiocarcinoma patient showed that the number of CTCs varied depending on the biomarker used, indicating the importance of using multiple biomarkers for CTC isolation and enumeration.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Jiyeon Ryu
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Mi Young Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea; (M.Y.K.); (J.-S.K.)
| | - Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea; (M.Y.K.); (J.-S.K.)
| | - Dohyeong Kim
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Juhyun Hwang
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Sung Hoon Park
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Seok Bum Ko
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
| | - Jeong Won Park
- IT Convergence Technology Research Laboratory, Electronic and Telecommunications Research Institute, Daejon 34129, Korea; (J.W.P.); (M.Y.J.)
| | - Moon Youn Jung
- IT Convergence Technology Research Laboratory, Electronic and Telecommunications Research Institute, Daejon 34129, Korea; (J.W.P.); (M.Y.J.)
| | - Ryong Nam Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea;
| | - Kyoung Song
- The Center for Companion Diagnostics, LOGONE Bio Convergence Research Foundation, Seoul 08394, Korea; (K.S.); (Y.J.K.)
| | - Yu Jin Kim
- The Center for Companion Diagnostics, LOGONE Bio Convergence Research Foundation, Seoul 08394, Korea; (K.S.); (Y.J.K.)
| | - Yoon-La Choi
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 08394, Korea;
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hun Seok Lee
- Technical Research Center, Genobio Corp., Seoul 08394, Korea; (C.C.); (J.R.); (D.K.); (J.H.); (S.H.P.); (S.B.K.)
- Correspondence: (H.S.L.); (Y.K.S.)
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- The Center for Anti-Cancer Companion Diagnostics, Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
- Correspondence: (H.S.L.); (Y.K.S.)
| |
Collapse
|
189
|
Hugenschmidt H, Labori KJ, Brunborg C, Verbeke CS, Seeberg LT, Schirmer CB, Renolen A, Borgen EF, Naume B, Wiedswang G. Circulating Tumor Cells are an Independent Predictor of Shorter Survival in Patients Undergoing Resection for Pancreatic and Periampullary Adenocarcinoma. Ann Surg 2020; 271:549-558. [PMID: 30216219 DOI: 10.1097/sla.0000000000003035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We evaluated the prognostic impact of circulating tumor cells (CTCs) for patients with presumed resectable pancreatic and periampullary cancers. SUMMARY OF BACKGROUND DATA Initial treatment decisions for this group are currently taken without a reliable prognostic marker. The CellSearch system allows standardized CTC-testing and has shown excellent specificity and prognostic value in other applications. METHODS Preoperative blood samples from 242 patients between September 2009 and December 2014 were analyzed. One hundred seventy-nine patients underwent tumor resection, of whom 30 with stage-I tumors and duodenal cancer were assigned to the low-risk group, and the others to the high-risk group. Further 33 had advanced disease, 30 benign histology. Observation ended in December 2016. Cancer-specific survival (CSS) and disease-free survival (DFS) were calculated by log-rank and Cox regression. RESULTS CTCs (CTC-positive; ≥1 CTC/7.5 mL) were detected in 6.8% (10/147) of the high-risk patients and 6.2% (2/33) with advanced disease. No CTCs (CTC-negative) were detected in the low-risk patients or benign disease. In high-risk patients, median CSS for CTC-positive versus CTC-negative was 8.1 versus 20.0 months (P < 0.0001), and DFS 4.0 versus 10.5 months (P < 0.001). Median CSS in advanced disease was 7.7 months. Univariate hazard ratio (HR) of CTC-positivity was 3.4 (P < 0.001). In multivariable analysis, CTC-status remained independent (HR: 2.4, P = 0.009) when corrected for histological type (HR: 2.7, P = 0.030), nodal status (HR: 1.7, P = 0.016), and vascular infiltration (HR: 1.7, P = 0.001). CONCLUSION Patients testing CTC-positive preoperatively showed a detrimental outcome despite successful tumor resections. Although the low CTC-rate seems a limiting factor, results indicate high specificity. Thus, preoperative analysis of CTCs by this test may guide treatment decisions and warrants further testing in clinical trials.
Collapse
Affiliation(s)
- Harald Hugenschmidt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Transplantation Surgery, Division of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Department of GI-Surgery, Division of Surgery and Oncology, Oslo University Hospital, Oslo, Norway
| | - Knut Jørgen Labori
- Department of GI-Surgery, Division of Surgery and Oncology, Oslo University Hospital, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Caroline Sophie Verbeke
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lars Thomas Seeberg
- Department of GI-Surgery, Division of Surgery and Oncology, Oslo University Hospital, Oslo, Norway.,Department of Gastrointestinal Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | | | - Anne Renolen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Bjørn Naume
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Gro Wiedswang
- Department of GI-Surgery, Division of Surgery and Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
190
|
Yee-de León JF, Soto-García B, Aráiz-Hernández D, Delgado-Balderas JR, Esparza M, Aguilar-Avelar C, Wong-Campos JD, Chacón F, López-Hernández JY, González-Treviño AM, Yee-de León JR, Zamora-Mendoza JL, Alvarez MM, Trujillo-de Santiago G, Gómez-Guerra LS, Sánchez-Domínguez CN, Velarde-Calvillo LP, Abarca-Blanco A. Characterization of a novel automated microfiltration device for the efficient isolation and analysis of circulating tumor cells from clinical blood samples. Sci Rep 2020; 10:7543. [PMID: 32372001 PMCID: PMC7200708 DOI: 10.1038/s41598-020-63672-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The detection and analysis of circulating tumor cells (CTCs) may enable a broad range of cancer-related applications, including the identification of acquired drug resistance during treatments. However, the non-scalable fabrication, prolonged sample processing times, and the lack of automation, associated with most of the technologies developed to isolate these rare cells, have impeded their transition into the clinical practice. This work describes a novel membrane-based microfiltration device comprised of a fully automated sample processing unit and a machine-vision-enabled imaging system that allows the efficient isolation and rapid analysis of CTCs from blood. The device performance was characterized using four prostate cancer cell lines, including PC-3, VCaP, DU-145, and LNCaP, obtaining high assay reproducibility and capture efficiencies greater than 93% after processing 7.5 mL blood samples spiked with 100 cancer cells. Cancer cells remained viable after filtration due to the minimal shear stress exerted over cells during the procedure, while the identification of cancer cells by immunostaining was not affected by the number of non-specific events captured on the membrane. We were also able to identify the androgen receptor (AR) point mutation T878A from 7.5 mL blood samples spiked with 50 LNCaP cells using RT-PCR and Sanger sequencing. Finally, CTCs were detected in 8 out of 8 samples from patients diagnosed with metastatic prostate cancer (mean ± SEM = 21 ± 2.957 CTCs/mL, median = 21 CTCs/mL), demonstrating the potential clinical utility of this device.
Collapse
Affiliation(s)
| | | | | | - Jesús Rolando Delgado-Balderas
- Delee Corp., Mountain View, CA, 94041, USA.,Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | | | | | - J D Wong-Campos
- Delee Corp., Mountain View, CA, 94041, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | | | | | | | | | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico.,Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Lauro S Gómez-Guerra
- Servicio de Urología, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | - Celia N Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | | | | |
Collapse
|
191
|
Inflammation-Based Scores Increase the Prognostic Value of Circulating Tumor Cells in Primary Breast Cancer. Cancers (Basel) 2020; 12:cancers12051134. [PMID: 32369910 PMCID: PMC7281016 DOI: 10.3390/cancers12051134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
A correlation between circulating tumor cells (CTCs) and monocytes in metastatic breast cancer (BC), where CTCs and monocyte-to-lymphocyte ratio (MLR) were predictors of overall survival (OS), was recently shown. Herein, we aimed to assess the association between CTCs and the complete blood count (CBC)-derived inflammation-based scores in 284 primary BC patients. CTCs were determined in CD45-depleted peripheral blood mononuclear cells by real time-PCR. This method allowed us to detect a subset of CTCs with an epithelial-to-mesenchymal transition phenotype (CTC EMT), previously associated with inferior outcomes in primary BC. In the present study, CTC EMT positivity (hazard ratio (HR) = 2.4; 95% CI 1.20–4.66, p = 0.013) and elevated neutrophil-to-lymphocyte ratio (NLR) (HR = 2.20; 95% CI 1.07–4.55; p = 0.033) were associated with shorter progression-free survival (PFS) in primary BC patients. Multivariate analysis showed that CTC EMT-positive patients with NLR ≥ 3 had 8.6 times increased risk of disease recurrence (95% CI 2.35–31.48, p = 0.001) compared with CTC EMT-negative patients with NLR < 3. Similarly, disease recurrence was 13.14 times more likely in CTC EMT-positive patients with MLR ≥ 0.34 (95% CI 4.35–39.67, p < 0.001). Given its low methodological and financial demands, the CBC-derived inflammation-based score determination could, after broader validation, significantly improve the prognostication of BC patients.
Collapse
|
192
|
Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer's Biomarkers. Diagnostics (Basel) 2020; 10:diagnostics10040215. [PMID: 32294884 PMCID: PMC7235853 DOI: 10.3390/diagnostics10040215] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been an increase in knowledge of cancer, accompanied by a technological development that gives rise to medical oncology. An instrument that allows the implementation of individualized therapeutic strategies is the liquid biopsy. Currently, it is the most innovative methodology in medical oncology. Its high potential as a tool for screening and early detection, the possibility of assessing the patient’s condition after diagnosis and relapse, as well as the effectiveness of real-time treatments in different types of cancer. Liquid biopsy is capable of overcoming the limitations of tissue biopsies. The elements that compose the liquid biopsy are circulating tumor cells, circulating tumor nucleic acids, free of cells or contained in exosomes, microvesicle and platelets. Liquid biopsy studies are performed on various biofluids extracted in a non-invasive way, and they can be performed both from the blood and in urine, saliva or cerebrospinal fluid. The development of genotyping techniques, using the elements that make up liquid biopsy, make it possible to detect mutations, intertumoral and intratumoral heterogeneity, and provide molecular information on cancer for application in medical oncology in an individualized way in different types of tumors. Therefore, liquid biopsy has the potential to change the way medical oncology could predict the course of the disease.
Collapse
|
193
|
Wu J, Raba K, Guglielmi R, Behrens B, Van Dalum G, Flügen G, Koch A, Patel S, Knoefel WT, Stoecklein NH, Neves RPL. Magnetic-Based Enrichment of Rare Cells from High Concentrated Blood Samples. Cancers (Basel) 2020; 12:E933. [PMID: 32290064 PMCID: PMC7225976 DOI: 10.3390/cancers12040933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we tested two magnetic-bead based systems for the enrichment and detection of rare tumor cells in concentrated blood products. For that, the defined numbers of cells from three pancreatic cancer cell lines were spiked in 108 peripheral blood mononuclear cells (PBMNCs) concentrated in 1 mL, mimicking diagnostic leukapheresis (DLA) samples, and samples were processed for circulating tumor cells (CTC) enrichment with the IsoFlux or the KingFisher systems, using different types of magnetic beads from the respective technology providers. Beads were conjugated with different anti-EpCAM and MUC-1 antibodies. Recovered cells were enumerated and documented by fluorescent microscopy. For the IsoFlux system, best performance was obtained with IsoFlux CTC enrichment kit, but these beads compromised the subsequent immunofluorescence staining. For the KingFisher system, best recoveries were obtained using Dynabeads Biotin Binder beads. These beads also allowed one to capture CTCs with different antibodies and the subsequent immunofluorescence staining. KingFisher instrument allowed a single and streamlined protocol for the enrichment and staining of CTCs that further prevented cell loss at the enrichment/staining interface. Both IsoFlux and KingFisher systems allowed the enrichment of cell line cells from the mimicked-DLA samples. However, in this particular experimental setting, the recovery rates obtained with the KingFisher system were globally higher, the system was more cost-effective, and it allowed higher throughput.
Collapse
Affiliation(s)
- Junhao Wu
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rosa Guglielmi
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Bianca Behrens
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Guus Van Dalum
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Georg Flügen
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Andreas Koch
- Thermo Fisher Scientific, Postfach 200152, Frankfurter Str. 129B, 64293 Darmstadt, Germany;
| | - Suraj Patel
- Thermo Fisher Scientific, 3 Fountain Drive, Inchinnan, Renfrew PA4 9RF, UK;
| | - Wolfram T. Knoefel
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Nikolas H. Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| | - Rui P. L. Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.W.); (R.G.); (B.B.); (G.V.D.); (G.F.); (W.T.K.)
| |
Collapse
|
194
|
Mu HY, Ou YC, Chuang HN, Lu TJ, Jhan PP, Hsiao TH, Huang JH. Triple Selection Strategy for In Situ Labeling of Circulating Tumor Cells with High Purity and Viability toward Preclinical Personalized Drug Sensitivity Analysis. ACTA ACUST UNITED AC 2020; 4:e2000013. [PMID: 32529799 DOI: 10.1002/adbi.202000013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Ex vivo culture of viable circulating tumor cells (CTCs) from individual patients has recently become an emerging liquid biopsy technology to investigate drug sensitivity and genomic analysis in cancer. However, it remains challenging to retrieve the CTCs with high viability and purity from cancer patients' blood using a rapid process. Here, a triple selection strategy that combines immunonegative enrichment, density gradient, and microfluidic-based size-exclusion methods is developed for in situ drug sensitivity testing. The CTC isolation chip consists of 4 independent microchannels that can evenly distribute the captured CTCs, allowing for independent in situ analysis event. The cancer cells are retrieved within 5 min with high viability (>95%), captured efficiency (78%), and high purity (99%) from 7.5 mL of blood cell mixed samples. Furthermore, the CTCs can be isolated from prostate cancer patients' blood samples and verified in situ using cancer-specific markers within 1.5 h, demonstrating the possibility to be applied to clinical practice. In situ drug sensitivity analysis demonstrates that the captured CTCs without and with cisplatin treatment for 1 day have survival rates of 87.5% and 0%, respectively. It is envisioned that this strategy may become a potential tool to identify suitable therapies prior to the treatment.
Collapse
Affiliation(s)
- Hsuan-Yo Mu
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.,Department of Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, 43304, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tsai-Jung Lu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Pei-Pei Jhan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.,Department of Public Health, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
195
|
Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, Alix-Panabières C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2020; 12:E867. [PMID: 32260071 PMCID: PMC7225923 DOI: 10.3390/cancers12040867] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Metastases and cancer recurrence are the main causes of cancer death. Circulating Tumor Cells (CTCs) and disseminated tumor cells are the drivers of cancer cell dissemination. The assessment of CTCs' clinical role in early metastasis prediction, diagnosis, and treatment requires more information about their biology, their roles in cancer dormancy, and immune evasion as well as in therapy resistance. Indeed, CTC functional and biochemical phenotypes have been only partially characterized using murine metastasis models and liquid biopsy in human patients. CTC detection, characterization, and enumeration represent a promising tool for tailoring the management of each patient with cancer. The comprehensive understanding of CTCs will provide more opportunities to determine their clinical utility. This review provides much-needed insights into this dynamic field of translational cancer research.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Mehdi Azizi
- Proteomics Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Maryam Heidarifard
- Drug Applied Research Center, Tabriz University of Medical Sciences, 51368 Tabriz, Iran;
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| |
Collapse
|
196
|
Bergmann S, Coym A, Ott L, Soave A, Rink M, Janning M, Stoupiec M, Coith C, Peine S, von Amsberg G, Pantel K, Riethdorf S. Evaluation of PD-L1 expression on circulating tumor cells (CTCs) in patients with advanced urothelial carcinoma (UC). Oncoimmunology 2020; 9:1738798. [PMID: 32391189 PMCID: PMC7199812 DOI: 10.1080/2162402x.2020.1738798] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 01/18/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibition (ICI) of the PD-1/PD-L1 axis shows durable responses in a subset of patients with metastatic urothelial carcinoma (UC). However, PD-L1 expression in tumor biopsies does not necessarily correlate with response to PD-1/PD-L1 inhibitors. Thus, a reliable predictive biomarker is urgently needed. Here, the expression of PD-L1 on circulating tumor cells (CTCs) in blood from patients with advanced UC was analyzed. For this purpose, an assay to test PD-L1 expression on CTCs using the CellSearch® system was established using cells of five UC cell lines spiked into blood samples from healthy donors and applied to a heterogeneous cohort of UC patients. Enumeration of CTCs was performed in blood samples from 49 patients with advanced UC. PD-L1 expression in ≥1 CTC was found in 10 of 16 CTC-positive samples (63%). Both intra- and inter-patient heterogeneity regarding PD-L1 expression of CTCs were observed. Furthermore, vimentin-expressing CTCs were detected in 4 of 15 CTC-positive samples (27%), independently of PD-L1 analysis. Both CTC detection and presence of CTCs with moderate or strong PD-L1 expression correlated with worse overall survival. Analyses during disease course of three individual patients receiving ICI suggest that apart from CTC numbers also PD-L1 expression on CTCs might potentially indicate disease progression. This is the first study demonstrating the feasibility to detect CTC-PD-L1 expression in patients with advanced UC using the CellSearch® system. This assay is readily available for clinical application and could be implemented in future clinical trials to evaluate its relevance for predicting and monitoring response to ICI.
Collapse
Affiliation(s)
- Sonja Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Coym
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Ott
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Janning
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malgorzata Stoupiec
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Coith
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
197
|
Woestemeier A, Harms-Effenberger K, Karstens KF, Konczalla L, Ghadban T, Uzunoglu FG, Izbicki JR, Bockhorn M, Pantel K, Reeh M. Clinical Relevance of Circulating Tumor Cells in Esophageal Cancer Detected by a Combined MACS Enrichment Method. Cancers (Basel) 2020; 12:E718. [PMID: 32197486 PMCID: PMC7140099 DOI: 10.3390/cancers12030718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Current modalities to predict tumor recurrence and survival in esophageal cancer are insufficient. Even in lymph node-negative patients, a locoregional and distant relapse is common. Hence, more precise staging methods are needed. So far, only the CellSearch system was used to detect circulating tumor cells (CTC) with clinical relevance in esophageal cancer patients. Studies analyzing different CTC detection assays using advanced enrichment techniques to potentially increase the sensitivity are missing. METHODS In this single-center, prospective study, peripheral blood samples from 90 esophageal cancer patients were obtained preoperatively and analyzed for the presence of CTCs by Magnetic Cell Separation (MACS) enrichment (combined anti-cytokeratin and anti-epithelial cell adhesion molecules (EpCAM)), with subsequent immunocytochemical staining. Data were correlated with clinicopathological parameters and patient outcomes. RESULTS CTCs were detected in 25.6% (23/90) of the patients by combined cytokeratin/EpCAM enrichment (0-150 CTCs/7.5 mL). No significant correlation between histopathological parameters and CTC detection was found. Survival analysis revealed that the presence of more than two CTCs correlated with significantly shorter overall survival (OS) and progression-free survival (PFS). CONCLUSION With the use of cytokeratin as an additional enrichment target, the CTC detection rate in esophageal cancer patients can be elevated and displays the heterogeneity of cytokeratin (CK) and EpCAM expression. The presence of >2CTCs correlated with a shorter relapse-free and overall survival in a univariate analysis, but not in a multivariate setting. Moreover, our results suggest that the CK7/8+/EpCAM+ or CK7/8+/EpCAM- CTC subtype does not lead to an advanced tumor staging tool in non-metastatic esophageal cancer (EC) patients.
Collapse
Affiliation(s)
- Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Katharina Harms-Effenberger
- Department of Tumor Biology, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.H.-E.); (K.P.)
| | - Karl-F. Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Faik G. Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.H.-E.); (K.P.)
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| |
Collapse
|
198
|
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5:28. [PMID: 32296047 PMCID: PMC7067809 DOI: 10.1038/s41392-020-0134-x] [Citation(s) in RCA: 1096] [Impact Index Per Article: 274.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. Yet, it remains poorly understood. The continuous evolution of cancer biology research and the emergence of new paradigms in the study of metastasis have revealed some of the molecular underpinnings of this dissemination process. The invading tumor cell, on its way to the target site, interacts with other proteins and cells. Recognition of these interactions improved the understanding of some of the biological principles of the metastatic cell that govern its mobility and plasticity. Communication with the tumor microenvironment allows invading cancer cells to overcome stromal challenges, settle, and colonize. These characteristics of cancer cells are driven by genetic and epigenetic modifications within the tumor cell itself and its microenvironment. Establishing the biological mechanisms of the metastatic process is crucial in finding open therapeutic windows for successful interventions. In this review, the authors explore the recent advancements in the field of metastasis and highlight the latest insights that contribute to shaping this hallmark of cancer.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- High-Impact Cancer Research Program, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
199
|
Abstract
OBJECTIVES Preclinical data suggest histone deacetylase inhibitors improve the therapeutic index of sorafenib. A phase I study was initiated to establish the recommended phase 2 dose of sorafenib combined with vorinostat in patients with unresectable hepatocellular carcinoma. MATERIALS AND METHODS Patients received vorinostat (200 to 400 mg by mouth once daily, 5 of 7 d) and sorafenib at standard or reduced doses (400 mg [cohort A] or 200 mg [cohort B] by mouth twice daily). Patients who received 14 days of vorinostat in cycle 1 were evaluable for dose-limiting toxicity (DLT). RESULTS Sixteen patients were treated. Thirteen patients were evaluable for response. Three patients experienced DLTs, 2 in cohort A (grade [gr] 3 hypokalemia; gr 3 maculopapular rash) and 1 in cohort B (gr 3 hepatic failure; gr 3 hypophosphatemia; gr 4 thrombocytopenia). Eleven patients required dose reductions or omissions for non-DLTtoxicity. Ten patients (77%) had stable disease (SD). The median treatment duration was 4.7 months for response-evaluable patients. One patient with SD was on treatment for 29.9 months, and another patient, also with SD, was on treatment for 18.7 months. Another patient electively stopped therapy after 15 months and remains without evidence of progression 3 years later. CONCLUSIONS Although some patients had durable disease control, the addition of vorinostat to sorafenib led to toxicities in most patients, requiring dose modifications that prevented determination of the recommended phase 2 dose. The combination is not recommended for further exploration with this vorinostat schedule in this patient population.
Collapse
|
200
|
Mercer J, Lam ACL, Smith R, Fallah-Rad N, Kavanagh J. Development of pulmonary endovascular metastases following vertebroplasty: case report. J Neurosurg Spine 2020; 32:452-455. [PMID: 31783355 DOI: 10.3171/2019.9.spine19915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/18/2019] [Indexed: 11/06/2022]
Abstract
A 69-year-old man developed pulmonary metastases following vertebroplasties for pathological fractures of vertebrae T12-L4. The fractures developed due to spinal metastases from castrate-resistant prostate cancer. A CT scan performed 1 month prior indicated no evidence of pulmonary malignancy. However, CT scans performed 2 months after the vertebroplasties demonstrated intravascular pulmonary metastases distributed similarly to embolized polymethylmethacrylate. Vertebroplasty is a well-established procedure for symptomatic management of vertebral compression fractures. However, studies have demonstrated an increase in circulating tumor cells following vertebroplasties, theoretically increasing the risk of distant metastases. In this case, the chronicity and radiological findings suggest that the pulmonary intravascular metastases may have resulted from the vertebroplasties.
Collapse
Affiliation(s)
| | | | - Roger Smith
- 3Neuroradiology, Toronto Joint Department of Medical Imaging, University Health Network
| | - Nazanin Fallah-Rad
- 4Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | |
Collapse
|