151
|
Chen C, Feng Y, Wang X. LncRNA ZEB1-AS1 expression in cancer prognosis: Review and meta-analysis. Clin Chim Acta 2018; 484:265-271. [DOI: 10.1016/j.cca.2018.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
|
152
|
Zhao X, Chen Y, Mao Q, Jiang X, Jiang W, Chen J, Xu W, Zhong L, Sun X. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark 2018; 21:859-868. [PMID: 29439311 DOI: 10.3233/cbm-170791] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In China, hepatocellular carcinoma (HCC) is the most commonly diagnosed cancer and the leading cause of cancer death in men, followed by lung and stomach cancer. There was an urgent need to identify novel prognostic biomarkers for HCC. We explored the expression pattern of m6A related proteins in HCC tissues by using TCGA in this study. We found that the m6A 'reader' YTHDF1 was significantly upregulated in HCC and was positive correlated with pathology stage. Kaplan-Meier analysis showed that Lower YTHDF1 expression level was associated with better survival of HCC patients. Furthermore, we performed GO and KEGG pathway analysis of YTHDF1 co-expressed genes and found YTHDF1 played an important role in regulating HCC cell cycle progression and metabolism. We believed that this study will provide a potential new therapeutic and prognostic target for HCC.
Collapse
Affiliation(s)
- Xianguang Zhao
- Department of Gastroenterology, Hua Shan Hospital North Affiliated to Fudan University, Shanghai 200433, China
| | - Yang Chen
- Department of Neurology, Hua Shan Hospital North Affiliated to Fudan University, Shanghai 200433, China
| | - Qiqi Mao
- Department of Gastroenterology, Hua Shan Hospital North Affiliated to Fudan University, Shanghai 200433, China
| | - Xiaoyun Jiang
- Department of Gastroenterology, Hua Shan Hospital Affiliated to Fudan University, Shanghai 200433, China
| | - Weiru Jiang
- Department of Gastroenterology, Hua Shan Hospital Affiliated to Fudan University, Shanghai 200433, China
| | - Jiajie Chen
- Department of Gastroenterology, Hua Shan Hospital North Affiliated to Fudan University, Shanghai 200433, China
| | - Weijia Xu
- Department of Gastroenterology, Hua Shan Hospital North Affiliated to Fudan University, Shanghai 200433, China
| | - Liang Zhong
- Department of Gastroenterology, Hua Shan Hospital Affiliated to Fudan University, Shanghai 200433, China
| | - Xu Sun
- Department of Gastroenterology, Hua Shan Hospital Affiliated to Fudan University, Shanghai 200433, China
| |
Collapse
|
153
|
Wu F, Zhao Z, Chai R, Liu Y, Wang K, Wang Z, Li G, Huang R, Jiang H, Zhang K. Expression profile analysis of antisense long non-coding RNA identifies WDFY3-AS2 as a prognostic biomarker in diffuse glioma. Cancer Cell Int 2018; 18:107. [PMID: 30069164 PMCID: PMC6064140 DOI: 10.1186/s12935-018-0603-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Increasing evidence has shown that long non-coding RNAs (lncRNAs) are important prognostic biomarkers and epigenetic regulators with critical roles in cancer initiation and progression. However, the expression and clinical prognostic value of antisense lncRNAs in diffuse glioma patients remain unknown. METHODS Here, we profiled differentially expressed antisense lncRNAs in glioma using RNA sequencing data from Chinese Glioma Genome Atlas database. Cox regression was performed to evaluate the prognostic value. Gene oncology (GO) and gene set enrichment analysis (GSEA) were used for functional analysis of antisense LncRNAs. RESULTS Expression profiling identified 169 aberrantly expressed antisense lncRNAs between lower grade glioma (LGG) (grade II and III) and glioblastoma multiforme (GBM), 113 antisense lncRNAs between LGG IDH-wt and IDH-mut samples, and 70 antisense lncRNAs between GBM IDH-wt and IDH-mut samples, respectively. Among them, three antisense lncRNAs (WDFY3-AS2, MCM3AP-AS1 and LBX2-AS1) were significantly associated with prognosis and malignant progression of patients. WDFY3-AS2, the top one of downregulated antisense lncRNAs in GBM with fold change of 0.441 (P < 0.001), showed specific decreased expression in classical, mesenchymal, LGG IDH-wt, GBM IDH-wt or MGMT promoter unmethylated stratified patients. Chi square test found that WDFY3-AS2 was significantly associated with the clinical and molecular features of glioma. Univariate and multivariate Cox regression analysis indicated that WDFY3-AS2 was independently correlated with overall survival (OS) of patients. Kaplan-Meier analysis found that patients with high WDFY3-AS2 expression had longer OS than the low expression ones in the stratified cohorts. Additionally, GO and GSEA showed that gene sets correlated with WDFY3-AS2 expression were involved in regulation of synaptic transmission, glutamate receptor and TNF signaling pathway. CONCLUSION Our findings provided convincing evidence that WDFY3-AS2 is a novel valuable prognostic biomarker for diffuse glioma.
Collapse
Affiliation(s)
- Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
- No. 6, Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Ruichao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Kuanyu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Haoyu Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
154
|
Lv SY, Shan TD, Pan XT, Tian ZB, Liu XS, Liu FG, Sun XG, Xue HG, Li XH, Han Y, Sun LJ, Chen L, Zhang LY. The lncRNA ZEB1-AS1 sponges miR-181a-5p to promote colorectal cancer cell proliferation by regulating Wnt/β-catenin signaling. Cell Cycle 2018; 17:1245-1254. [PMID: 29886791 DOI: 10.1080/15384101.2018.1471317] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of the biological functions and underlying molecular mechanisms of colorectal cancer (CRC). However, the role of the lncRNA ZEB1-AS1 in CRC is not thoroughly understood. In this study, we found that ZEB1-AS1 was markedly upregulated in CRC. ZEB1-AS1 knockdown significantly suppressed CRC cell proliferation and induced apoptosis, whereas enhanced expression of ZEB1-AS1 had the opposite effect. Bioinformatics analysis identified miR-181a-5p as a candidate target of ZEB1-AS1. Moreover, we found an inverse correlation between ZEB1-AS1 and miR-181a-5p expression in CRC tissue. Inhibition of miR-181a-5p significantly upregulated ZEB1-AS1, whereas overexpression of miR-181a-5p had the opposite effect, suggesting that ZEB1-AS1 is negatively regulated by miR-181a-5p. Using luciferase reporter and RIP assays, we found that miR-181a-5p directly targets ZEB1-AS1. Importantly, ZEB1-AS1 may act as an endogenous 'sponge' to regulate miRNA targets by competing for miR-181a-5p binding. In summary, our findings provide the evidence supporting the role of ZEB1-AS1 as an oncogene in CRC. Our study also demonstrates that miR-181a-5p targets not only protein-coding genes but also the lncRNA ZEB1-AS1.
Collapse
Affiliation(s)
- Shao-Yan Lv
- a Department of Emergency Intensive Care Unit , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Ti-Dong Shan
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Xin-Ting Pan
- a Department of Emergency Intensive Care Unit , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Zi-Bin Tian
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Xi-Shuang Liu
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Fu-Guo Liu
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Xue-Guo Sun
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Hui-Guang Xue
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Xin-Hua Li
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Yue Han
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Li-Juan Sun
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Li Chen
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| | - Ling-Yun Zhang
- b Department of Gastroenterology , The Affiliated Hospital of Qingdao University, Qingdao University , Qingdao , People's Republic of China
| |
Collapse
|
155
|
Mo Y, He L, Lai Z, Wan Z, Chen Q, Pan S, Li L, Li D, Huang J, Xue F, Che S. LINC01287/miR-298/STAT3 feedback loop regulates growth and the epithelial-to-mesenchymal transition phenotype in hepatocellular carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:149. [PMID: 30001751 PMCID: PMC6044102 DOI: 10.1186/s13046-018-0831-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/06/2018] [Indexed: 01/17/2023]
Abstract
Background The long non-coding RNAs (lncRNAs) have participated in the promotion of hepatocellular carcinoma (HCC) initiation and progression. Nevertheless, the biological role and underlying mechanism of LINC01287 in HCC has never been reported. Methods The TGCA database was used to explore the abnormal expression of lncRNAs in HCC. Real-time PCR and in situ hybridization assays were used to examine the expression of LINC01287 in HCC tissues. The clinicopathological characteristics of HCC patients in relation to LINC01287 expression were then analyzed. Infection of cells with the si-LINC01287 lentiviral vector was performed to down-regulate LINC01287 expression in HCC cells. MTT and colony formation assays were performed to examine cell growth ability, and FACS analysis was performed to examine the cell cycle and apoptosis. A Boyden assay was used to examine HCC cell invasion ability, and RNA immunoprecipitation tested the interaction between LINC01287 and miR-298. A luciferase reporter assay was used to examine whether STAT3 was a direct target of miR-298, and chromatin immunoprecipitation (ChIP) was used to examine the potential binding of c-jun to the miR-298 promoter. Results We revealed that the expression of LINC01287 was increased in HCC cell lines, as well as tissues. Knockdown of LINC01287 decreased HCC cell growth and invasion both in vitro and in vivo. LINC01287 can negatively regulate miR-298 expression by acting as a ceRNA. miR-298 directly targeted STAT3 and inhibited its expression. LINC01287 exerted its function via the miR-298/STAT3 axis in HCC. Interestingly, STAT3 elevated LINC01287 expression via c-jun, which bound to the LINC01287 promoter. A feedback loop was also discovered between LINC01287 and the miR-298/STAT3 axis. Conclusions Our data indicated that LINC01287 played an oncogenic role in HCC growth and metastasis and that this lncRNA might serve as a novel molecular target for the treatment of HCC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0831-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yichao Mo
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Longguang He
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Zeru Lai
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Zhiheng Wan
- Department of General Surgery, The First Affiliated Hospital of BaoTou Medical University, Baotou, Inner Mongolia, China
| | - Qinshou Chen
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Sibo Pan
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Liangfu Li
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Dasheng Li
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Junwei Huang
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Fan Xue
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Siyao Che
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Gaozhou, China.
| |
Collapse
|
156
|
Hu X, Jiang J, Xu Q, Ni C, Yang L, Huang D. A Systematic Review of Long Noncoding RNAs in Hepatocellular Carcinoma: Molecular Mechanism and Clinical Implications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8126208. [PMID: 30105249 PMCID: PMC6076971 DOI: 10.1155/2018/8126208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) has the second highest mortality rate worldwide among all cancers. Previous studies have revealed the significant involvement of long noncoding RNAs (lncRNAs) in numerous human cancers including HCC. Both oncogenic and tumor repressive lncRNAs have been identified and implicated in the complex process of hepatocarcinogenesis. They can be further explored as prospective diagnostic, prognostic, and therapeutic markers for HCC. An in-depth understanding of lncRNAs' mechanism in HCC is therefore required to fully explore their potential role. In the current review, we will concentrate on the underlying function, molecular mechanisms, and potential clinical implications of lncRNA in HCC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiahong Jiang
- Department of Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310053, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
157
|
Peng L, Yuan XQ, Zhang CY, Peng JY, Zhang YQ, Pan X, Li GC. The emergence of long non-coding RNAs in hepatocellular carcinoma: an update. J Cancer 2018; 9:2549-2558. [PMID: 30026854 PMCID: PMC6036883 DOI: 10.7150/jca.24560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounting for roughly 90% of all primary liver neoplasms is the sixth most frequent neoplasm and the second prominent reason of tumor fatality worldwide. As regulators of diverse biological processes, long non-coding RNAs (lncRNAs) are involved in onset and development of neoplasms. With the continuous booming of well-featured lncRNAs in HCC from 2016 to now, we reviewed the newly-presented comprehension about the relationship between lncRNAs and HCC in this study. To be specific, we summarized the overview function and study tools of lncRNAs, elaborated the roles of lncRNAs in HCC, and sketched the molecule mechanisms of lncRNAs in HCC. In addition, the application of lncRNAs serving as biomarkers in early diagnosis and outcome prediction of HCC patients was highlighted.
Collapse
Affiliation(s)
- Li Peng
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China; Cancer Research Institute, Central South University, Changsha 410078, P.R. China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Xiao-Qing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Chao-Yang Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China; Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Jiang-Yun Peng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Ya-Qin Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China; Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Xi Pan
- Department of Oncology, the third Xiangya Hospital, Central South University, Changsha 410013, P.R. China
| | - Guan-Cheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China; Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| |
Collapse
|
158
|
Ni Y, Fang J, Zhu L, Jiang H, Liu Y, Miao R, Shao C, Shao S. The significant prognostic value of ZEB1-AS1 up-regulation in patients with cancer. J Cancer 2018; 9:2502-2509. [PMID: 30026848 PMCID: PMC6036884 DOI: 10.7150/jca.25264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023] Open
Abstract
Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) is a long non-coding RNA, which has found to unregulated in various kinds of cancer. This meta-analysis was conducted to demonstrate the association between ZEB1-AS1 expression levels and clinical outcome or prognosis of cancer patients.10 studies with 783 cancer patients were included in this meta-analysis by retrieving 5 databases (PubMed Central, EMBASE, Cochrane Library, Wiley Online Library and Medline).The result showed that overexpression of ZEB1-AS1 is significantly correlated with poor OS (Hazard ratio, HR=2.45, 95% confidence interval, CI: 1.89-3.16). ZEB1-AS1 expression levels were also associated with clinicopathological parameters including lymph node metastasis (Yes vs. No; OR=4.00, 95%CI: 2.23-7.17, P<0.00001), histologic differentiation (Moderate + poor vs. Well; OR=2.72, 95% CI: 1.69-4.37, p<0.0001), tumor metastasis and invasion (Yes vs. No; OR =2.52, 95%CI: 1.12-5.68, P=0.03) and TNM stage (III+IV vs. I+II; OR=2.76, 95 %CI 1.46-5.21, P=0.002). However, ZEB1-AS1 expression was not significantly associated with patients' gender (Male vs. Female; OR=1.20, 95% CI: 0.87-1.66; P=0.27).This meta-analysis indicated the potential value of ZEB1-AS1 as a biomarker for predicting a poor prognosis in patients with cancer.
Collapse
Affiliation(s)
- Ying Ni
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jian Fang
- Department of Transfusion, The first affiliated hospital of Anhui medical university, Hefei, Anhui 230000, China
| | - Linqi Zhu
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Hui Jiang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yun Liu
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Renjie Miao
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shihe Shao
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
159
|
Zuo XL, Cai J, Chen ZQ, Zhang Y, Liang LH, Wang JF, Wang JG, Wu J, Mao JD. The utility of long non-coding RNA ZEB1-AS1 as a prognostic biomarker in human solid tumors: A meta-analysis. Clin Chim Acta 2018; 485:14-20. [PMID: 29906419 DOI: 10.1016/j.cca.2018.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/24/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE This meta-analysis aims to assess the prognostic value of long non-coding RNA ZEB1-AS1 in human solid tumors. METHODS We searched the available databases up to January 2018. Pooled hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) were used to examine the prognostic impact of ZEB1-AS1 on patient survival. RESULTS Eight eligible studies with a total of 586 patients were enrolled. A significant association was observed between ZEB1-AS1 overexpression and poor overall survival (OS; HR = 2.195, 95% CI: 1.749-2.755) as well as unfavorable recurrence-free survival (pooled HR = 2.205, 95% CI: 1.486-3.270), and no heterogeneity was found across these studies (p = .962, I2 = 0%). Subsequent subgroup analyses showed that cancer type, sample size, follow up months, and HR estimation method did not alter the significant prognostic value of ZEB1-AS1. ZEB1-AS1 expression was indicated to be an independent prognostic factor for tumor OS (pooled HR = 2.177, 95% CI:1.545-3.069). Furthermore, we found that increased ZEB1-AS1 expression was significantly associated with tumor stage [III-IV vs. I-II: odds ratio (OR) = 1.644, 95% CI: 1.201-2.249] and lymph node metastasis (Positive vs. Negative: OR = 2.413, 95% CI: 1.504-3.873). CONCLUSION High expression level of ZEB1-AS1 was associated with unfavorable survival outcome for cancer patients, and ZEB1-AS1 could be used as a prognostic predictor for cancers.
Collapse
Affiliation(s)
- Xue-Liang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Juan Cai
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Zhi-Qiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, Jiangsu, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, Jiangsu, China
| | - Lin-Hu Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Jun-Feng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Jin-Guo Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Jian Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Jia-Ding Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China.
| |
Collapse
|
160
|
The lncRNA MIR4435-2HG promotes lung cancer progression by activating β-catenin signalling. J Mol Med (Berl) 2018; 96:753-764. [PMID: 29872866 DOI: 10.1007/s00109-018-1654-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
Recently, emerging evidence has suggested that long noncoding RNAs (lncRNAs) have crucial roles in cancer progression. Here, we demonstrated that the lncRNA MIR4435-2HG was highly expressed in lung cancer tissues and correlated with histological grades and lymph node metastasis. Phenotypic analysis indicated that MIR4435-2HG knockdown inhibited lung cancer cell proliferation and invasion in vitro and in vivo. Notably, MIR4435-2HG knockdown suppressed the EMT (epithelial-mesenchymal transition) process and cancer stem cell traits of lung cancer cells. Mechanistically, MIR4435-2HG knockdown decreased the transactivation of β-catenin. MIR4435-2HG interacted with β-catenin and thus prevented its degradation by the proteasome system. Our findings highlight the important roles and mechanisms of MIR4435-2HG in lung cancer progression. High expression of lncRNA MIR4435-2HG correlates with lung cancer progression MIR4435-2HG promotes lung cancer cells proliferation and invasion MIR4435-2HG knockdown suppresses the EMT process and cancer stem cell traits MIR4435-2HG knockdown inhibits the β-catenin signalling.
Collapse
|
161
|
Huang JL, Cao SW, Ou QS, Yang B, Zheng SH, Tang J, Chen J, Hu YW, Zheng L, Wang Q. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma. Mol Cancer 2018; 17:93. [PMID: 29803224 PMCID: PMC5970477 DOI: 10.1186/s12943-018-0841-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunctions of long non-coding RNA (lncRNAs) have been associated with the initiation and progression of hepatocellular carcinoma (HCC), but the clinicopathologic significance and potential role of lncRNA PTTG3P (pituitary tumor-transforming 3, pseudogene) in HCC remains largely unknown. Methods We compared the expression profiles of lncRNAs in 3 HCC tumor tissues and adjacent non-tumor tissues by microarrays. In situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to assess the level of PTTG3P and prognostic values of PTTG3P were assayed in two HCC cohorts (n = 46 and 90). Artificial modulation of PTTG3P (down- and over-expression) was performed to explore the role of PTTG3P in tumor growth and metastasis in vitro and in vivo. Involvement of PTTG1 (pituitary tumor-transforming 1), PI3K/AKT signaling and its downstream signals were validated by qRT-PCR and western blot. Results We found that PTTG3P was frequently up-regulated in HCC and its level was positively correlated to tumor size, TNM stage and poor survival of patients with HCC. Enforced expression of PTTG3P significantly promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, PTTG3P knockdown had opposite effects. Mechanistically, over-expression of PTTG3P up-regulated PTTG1, activated PI3K/AKT signaling and its downstream signals including cell cycle progression, cell apoptosis and epithelial-mesenchymal transition (EMT)-associated genes. Conclusions Our findings suggest that PTTG3P, a valuable marker of HCC prognosis, promotes tumor growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in HCC and might represent a potential target for gene-based therapy. Electronic supplementary material The online version of this article (10.1186/s12943-018-0841-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Lan Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Shun-Wang Cao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qi-Shui Ou
- Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Shi-Hao Zheng
- Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jing Tang
- Department of Internal Medicine-Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
162
|
Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer. Oncogene 2018; 37:5020-5036. [PMID: 29789713 DOI: 10.1038/s41388-018-0308-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 01/21/2023]
Abstract
Accumulating data indicate that long noncoding RNAs (lncRNAs) serve as important modulators in biological processes and are dysregulated in diverse tumors. The function of FOXD2-AS1 in gastric cancer (GC) progression and related biological mechanisms remain undefined. A comprehensive analysis identified that FOXD2-AS1 enrichment was upregulated markedly in GC and positively correlated with a large tumor size, a later pathologic stage, and a poor prognosis. Gene-set enrichment analysis (GSEA) in GEO datasets uncovered that cell cycle and DNA replication associated genes were enriched in patients with high FOXD2-AS1 expression. Loss of FOXD2-AS1 function inhibited cell growth via inhibiting the cell cycle in GC, whereas upregulation of FOXD2-AS1 expression promoted cancer progression. The enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins were found to serve as binding partners of FOXD2-AS1 and mediators of FOXD2-AS1 function. Mechanically, FOXD2-AS1 promoted GC tumorigenesis partly through EZH2 and LSD1 mediated EphB3 downregulation. The present results revealed that FOXD2-AS1 acted as a tumor inducer in GC partly through EphB3 inhibition by direct interaction with EZH2 and LSD1, and may prove to be a potential biomarker of carcinogenesis.
Collapse
|
163
|
Fan H, Lv P, Mu T, Zhao X, Liu Y, Feng Y, Lv J, Liu M, Tang H. LncRNA n335586/miR-924/CKMT1A axis contributes to cell migration and invasion in hepatocellular carcinoma cells. Cancer Lett 2018; 429:89-99. [PMID: 29753758 DOI: 10.1016/j.canlet.2018.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Emerging evidences indicate that long noncoding RNAs (lncRNAs) play a pivotal role in HCC development, but its contribution to HBV-related HCC remains largely unclear. Differentially expressed lncRNAs in HBV-related HCC tissues were identified by deep sequencing in our previous study. The function of lncRNA n335586, one of most up-regulated lncRNAs in HBV-related HCC, was characterized in the present study. We found that the expression of n335586 was significantly increased in HBV positive HCC tissues and cells and was induced by HBV in vitro. Function study indicated that lncRNA n335586 remarkably promoted HCC cells migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and metastasis in vivo. Further mechanistic studies showed lncRNA n335586 promoted HCC cells migration and invasion through facilitating the expression of its host gene CKMT1A by competitively binding miR-924. In conclusion, we demonstrated that the n335586/miR-924/CKMT1A axis contributes to HCC cell migration and invasion, which may be helpful for understanding of pathogenesis of HBV-related HCC.
Collapse
Affiliation(s)
- Hongxia Fan
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ping Lv
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Mu
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaopei Zhao
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yankun Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; The Cancer Institute, Tangshan People's Hospital, Tangshan, China
| | - Yujie Feng
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Lv
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
164
|
Mitobe Y, Takayama KI, Horie-Inoue K, Inoue S. Prostate cancer-associated lncRNAs. Cancer Lett 2018; 418:159-166. [DOI: 10.1016/j.canlet.2018.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Accepted: 01/06/2018] [Indexed: 01/01/2023]
|
165
|
Interplay between regulation by methylation and noncoding RNAs in cancers. Eur J Cancer Prev 2018; 27:418-424. [PMID: 29557800 DOI: 10.1097/cej.0000000000000433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancer is one of the most important health problems today; therefore, many researchers are focusing on exploring the mechanisms underlying its development and treatment. The field of cancer epigenetics has flourished in recent decades, and studies have shown that different epigenetic events, such as DNA methylation, histone modification, and noncoding RNA regulation, work together to influence cancer development and progression. In this short review, we summarize the interactions between methylation and noncoding RNAs that affect cancer development.
Collapse
|
166
|
Amaral PP, Leonardi T, Han N, Viré E, Gascoigne DK, Arias-Carrasco R, Büscher M, Pandolfini L, Zhang A, Pluchino S, Maracaja-Coutinho V, Nakaya HI, Hemberg M, Shiekhattar R, Enright AJ, Kouzarides T. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol 2018; 19:32. [PMID: 29540241 PMCID: PMC5853149 DOI: 10.1186/s13059-018-1405-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. RESULTS We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. CONCLUSIONS This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.
Collapse
Affiliation(s)
- Paulo P. Amaral
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Tommaso Leonardi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Namshik Han
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Present address: The Milner Therapeutics Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Emmanuelle Viré
- Present address: MRC Prion Unit, UCL Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG UK
| | - Dennis K. Gascoigne
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Raúl Arias-Carrasco
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Magdalena Büscher
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Luca Pandolfini
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Anda Zhang
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Miami, FL 33136 USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Vinicius Maracaja-Coutinho
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508 Brazil
| | - Martin Hemberg
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Miami, FL 33136 USA
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
167
|
Zheng L, Xu M, Xu J, Wu K, Fang Q, Liang Y, Zhou S, Cen D, Ji L, Han W, Cai X. ELF3 promotes epithelial-mesenchymal transition by protecting ZEB1 from miR-141-3p-mediated silencing in hepatocellular carcinoma. Cell Death Dis 2018; 9:387. [PMID: 29523781 PMCID: PMC5845010 DOI: 10.1038/s41419-018-0399-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancers and currently the third leading cause of cancer-related deaths, worldwide. Epithelial-mesenchymal transition (EMT) plays a major role in HCC progression. In this study, we first found that the expression of E74-like ETS transcription factor 3 (ELF3), a member of the E-twenty-six family of transcription factors, was increased in HCC tissues, and that ELF3 overexpression was associated with poor prognoses for HCC patients. Gain-of-function and loss-of-function studies revealed that increased ELF3 expression promoted HCC cell proliferation, migration, and invasion, while these processes were inhibited when ELF3 was silenced. Additionally, ELF3 was found to promote EMT, which we demonstrated through decreased E-cadherin expression and increased N-cadherin and fibronectin expression. ELF3 knockdown reversed EMT via repressing ZEB1 expression through miR-141-3p upregulation. Chromatin immunoprecipitation assays revealed that ELF3 bound to the miR-141-3p promoter, suppressing miR-141-3p expression. Taken together, our data show that ELF3 repressed E-cadherin and promoted EMT in HCC cells by suppressing miR-141-3p, thereby activating ZEB1. Thus, ELF3 may be a potential prognostic biomarker and/or therapeutic target for HCC.
Collapse
Affiliation(s)
- Longbo Zheng
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Ming Xu
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Junjie Xu
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Ke Wu
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Qian Fang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
| | - Yuelong Liang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Senjun Zhou
- Department of Colorectal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Dong Cen
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Lin Ji
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Weili Han
- Department of Lung Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
168
|
Increased expression of ZEB1-AS1 correlates with higher histopathological grade and promotes tumorigenesis in bladder cancer. Oncotarget 2018; 8:24202-24212. [PMID: 28445936 PMCID: PMC5421840 DOI: 10.18632/oncotarget.15527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022] Open
Abstract
Bladder cancer is one of the most common urinary cancers worldwide. Emerging studies indicated that long non-coding RNAs (lncRNAs) play crucial roles in cancer biology. In this study, we found that a novel lncRNA Zinc finger E-box-binding homeebox1 (ZEB1) antisense RNA (ZEB1-AS1) was overexpressed in bladder cancer tissues compared to paired noncancerous tissues. Moreover, the expression of ZEB1-AS1 was positive correlated with higher histological grade and TNM stage in bladder cancer. Furthermore, Loss-of-function experiments showed that down-regulation of ZEB1-AS1 not only can suppress cell growth but also can inhibit migration and induce apoptosis in bladder cancer cell lines 5637 and SW780. In conclusion, these findings indicated that ZEB1-AS1 plays regulatory roles in bladder cancer and it may become a novel molecular biomarker of prognosis and therapy in bladder cancer.
Collapse
|
169
|
Wang Q, Yang L, Hu X, Jiang Y, Hu Y, Liu Z, Liu J, Wen T, Ma Y, An G, Feng G. Upregulated NNT-AS1, a long noncoding RNA, contributes to proliferation and migration of colorectal cancer cells in vitro and in vivo. Oncotarget 2018; 8:3441-3453. [PMID: 27966450 PMCID: PMC5356894 DOI: 10.18632/oncotarget.13840] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
The expression patterns of the long non-coding RNA Nicotinamide Nucleotide Transhydrogenase-antisense RNA1 (NNT-AS1) have not been investigated in the context of cancer. In this study, we aim to investigate the NNT-AS1 expression level in colorectal cancer (CRC) patients and its potential roles in tumor biology. We measured the expression of NNT-AS1 in 70 paired tumor tissues and adjacent normal tissues. NNT-AS1 was expressed higher in tumor tissues than that in adjacent noncancer tissues, and higher expression of NNT-AS1 was significantly correlated with lymph node metastasis (Yes vs. No, P=0.004), TNM stage (I/II vs. III/IV, P=0.004), vessel invasion (Yes vs. No, P=0.002) and differentiation (well and moderate vs. poor, P=0.008). Multivariate analyses revealed that NNT-AS1 expression was an independent predictor of overall survival (P=0.0174) and progression free survival (P=0.0132) for CRC. Knockdown of NNT-AS1 using small interfering RNA (siRNA) significantly impaired CRC cell proliferation, migration and invasion in vitro and silencing NNT-AS1 also suppressed tumor growth and metastasis in nude mice. The western blot experiments revealed that silencing NNT-AS1 inhibited epithelial-mesenchymal transition (EMT) and inactivated MAPK/Erk signaling pathway in CRC cell lines. In conclusion, our studies implied that NNT-AS1 may involve in the development and progression of CRC via its regulation of cell proliferation, migration, and invasion by NNT-AS1-mediated activating of MAPK/Erk signaling pathway and EMT. NNT-AS1 may be a useful diagnostic and prognostic biomarker and a potential therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Qian Wang
- Department of Oncology, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lei Yang
- Medical Research Center, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Hu
- Department of Oncology, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuliang Jiang
- Department of Oncology, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yizhang Hu
- Department of Oncology, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhe Liu
- Department of Oncology, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian Liu
- Medical Research Center, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Tao Wen
- Medical Research Center, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yingmin Ma
- Department of Respiratory Medicine, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guangyu An
- Department of Oncology, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guosheng Feng
- Department of Oncology, Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
170
|
Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 2018; 15:137-151. [PMID: 29317776 DOI: 10.1038/nrgastro.2017.169] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading lethal malignancy worldwide. However, the molecular mechanisms underlying liver carcinogenesis remain poorly understood. Over the past two decades, overwhelming evidence has demonstrated the regulatory roles of different classes of non-coding RNAs (ncRNAs) in liver carcinogenesis related to a number of aetiologies, including HBV, HCV and NAFLD. Among the ncRNAs, microRNAs, which belong to a distinct class of small ncRNAs, have been proven to play a crucial role in the post-transcriptional regulation of gene expression. Deregulation of microRNAs has been broadly implicated in the inactivation of tumour-suppressor genes and activation of oncogenes in HCC. Modern high-throughput sequencing analyses have unprecedentedly identified a very large number of non-coding transcripts. Divergent groups of long ncRNAs have been implicated in liver carcinogenesis through interactions with DNA, RNA or proteins. Overall, ncRNAs represent a burgeoning field of cancer research, and we are only beginning to understand the importance and complicity of the ncRNAs in liver carcinogenesis. In this Review, we summarize the common deregulation of small and long ncRNAs in human HCC. We also comprehensively review the pathological roles of ncRNAs in liver carcinogenesis, epithelial-to-mesenchymal transition and HCC metastasis and discuss the potential applications of ncRNAs as diagnostic tools and therapeutic targets in human HCC.
Collapse
|
171
|
The Role of Long Non-Coding RNAs in Hepatocarcinogenesis. Int J Mol Sci 2018; 19:ijms19030682. [PMID: 29495592 PMCID: PMC5877543 DOI: 10.3390/ijms19030682] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Whole-transcriptome analyses have revealed that a large proportion of the human genome is transcribed in non-protein-coding transcripts, designated as long non-coding RNAs (lncRNAs). Rather than being “transcriptional noise”, increasing evidence indicates that lncRNAs are key players in the regulation of many biological processes, including transcription, post-translational modification and inhibition and chromatin remodeling. Indeed, lncRNAs are widely dysregulated in human cancers, including hepatocellular carcinoma (HCC). Functional studies are beginning to provide insights into the role of oncogenic and tumor suppressive lncRNAs in the regulation of cell proliferation and motility, as well as oncogenic and metastatic potential in HCC. A better understanding of the molecular mechanisms and the complex network of interactions in which lncRNAs are involved could reveal novel diagnostic and prognostic biomarkers. Crucially, it may provide novel therapeutic opportunities to add to the currently limited number of therapeutic options for HCC patients. In this review, we summarize the current status of the field, with a focus on the best characterized dysregulated lncRNAs in HCC.
Collapse
|
172
|
Elevated expression of eukaryotic translation initiation factor 3H is associated with proliferation, invasion and tumorigenicity in human hepatocellular carcinoma. Oncotarget 2018; 7:49888-49901. [PMID: 27340783 PMCID: PMC5226555 DOI: 10.18632/oncotarget.10222] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/04/2016] [Indexed: 01/05/2023] Open
Abstract
Aim We studied the role of eukaryotic translation initiation factor 3 subunit H (EIF3H) in hepatocellular carcinoma (HCC) progression. Results High EIF3H expression was observed in 50.23% patients. Upregulation of EIF3H is an independent predictor for greater rates of cancer recurrence and shorter overall survival in HCC patients. Knockdown of EIF3H expression in HCC cells promoted apoptosis, and inhibited cell growth, colony formation, migration, as well as xenograft growth. TGF-βand MAPK pathways are potentially targeted by EIF3H. Methods EIF3H mRNA expression was measured in HCC tissue samples and paired non-tumor samples (N=60) and results were validated in another dataset of 215 HCC patients. Then EIF3H expression and clinical outcomes were correlated. Malignant phenotypes were studied after EIF3H expression was knocked down with siRNA in HCC cell lines. EIF3H targeted pathways were identified by microarray analysis. Conclusion EIF3H is frequently upregulated and is an independent prognostic marker for HCC patients and EIF3H inhibition mitigates the malignant phenotype. Our data provide novel insight into the function of EIF3H in HCC progression, and suggest that EIF3H may be a potentially valuable biomarker for HCC.
Collapse
|
173
|
El Khodiry A, Afify M, El Tayebi HM. Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis. World J Gastroenterol 2018; 24:549-572. [PMID: 29434445 PMCID: PMC5799857 DOI: 10.3748/wjg.v24.i5.549] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs (lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren't as high as that of mRNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future.
Collapse
Affiliation(s)
- Aya El Khodiry
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Menna Afify
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Hend M El Tayebi
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
174
|
Zeng J, Cai X, Hao X, Huang F, He Z, Sun H, Lu Y, Lei J, Zeng W, Liu Y, Luo R. LncRNA FUNDC2P4 down-regulation promotes epithelial-mesenchymal transition by reducing E-cadherin expression in residual hepatocellular carcinoma after insufficient radiofrequency ablation. Int J Hyperthermia 2018; 34:802-811. [PMID: 29295626 DOI: 10.1080/02656736.2017.1422030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA) could induce epithelial-mesenchymal transition (EMT) in residual tumours, resulting in rapid and aggressive recurrence. However, the role of EMT-related Long noncoding RNAs (lncRNAs) in residual tumour progression remains unclear. METHODS Insufficient RFA was simulated in vitro by heating Huh7 cells in water bath at 47 °C, named as Huh7-H. Cell invasion, migration assays and wound healing assay were conducted for functional analysis. Cell proliferation was determined by CCK8 assay. Differential expression profile of EMT-related lncRNAs between Huh7-H and Huh7 was analysed by LncPath human EMT array, and validated by qRT-PCR. Gain/loss-of-function assays of selected lncRNA were conducted by over-expressing or silencing its expression. RESULTS Huh7-H presented characteristic EMT morphological changes. WB analysis showed significantly decreased E-cadherin in Huh7-H cells. Transwell assays indicated the abilities of Huh7-H cells in migration and invasion were evidently strengthened. A new lncRNA, FUNDC2P4, was identified by LncPath human EMT array to be significantly down-regulated in Huh7-H cells. In vitro studies showed overexpression of FUNDC2P4 inhibited proliferation, invasion and migration potential and up-regulated E-cadherin expression in SMMC-7721 cells, whereas silencing FUNDC2P4 promoted these potentials and down-regulated E-cadherin expression in Huh7 cells. CONCLUSIONS We explored that lncRNA FUNDC2P4 down-regulation promoted EMT leading to tumour proliferation, invasion and migration by reducing E-cadherin expression in residual HCC after insufficient RFA in vitro. These results suggest that FUNDC2P4 may have potentially therapeutic value for prevention and treatment of HCC recurrence after RFA in the future.
Collapse
Affiliation(s)
- Jiangzheng Zeng
- a Integrated Hospital of Traditional Chinese Medicine, Southern Medical University; Cancer Center, Southern Medical University , Guangzhou , China.,b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Xinrui Cai
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Xinbao Hao
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Fen Huang
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Zhihui He
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Huamao Sun
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Yanda Lu
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Junhua Lei
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Wangyuan Zeng
- c Department of Geriatrics , the First Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Yu Liu
- d Department of Breast and Thoracic Tumor Surgery , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Rongcheng Luo
- a Integrated Hospital of Traditional Chinese Medicine, Southern Medical University; Cancer Center, Southern Medical University , Guangzhou , China
| |
Collapse
|
175
|
Zhang J, Yuan Y, Wei Z, Ren J, Hou X, Yang D, Cai S, Chen C, Tan M, Chen GG, Wu K, He Y. Crosstalk between prognostic long noncoding RNAs and messenger RNAs as transcriptional hallmarks in gastric cancer. Epigenomics 2018; 10:433-443. [PMID: 29402138 DOI: 10.2217/epi-2017-0136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM Our study investigated the significance of the crosstalk between long noncoding RNAs (lncRNAs) and mRNAs in gastric cancer (GC). METHODS lncRNA and mRNA expression profiling data in 671 GC tumors and 77 nontumorous gastric tissues were retrieved from the gene expression omnibus database: GSE54129, GSE13911, GSE19826, GSE79973, GSE15459 and GSE66229. Differentially expressed analysis, RNA coexpression network construction, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were conducted in this study. RESULTS Using differentially expressed and prognostic lncRNAs or mRNAs in GC, we constructed the lncRNA-mRNA coexpression networks. This network involved with vital GO and KEGG pathways. CONCLUSION Our study reveals coexpressed lncRNAs and mRNAs as transcriptional hallmarks in GC patients which provide interesting information regarding the incidence and outcome of GC.
Collapse
Affiliation(s)
- Jian Zhang
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yujie Yuan
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zhewei Wei
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jianwei Ren
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.,Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, PR China
| | - Xun Hou
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Dongjie Yang
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Sirong Cai
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuangqi Chen
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Min Tan
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - George Gong Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.,Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, PR China
| | - Kaiming Wu
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yulong He
- Division of Gastrointestinal Surgery & Gastric Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
176
|
Long non-coding and coding RNAs characterization in Peripheral Blood Mononuclear Cells and Spinal Cord from Amyotrophic Lateral Sclerosis patients. Sci Rep 2018; 8:2378. [PMID: 29402919 PMCID: PMC5799454 DOI: 10.1038/s41598-018-20679-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Alteration in RNA metabolism, concerning both coding and long non-coding RNAs (lncRNAs), may play an important role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. In this work, we performed a whole transcriptome RNA-seq analysis to investigate the regulation of non-coding and coding RNAs in Sporadic ALS patients (SALS), mutated ALS patients (FUS, TARDBP and SOD1) and matched controls in Peripheral Blood Mononuclear Cells (PBMC). Selected transcripts were validated in spinal cord tissues. A total of 293 differentially expressed (DE) lncRNAs was found in SALS patients, whereas a limited amount of lncRNAs was deregulated in mutated patients. A total of 87 mRNAs was differentially expressed in SALS patients; affected genes showed an association with transcription regulation, immunity and apoptosis pathways. Taken together our data highlighted the importance of extending the knowledge on transcriptomic molecular alterations and on the significance of regulatory lncRNAs classes in the understanding of ALS disease. Our data brought the light on the importance of lncRNAs and mRNAs regulation in central and peripheral systems, offering starting points for new investigations about pathogenic mechanism involved in ALS disease.
Collapse
|
177
|
Guo Y, Hu Y, Hu M, He J, Li B. Long non-coding RNA ZEB2-AS1 promotes proliferation and inhibits apoptosis in human lung cancer cells. Oncol Lett 2018; 15:5220-5226. [PMID: 29552161 DOI: 10.3892/ol.2018.7918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
Lung cancer is among the leading causes of cancer-associated mortality worldwide, with a low 5-year survival rate of 16.1%. However, the underlying molecular mechanisms behind lung cancer tumorigenesis remain largely unknown. Long non-coding RNAs (lncRNAs) have been demonstrated to serve a function in the tumorigenesis of multiple types of cancer. The objective of the present study was to identify the function of a newly identified lncRNA zinc finger E-box-binding homeobox 2 antisense RNA 1 (ZEB2-AS1) in human lung cancer. Results demonstrated that the transcript level of ZEB2-AS1 in human lung cancer was markedly upregulated in vivo and in vitro. The knockdown of ZEB2-AS1 in A549 and NCI-H292 cells, and the overexpression of ZEB2-AS1 in H-125 and H1975 cells, altered colony formation and cell proliferative rate, as examined using colony formation and cell proliferation assays. Western blot analysis revealed that the knockdown of ZEB2-AS1 in A549 and NCI-H292 cells increased the protein levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3 and -9, upregulated the relative activities of caspase-3 and -9, and had no observable effect on caspase-8 activity. Similarly, the overexpression of ZEB2-AS1 in H-125 and H1975 cells resulted in decreased expression of caspase-3, caspase-9, Bcl-2 and Bax. The results identified the effects of lncRNA ZEB2-AS1 on lung cancer progression through promoting its proliferation and inhibiting cell apoptosis, indicating that ZEB2-AS1 may serve as a novel prognostic factor for the diagnosis and treatment of human lung cancer in the clinic.
Collapse
Affiliation(s)
- Yang Guo
- General Department Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Ying Hu
- General Department Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Mingming Hu
- General Department Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Jiabei He
- General Department Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Baolan Li
- General Department Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| |
Collapse
|
178
|
Huang MS, Zhu T, Li L, Xie P, Li X, Zhou HH, Liu ZQ. LncRNAs and CircRNAs from the same gene: Masterpieces of RNA splicing. Cancer Lett 2018; 415:49-57. [DOI: 10.1016/j.canlet.2017.11.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/16/2023]
|
179
|
Shen H, Wang Y, Shi W, Sun G, Hong L, Zhang Y. LncRNA SNHG5/miR-26a/SOX2 signal axis enhances proliferation of chondrocyte in osteoarthritis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:191-198. [PMID: 29409014 DOI: 10.1093/abbs/gmx141] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
Chondrocyte is involved in the destruction of joints in osteoarthritis (OA) patients. The aim of this study was to explore the expression level of small nucleolar RNA host gene 5 (SNHG5) and evaluate its function in chondrocyte. In our current study, the expression levels of SNHG5, miR-26a, and SOX2 in 17 pairs of articular cartilage tissues and in the non-OA group were assessed by real-time quantitative reverse-transcription polymerase chain reaction. Results showed that the levels of SNHG5 and SOX2 were significantly downregulated in OA tissues, while the level of miR-26a was upregulated. MTT, colony formation and cell transwell assays were performed to assess the function of SNHG5 on the cell viability, growth ability, and migration capacity in CHON-001 cells. It was found that SNHG5 could promote chondrocyte cell proliferation and migration. The relationship between SNHG5 and miR-26a was confirmed by RIP and the luciferase reporter assays. SOX2 was identified as a target gene of miR-26a by the luciferase reporter assay. Rescue assay was applied to verify the relationship among SNHG5, miR-26a, and SOX2. Our current study demonstrated that SNHG5 is involved in the mechanism of OA through functioning as a ceRNA to competitively sponge miR-26a, therefore, regulating the expression of SOX2.
Collapse
Affiliation(s)
- Huijun Shen
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yue Wang
- Department of Pharmacology and Toxicology Boonshoft School of Medicine, Wright State University, Fairborn OH 45435, USA
| | - Wudan Shi
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Guoxun Sun
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Luojia Hong
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ying Zhang
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
180
|
Xu S, Wang P, You Z, Meng H, Mu G, Bai X, Zhang G, Zhang J, Pang D. The long non-coding RNA EPB41L4A-AS2 inhibits tumor proliferation and is associated with favorable prognoses in breast cancer and other solid tumors. Oncotarget 2018; 7:20704-17. [PMID: 26980733 PMCID: PMC4991486 DOI: 10.18632/oncotarget.8007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 02/01/2023] Open
Abstract
EPB41L4A-AS2 is a novel long non-coding RNA of unknown function. In this study, we investigated the expression of EPB41L4A-AS2 in breast cancer tissues and evaluated its relationship with the clinicopathological features and prognosis of patients with breast cancer. This entailed conducting a meta-analysis and prognosis validation study using two cohorts from the Gene Expression Omnibus (GEO). In addition, we assessed EPB41L4A-AS2 expression and its relationship with the clinicopathological features of renal and lung cancers using the Cancer Genome Atlas cohort and a GEO dataset. We also clarified the role of EPB41L4A-AS2 expression in mediating cancer cell proliferation in breast, renal, and lung cancer cell lines transfected with an EPB41L4A-AS2 expression vector. We found that high EPB41L4A-AS2 expression is associated with favorable disease outcomes. Gene ontology enrichment analysis revealed that EPB41L4A-AS2 may be involved in processes associated with tumor biology. Finally, overexpression of EPB41L4A-AS2 inhibited tumor cell proliferation in breast, renal, and lung cancer cell lines. Our clinical and in vitro results suggest that EPB41L4A-AS2 inhibits solid tumor formation and that evaluation of this long non-coding RNA may have prognostic value in the clinical management of such malignancies.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zilong You
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guannan Mu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianan Bai
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangwen Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinfeng Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
181
|
Li D, Yang W, Zhang J, Yang JY, Guan R, Yang MQ. Transcription Factor and lncRNA Regulatory Networks Identify Key Elements in Lung Adenocarcinoma. Genes (Basel) 2018; 9:E12. [PMID: 29303984 PMCID: PMC5793165 DOI: 10.3390/genes9010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the second most commonly diagnosed carcinoma and is the leading cause of cancer death. Although significant progress has been made towards its understanding and treatment, unraveling the complexities of lung cancer is still hampered by a lack of comprehensive knowledge on the mechanisms underlying the disease. High-throughput and multidimensional genomic data have shed new light on cancer biology. In this study, we developed a network-based approach integrating somatic mutations, the transcriptome, DNA methylation, and protein-DNA interactions to reveal the key regulators in lung adenocarcinoma (LUAD). By combining Bayesian network analysis with tissue-specific transcription factor (TF) and targeted gene interactions, we inferred 15 disease-related core regulatory networks in co-expression gene modules associated with LUAD. Through target gene set enrichment analysis, we identified a set of key TFs, including known cancer genes that potentially regulate the disease networks. These TFs were significantly enriched in multiple cancer-related pathways. Specifically, our results suggest that hepatitis viruses may contribute to lung carcinogenesis, highlighting the need for further investigations into the roles that viruses play in treating lung cancer. Additionally, 13 putative regulatory long non-coding RNAs (lncRNAs), including three that are known to be associated with lung cancer, and nine novel lncRNAs were revealed by our study. These lncRNAs and their target genes exhibited high interaction potentials and demonstrated significant expression correlations between normal lung and LUAD tissues. We further extended our study to include 16 solid-tissue tumor types and determined that the majority of these lncRNAs have putative regulatory roles in multiple cancers, with a few showing lung-cancer specific regulations. Our study provides a comprehensive investigation of transcription factor and lncRNA regulation in the context of LUAD regulatory networks and yields new insights into the regulatory mechanisms underlying LUAD. The novel key regulatory elements discovered by our research offer new targets for rational drug design and accompanying therapeutic strategies.
Collapse
Affiliation(s)
- Dan Li
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - William Yang
- School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| | - Jialing Zhang
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | - Jack Y Yang
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - Renchu Guan
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - Mary Qu Yang
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| |
Collapse
|
182
|
Shi X, Ma C, Zhu Q, Yuan D, Sun M, Gu X, Wu G, Lv T, Song Y. Upregulation of long intergenic noncoding RNA 00673 promotes tumor proliferation via LSD1 interaction and repression of NCALD in non-small-cell lung cancer. Oncotarget 2018; 7:25558-75. [PMID: 27027352 PMCID: PMC5041926 DOI: 10.18632/oncotarget.8338] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in diagnostics and treatment of non-small cell lung cancer (NSCLC), it remains the leading causes of cancer-related mortality worldwide. In more recent years, mutiple lines of evidence have highlighted long noncoding RNAs (lncRNAs) serve as novel class of regulators of cancer biological processes, including proliferation, apoptosis and metastasis. LncRNAs serve as a novel class of regulators of cancer biological processes in cancer, but little is known of their expression and potential functions in NSCLC. We identified an oncogene, linc00673, whose expression level was upregulated by bioinformatics analyses and qRT-PCR analyses in NSCLC. The effects of linc00673 on tumor progression were investigated in vitro and in vivo. Linc00673 knockdown significantly inhibited cell proliferation and colony-forming ability, and suppressed S-phase entry in vitro and shRNA linc00673 mediated knockdown significantly inhibit tumor growth in vivo, meanwhile, linc00673 overexpression increased tumor cell growth. Analysis of RNAseq data revealed linc00673 could modulate the transcription of a large amount of genes including oncogene and tumor suppressor gene, so we investigated the role and regulatory mechanism of linc00673 in NSCLC proliferation. Further mechanistic analyses indicated that the oncogenic activity of linc00673 is partially attributable to its repression of NCALD through association with the epigenetic repressor LSD1. Taken together, these findings suggested that linc00673 could play crucial role in NSCLC progression and might be a potential therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Xuefei Shi
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, China
| | - Chenhui Ma
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xiaoling Gu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guannan Wu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
183
|
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are involved in diverse biological processes and play an essential role in various human diseases. The number of lncRNAs identified has increased rapidly in recent years owing to RNA sequencing (RNA-Seq) technology. However, presently, most lncRNAs are not well characterized, and their regulatory mechanisms remain elusive. Many lncRNAs show poor evolutionary conservation. Thus, the lncRNAs that are conserved across species can provide insight into their critical functional roles. RESULTS Here, we performed an orthologous analysis of lncRNAs in human and rat brain tissues. Over two billion RNA-Seq reads generated from 80 human and 66 rat brain tissue samples were analyzed. Our analysis revealed a total of 351 conserved human lncRNAs corresponding to 646 rat lncRNAs. Among these human lncRNAs, 140 were newly identified by our study, and 246 were present in known lncRNA databases; however, the majority of the lncRNAs that have been identified are not yet functionally annotated. We constructed co-expression networks based on the expression profiles of conserved human lncRNAs and protein-coding genes, and produced 79 co-expression modules. Gene ontology (GO) analysis of the co-expression modules suggested that the conserved lncRNAs were involved in various functions such as brain development (P-value = 1.12E-2), nervous system development (P-value = 1.26E-3), and cerebral cortex development (P-value = 1.31E-2). We further predicted the interactions between lncRNAs and protein-coding genes to better understand the regulatory mechanisms of lncRNAs. Moreover, we investigated the expression patterns of the conserved lncRNAs at different time points during rat brain growth. We found that the expression levels of three out of four such lncRNA genes continuously increased from week 2 to week 104, which is consistent with our functional annotation. CONCLUSION Our orthologous analysis of lncRNAs in human and rat brain tissues revealed a set of conserved lncRNAs. Further expression analysis provided the functional annotation of these lncRNAs in humans and rats. Our results offer new targets for developing better experimental designs to investigate regulatory molecular mechanisms of lncRNAs and the roles lncRNAs play in brain development. Additionally, our method could be generalized to study and characterize lncRNAs conserved in other species and tissue types.
Collapse
Affiliation(s)
- Dan Li
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Avenue, Little Rock, AR, 72204, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Avenue, Little Rock, AR, 72204, USA.
| |
Collapse
|
184
|
Li J, Li Z, Leng K, Xu Y, Ji D, Huang L, Cui Y, Jiang X. ZEB1-AS1: A crucial cancer-related long non-coding RNA. Cell Prolif 2017; 51. [PMID: 29226522 DOI: 10.1111/cpr.12423] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) recently emerge as a novel class of non-coding RNAs (ncRNAs) with larger than 200 nucleotides in length. Due to lack an obvious open reading frame, lncRNAs have no or limited protein-coding potential. To date, accumulating evidence indicates the vital regulatory function of lncRNAs in pathological processes of human diseases, especially in carcinogenesis and development. Deregulation of lncRNAs not only alters cellular biological behavior, such as proliferation, migration and invasion, but also represents the poor clinical outcomes. Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1), an outstanding cancer-related lncRNA, is identified as an oncogenic regulator in diverse malignancies. Dysregulation of ZEB1-AS1 has been demonstrated to exhibit a pivotal role in tumorigenesis and progression, suggesting its potential clinical value as a promising biomarker or therapeutic target for cancers. In this review, we make a summary on the current findings regarding the biological functions, underlying mechanisms and clinical significance of ZEB1-AS1 in cancer progression.
Collapse
Affiliation(s)
- Jinglin Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenglong Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaiming Leng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lining Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
185
|
Zhang LL, Zhang LF, Guo XH, Zhang DZ, Yang F, Fan YY. Downregulation of miR-335-5p by Long Noncoding RNA ZEB1-AS1 in Gastric Cancer Promotes Tumor Proliferation and Invasion. DNA Cell Biol 2017; 37:46-52. [PMID: 29215918 DOI: 10.1089/dna.2017.3926] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have emerged as new gene regulators and prognostic biomarkers in several cancers, including gastric cancer (GC). In this study, we investigate the role of lncRNA ZEB1 antisense1 (ZEB1-AS1) on GC progression. In the present study, we found that ZEB1-AS1 expression was upregulated in GC tissues and cell lines. High ZEB1-AS1 expression was significantly correlated with advanced TNM stage, lymph node metastasis, and poor overall survival in GC patients. ZEB1-AS1 suppression reduced GC cell proliferation and invasion in vitro. Tumor formation assay in nude mice showed that ZEB1-AS1 inhibition suppressed GC cell growth. Quantitative real-time PCR showed that miR-335-5p expression was downregulated and negatively correlated with ZEB1-AS1 expression in GC tissues. And miR-335-5p expression was directly regulated by ZEB1-AS1. Furthermore, we found that inhibition of miR-335-5p abrogated the suppression of proliferation and invasion of GC cells induced by ZEB1-AS1 depletion. Collectively, ZEB1-AS1 is critical for the proliferation and invasion of GC cells by regulating miR-335-5p. Our findings indicated that ZEB1-AS1 might offer potential novel therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Li-Li Zhang
- 1 Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University , Weihui, Henan, China
| | - Lan-Fang Zhang
- 1 Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University , Weihui, Henan, China
| | - Xiao-He Guo
- 1 Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University , Weihui, Henan, China
| | - De-Zhong Zhang
- 2 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical University , Weihui, Henan, China
| | - Fang Yang
- 1 Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University , Weihui, Henan, China
| | - Ying-Ying Fan
- 1 Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University , Weihui, Henan, China
| |
Collapse
|
186
|
Long noncoding RNAs in the initiation, progression, and metastasis of hepatocellular carcinoma. Noncoding RNA Res 2017; 2:129-136. [PMID: 30159431 PMCID: PMC6084840 DOI: 10.1016/j.ncrna.2017.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Despite awareness of risk factors for the development of HCC and advances in the diagnosis and clinical management of the disease, the molecular mechanisms underlying hepatocarcinogenesis remain poorly understood. Recent experimental studies provide strong evidence that long noncoding RNAs (lncRNAs), non-protein-coding transcripts with lengths >200 basepairs, contribute to the pathogenesis of numerous human diseases. Over the past decade, a role for lncRNAs in the initiation, progression, and metastasis of HCC has likewise emerged and developed into a highly active area of research. Although many lncRNAs appear to be dysregulated in HCC, extensive functional characterization has been performed on only a small proportion of these candidates to date. This review summarizes select lncRNAs that have been shown to wield functional relevance in the initiation, progression, or metastasis of HCC, focusing on the specific mechanisms by which lncRNA effects might be linked to clinical manifestations of the disease. In addition, an overview of circulating lncRNAs that have been identified as potential biomarkers for the diagnosis and prognosis of HCC is provided.
Collapse
|
187
|
Long noncoding RNA ZEB1-AS1 expression predicts progression and poor prognosis of colorectal cancer. Int J Biol Markers 2017; 32:e428-e433. [PMID: 28967064 DOI: 10.5301/ijbm.5000303] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND ZEB1-AS1 acts as an oncogene in hepatocellular carcinoma, accelerating tumor growth and promoting metastasis. However, its roles in colorectal cancer (CRC) remain unclear. METHODS In this study, we determined the expression of ZEB1-AS1 in CRC tissues by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we investigated the relationship between various clinicopathological features of CRC patients and ZEB1-AS1 expression, and evaluated the diagnostic and prognostic value of ZEB1-AS1 in CRC. RESULTS We found that ZEB1-AS1 expression was significantly higher in CRC tissues than in adjacent normal colorectal tissues. Moreover, its expression was significantly correlated with tumor size, differentiation degree, TNM grade, metastasis, depth of invasion and Dukes' classification, but not with sex, age, location and organization. In addition, at the optimal cutoff value of 2.340, the values of diagnostic sensitivity and specificity amounted to 63.0% and 90.7%, respectively, with an area under the curve (AUC) of 0.846 (95% CI, 0.797-0.895). Finally, CRC patients of the high ZEB1-AS1 expression group had a poorer prognosis and a significantly lower survival rate than those of the low expression group, and Cox regression analysis indicated that ZEB1-AS1 expression and metastasis were independent predictors of poor prognosis. CONCLUSIONS Our data suggest that ZEB1-AS1 has no obvious early diagnostic value, but it may be utilized as a new prognostic biomarker for CRC.
Collapse
|
188
|
Arunkumar G, Deva Magendhra Rao AK, Manikandan M, Prasanna Srinivasa Rao H, Subbiah S, Ilangovan R, Murugan AK, Munirajan AK. Dysregulation of miR-200 family microRNAs and epithelial-mesenchymal transition markers in oral squamous cell carcinoma. Oncol Lett 2017; 15:649-657. [PMID: 29375721 DOI: 10.3892/ol.2017.7296] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to function as a major component in the cellular signaling circuit, which regulates epithelial-mesenchymal transition (EMT). Dysregulation of the microRNA-200 (miR-200) family and EMT-associated genes enables tumor metastasis and resistance to therapy. The present study profiled miR-200 family members miR-200a, miR-200b, miR-200c, miR-141 and miR-429, and also several EMT-regulatory genes including zinc finger E-box-binding homeobox (ZEB)1, ZEB2, epithelial cadherin and vimentin in 40 oral primary tumors in order to understand their role(s) in oral squamous cell carcinoma (OSCC). The reverse transcription-quantitative polymerase chain reaction was used to analyze each sample. Results demonstrated a significant downregulation of miR-200 family members in tumors with a history of tobacco chewing/smoking (P<0.0006, P=0.0467, P=0.0014, P=0.0087 and P=0.0230, respectively) and undifferentiated pathology (miR-200a, P=0.0067; miR-200c, P=0.0248). EMT markers ZEB2 (P=0.0451) and vimentin (P=0.0071) were significantly upregulated in the oral tumors. Furthermore, ZEB2 antisense RNA1 was overexpressed in 50% of OSCC samples (P=0.0075). EMT-regulatory genes did not exhibit any association with clinical outcome. The present study also analyzed the expression of EMT-regulatory genes in 523 head and neck squamous cell carcinoma (HNSCC) samples from The Cancer Genome Atlas (TCGA) database, and the association with treatment outcome. Analysis of TCGA datasets also demonstrated no significant association in the expression of EMT markers with disease recurrence and treatment outcome. The results of the present study revealed dysregulation of miR-200 family miRNAs and EMT-regulatory genes in OSCC without any significant effect on treatment outcome.
Collapse
Affiliation(s)
- Ganesan Arunkumar
- Department of Genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India
| | | | - Mayakannan Manikandan
- Department of Genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India
| | | | - Shanmugam Subbiah
- Center for Oncology, Royapettah Government Hospital and Kilpauk Medical College, Royapettah, Chennai 600014, India
| | - Ramachandran Ilangovan
- Department of Endocrinology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India
| | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India
| |
Collapse
|
189
|
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H, Yan GR. A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol Cell 2017; 68:171-184.e6. [PMID: 28985503 DOI: 10.1016/j.molcel.2017.09.015] [Citation(s) in RCA: 501] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 09/12/2017] [Indexed: 12/29/2022]
Abstract
A substantial fraction of eukaryotic transcripts are considered long non-coding RNAs (lncRNAs), which regulate various hallmarks of cancer. Here, we discovered that the lncRNA HOXB-AS3 encodes a conserved 53-aa peptide. The HOXB-AS3 peptide, not lncRNA, suppresses colon cancer (CRC) growth. Mechanistically, the HOXB-AS3 peptide competitively binds to the ariginine residues in RGG motif of hnRNP A1 and antagonizes the hnRNP A1-mediated regulation of pyruvate kinase M (PKM) splicing by blocking the binding of the ariginine residues in RGG motif of hnRNP A1 to the sequences flanking PKM exon 9, ensuring the formation of lower PKM2 and suppressing glucose metabolism reprogramming. CRC patients with low levels of HOXB-AS3 peptide have poorer prognoses. Our study indicates that the loss of HOXB-AS3 peptide is a critical oncogenic event in CRC metabolic reprogramming. Our findings uncover a complex regulatory mechanism of cancer metabolism reprogramming orchestrated by a peptide encoded by an lncRNA.
Collapse
Affiliation(s)
- Jin-Zhou Huang
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Institutes of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Min Chen
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - De Chen
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Cheng Gao
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Song Zhu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongyang Huang
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Min Hu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Huifang Zhu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
190
|
Qiu L, Tang Q, Li G, Chen K. Long non-coding RNAs as biomarkers and therapeutic targets: Recent insights into hepatocellular carcinoma. Life Sci 2017; 191:273-282. [PMID: 28987633 DOI: 10.1016/j.lfs.2017.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer worldwide, and the survival rates of patients with HCC remains quite low after 5years. Long non-coding RNAs (LncRNAs) are a novel class of non-coding RNAs that are capable of regulating gene expression at various levels. Recent works have demonstrated that lncRNAs are often dysregulated in HCC, and the dysregulation of some of these lncRNAs are associated with the clinicopathological features of HCC. They regulate cell proliferation, apoptosis, autophagy, Epithelial-Mesenchymal Transition (EMT), invasion and metastasis of HCC by modulating gene expression and cancer-related signaling pathways, and thus contribute to the onset and progression of HCC. In this review, we provide a comprehensive survey of dysregulated lncRNAs in HCC, with particular focus on the functions and regulatory mechanisms of several essential and important lncRNAs, and discuss their potential clinical application as early diagnostic and/or prognostic biomarkers or therapeutic targets for HCC.
Collapse
Affiliation(s)
- Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
191
|
Li Y, Wen X, Wang L, Sun X, Ma H, Fu Z, Li L. LncRNA ZEB1-AS1 predicts unfavorable prognosis in gastric cancer. Surg Oncol 2017; 26:527-534. [PMID: 29113674 DOI: 10.1016/j.suronc.2017.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVES LncRNA ZEB1 Antisense 1 (ZEB1-AS1) has been suggested to be an oncogenic role in human hepatocellular carcinoma, osteosarcoma, glioma and esophageal carcinoma progression. However, the clinical significance and biological function of ZEB1-AS1 in gastric cancer is poorly understood. METHODS Levels of ZEB1-AS1 expression in gastric cancer tissues and cell lines were detected by qRT-PCR. Loss-of-function and gain-of-function studies were conducted to explore the biological function of ZEB1-AS1 in gastric cancer cells migration, invasion and EMT process. Rescued-function studies were performed to explore the association between ZEB1-AS1 and ZEB1 in gastric cancer cells migration, invasion and EMT process. RESULTS ZEB1-AS1 was overexpressed in gastric cancer tissues and cell lines, and correlated with malignant status and prognosis in gastric cancer patients. ZEB1-AS1 regulated gastric cancer cells migration, invasion and EMT process. ZEB1-AS1 positively regulated ZEB1 expression in gastric cancer cells, and had a strongly positive correlation with ZEB1 expression in gastric cancer tissues. Rescued-function studies showed ZEB1 was critical for ZEB1-AS1 induced gastric cancer cells migration, invasion and EMT process. CONCLUSIONS ZEB1-AS1 served as oncogenic roles in the regulation of gastric cancer cells migration, invasion and EMT process through modulating ZEB1.
Collapse
Affiliation(s)
- Yanliang Li
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China; Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO.324 Jingwuweiqi Road, Jinan City 250021, Shandong Province, PR China
| | - Xiaowen Wen
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China
| | - Longgang Wang
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China
| | - Xianjun Sun
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China
| | - Heng Ma
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China
| | - Zheng Fu
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, NO.440 Jiyan Road, Jinan City 250117, Shandong Province, PR China.
| | - Leping Li
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO.324 Jingwuweiqi Road, Jinan City 250021, Shandong Province, PR China.
| |
Collapse
|
192
|
Skrypek N, Goossens S, De Smedt E, Vandamme N, Berx G. Epithelial-to-Mesenchymal Transition: Epigenetic Reprogramming Driving Cellular Plasticity. Trends Genet 2017; 33:943-959. [PMID: 28919019 DOI: 10.1016/j.tig.2017.08.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells lose their junctions and polarity to gain a motile mesenchymal phenotype. EMT is essential during embryogenesis and adult physiological processes like wound healing, but is aberrantly activated in pathological conditions like fibrosis and cancer. A series of transcription factors (EMT-inducing transcription factor; EMT-TF) regulate the induction of EMT by repressing the transcription of epithelial genes while activating mesenchymal genes through mechanisms still debated. The nuclear interaction of EMT-TFs with larger protein complexes involved in epigenetic genome modulation has attracted recent attention to explain functions of EMT-TFs during reprogramming and cellular differentiation. In this review, we discuss recent advances in understanding the interplay between epigenetic regulators and EMT transcription factors and how these findings could be used to establish new therapeutic approaches to tackle EMT-related diseases.
Collapse
Affiliation(s)
- Nicolas Skrypek
- Molecular and Cellular Oncology Laboratory, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; These authors contributed equally
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Centre for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium; These authors contributed equally
| | - Eva De Smedt
- Molecular and Cellular Oncology Laboratory, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Inflammation Research Center (IRC), VIB, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
193
|
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67:603-618. [PMID: 28438689 DOI: 10.1016/j.jhep.2017.04.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The majority of the human genome is not translated into proteins but can be transcribed into RNA. Even though the resulting non-coding RNAs (ncRNAs) do not encode for proteins, they contribute to diseases such as cancer. Here, we review examples of the functions of ncRNAs in liver cancer and their potential use for the detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Akiko Matsuda
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
194
|
Wang Q, Du X, Yang M, Xiao S, Cao J, Song J, Wang L. LncRNA ZEB1-AS1 contributes to STAT3 activation by associating with IL-11 in B-lymphoblastic leukemia. Biotechnol Lett 2017; 39:1801-1810. [DOI: 10.1007/s10529-017-2421-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
|
195
|
Boyle M, Mann J. WITHDRAWN: Epigenetics in Chronic Liver Disease. J Hepatol 2017:S0168-8278(17)32255-9. [PMID: 28855099 DOI: 10.1016/j.jhep.2017.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Marie Boyle
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
196
|
Ye B, Hu B, Zheng Z, Zheng R, Shi Y. The long non-coding RNA AK023948 enhances tumor progression in hepatocellular carcinoma. Exp Ther Med 2017; 14:3658-3664. [PMID: 29042961 PMCID: PMC5639403 DOI: 10.3892/etm.2017.5019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The long non-coding RNAs (lncRNAs) have been demonstrated to play pivotal roles in a broad range of processes including tumor biology. However, the exact contributions of lncRNAs to hepatocellular carcinoma (HCC) remain poorly defined. In current study, we have unraveled a novel function of AK023948 in HCC. We found that AK023948 was substantially upregulated in tumor tissues. Meanwhile, higher AK023948 expression correlated with poor survival. Upregulation of AK023948 expression can promote HepG2 and Hep3B proliferation and invasion in in vitro experiments. Furthermore, AK023948 also decreased tumor growth in vivo. The tumorigenic role of AK023948 was partially ascribed to PI3K/Akt/mTOR signaling and AK023948 knockdown decreased pathway activation and tumor growth. These data collectively suggest an oncogenic role for AK023948 and may provide potential insight into therapeutic intervention.
Collapse
Affiliation(s)
- Bailiang Ye
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bingren Hu
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhihai Zheng
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ru Zheng
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yixiong Shi
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
197
|
Su W, Xu M, Chen X, Chen N, Gong J, Nie L, Li L, Li X, Zhang M, Zhou Q. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol Cancer 2017; 16:142. [PMID: 28830551 PMCID: PMC5568204 DOI: 10.1186/s12943-017-0711-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023] Open
Abstract
Background Emerging studies show that long noncoding RNAs (lncRNAs) play important roles in carcinogenesis and cancer progression. The lncRNA ZEB1 antisense 1 (ZEB1-AS1) derives from the promoter region of ZEB1 and we still know little about its expressions, roles and mechanisms. Methods RACE was used to obtain the sequence of ZEB1-AS1. RNA interference was used to decrease ZEB1-AS1 expression. Adenovirus expression vector was used to increase ZEB1-AS1 expression. CHIP and RIP were used to detect the epigenetic mechanisms by which ZEB1-AS1 regulated ZEB1. CCK8 assay, wound healing assay and transwell assay were used to measure proliferation and migration of prostate cancer cells. Results In this study, in prostate cancer cells, we found that RNAi-mediated downregulation of ZEB1-AS1 induced significant ZEB1 inhibition while artificial overexpression of ZEB1-AS1 rescued ZEB1 expression, which means that ZEB1-AS1 promotes ZEB1 expression. Also, ZEB1-AS1 indirectly inhibited miR200c, the well-known target of ZEB1, and upregulated miR200c’s target BMI1. Mechanistically, ZEB1-AS1 bound and recruited histone methyltransferase MLL1 to the promoter region of ZEB1, induced H3K4me3 modification therein, and activated ZEB1 transcription. Biologically, ZEB1-AS1 promoted proliferation and migration of prostate cancer cells. Conclusions Collectively, ZEB1-AS1 functions as an oncogene in prostate cancer via epigenetically activating ZEB1 and indirectly regulating downstream molecules of ZEB1.
Collapse
Affiliation(s)
- Wenjing Su
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China.,Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, China
| | - Miao Xu
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China
| | - Xueqin Chen
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China
| | - Ni Chen
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China
| | - Jing Gong
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China
| | - Ling Nie
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China
| | - Ling Li
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China
| | - Xinglan Li
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China
| | - Mengni Zhang
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China
| | - Qiao Zhou
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 GuoXueXiang, Chengdu, 610041, China.
| |
Collapse
|
198
|
Zhang SG, Li YF, Zhao NN, Lai CC, Cheng SJ, Yan J, Zhang P, Wang Z, Wang XL, Yang PH. Decreased expression of long non-coding RNA LOC728290 in human hepatocellular carcinoma. Oncol Lett 2017; 14:4551-4556. [PMID: 29085452 PMCID: PMC5649533 DOI: 10.3892/ol.2017.6776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality worldwide. Despite progress in the diagnosis and treatment of HCC, prognosis remains unfavorable. Long non-coding RNAs (lncRNAs) are emerging as important factors in tumorigenesis and cancer progression; however, the underlying molecular mechanisms and clinical significance of lncRNAs in HCC remain largely unknown. The present study examined the expression pattern and clinical significance of a novel lncRNA, LOC728290, in HCC. Expression of LOC728290 was markedly decreased in HCC tissues compared with adjacent non-tumor liver tissues, as detected using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The area under the receiver operating characteristic curve for LOC728290 was 0.728. The expression of LOC728290 was associated with the level of α-fetoprotein and microvascular invasion. Furthermore, patients with low LOC728290 expression exhibited decreased recurrence-free survival times (P<0.05) compared with those with high LOC728290 expression. The results of the present study indicated that downregulation of LOC728290 in patients with HCC may be a powerful tumor biomarker, with potential clinical applications in prognosis as well as a therapeutic target.
Collapse
Affiliation(s)
- Shao-Geng Zhang
- Department of Hepatobiliary, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Yu-Feng Li
- Institute of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Na-Na Zhao
- Department of Hepatobiliary, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Cheng-Cai Lai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Si-Jie Cheng
- Department of Hepatobiliary, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Jin Yan
- Department of Hepatobiliary, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Peirui Zhang
- Department of Hepatobiliary, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Zhaohai Wang
- Department of Hepatobiliary, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Xi-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Peng-Hui Yang
- Department of Hepatobiliary, 302 Military Hospital of China, Beijing 100039, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| |
Collapse
|
199
|
Cao MX, Jiang YP, Tang YL, Liang XH. The crosstalk between lncRNA and microRNA in cancer metastasis: orchestrating the epithelial-mesenchymal plasticity. Oncotarget 2017; 8:12472-12483. [PMID: 27992370 PMCID: PMC5355358 DOI: 10.18632/oncotarget.13957] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023] Open
Abstract
Noncoding RNAs (ncRNAs) have been demonstrated to closely associate with gene regulation and encompass the well-known microRNAs (miRNAs), as well as the most recently acknowledged long noncoding RNAs (lncRNAs). Current evidence indicates that lncRNAs can interact with miRNAs and these interactions play crucial roles in cancer metastasis, through regulating critical events especially the epithelial-mesenchymal transition (EMT). This review summarizes the types of lncRNA-miRNA crosstalk identified to-date and discusses their influence on the epithelial-mesenchymal plasticity and clinical metastatic implication.
Collapse
Affiliation(s)
- Ming-Xin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China
| | - Ya-Ping Jiang
- Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao,Shandong, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China
| |
Collapse
|
200
|
Liu C, Pan C, Cai Y, Wang H. Interplay Between Long Noncoding RNA ZEB1-AS1 and miR-200s Regulates Osteosarcoma Cell Proliferation and Migration. J Cell Biochem 2017; 118:2250-2260. [PMID: 28075045 DOI: 10.1002/jcb.25879] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
In our previous study, we found long noncoding RNA ZEB1-AS1 is upregulated and functions as an oncogene in osteosarcoma. MiR-200 family (miR-200s) functions as tumor suppressor via directly targeting ZEB1 in various cancers. In this study, we further investigate the potential interplay between ZEB1-AS1, miR-200s, and ZEB1 in osteosarcoma. Our results showed that ZEB1-AS1 functions as a molecular sponge for miR-200s and relieves the inhibition of ZEB1 caused by miR-200s. ZEB1-AS1 and miR-200s reciprocally negatively regulate each other. MiR-200s are downregulated in osteosarcoma tissues, and negatively correlated with ZEB1-AS1 and ZEB1 expression levels in osteosarcoma. Functional experiments showed that consistent with ZEB1-AS1 depletion, miR-200s overexpression and ZEB1 depletion both inhibit osteosarcoma cell proliferation and migration. Overexpression of miR-200s partially abolished the effects of ZEB1-AS1 on osteosarcoma cell proliferation and migration. Moreover, the combination of ZEB1-AS1 depletion and miR-200s overexpression significantly inhibits osteosarcoma cell proliferation and migration. In conclusion, this study revealed a novel regulatory mechanism between ZEB1-AS1, miR-200s, and ZEB1. The interplay between ZEB1-AS1 and miR-200s contributes to osteosarcoma cell proliferation and migration, and targeting this interplay could be a promising strategy for osteosarcoma treatment. J. Cell. Biochem. 118: 2250-2260, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Chunqin Pan
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yanqun Cai
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Haibao Wang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| |
Collapse
|