151
|
Terpos E, Ntanasis-Stathopoulos I. Clinical Updates Regarding Multiple Myeloma From the 2019 American Society of Hematology Annual Meeting. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:499-508. [DOI: 10.1016/j.clml.2020.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
|
152
|
Eraković M, Duka M, Bekić M, Tomić S, Ismaili B, Vučević D, Čolić M. Anti‐inflammatory and immunomodulatory effects of Biodentine on human periapical lesion cells in culture. Int Endod J 2020; 53:1398-1412. [DOI: 10.1111/iej.13351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Affiliation(s)
- M. Eraković
- Clinic for Stomatology Military Medical Academy BelgradeSerbia
| | - M. Duka
- Clinic for Stomatology Military Medical Academy BelgradeSerbia
| | - M. Bekić
- Institute for the Application of Nuclear Energy Zemun Serbia
| | - S. Tomić
- Institute for the Application of Nuclear Energy Zemun Serbia
| | - B. Ismaili
- Polyclinic, Ismaili Gostivar North Macedonia
| | - D. Vučević
- Medical Faculty of the Military Medical Academy University of Defense Belgrade Serbia
| | - M. Čolić
- Institute for the Application of Nuclear Energy Zemun Serbia
- Medical Faculty of the Military Medical Academy University of Defense Belgrade Serbia
- Medical Faculty Foča University of East Sarajevo R.Srpska Bosnia and Herzegovina
| |
Collapse
|
153
|
Park HJ, Gholam Zadeh M, Suh JH, Choi HS. Dauricine Protects from LPS-Induced Bone Loss via the ROS/PP2A/NF-κB Axis in Osteoclasts. Antioxidants (Basel) 2020; 9:antiox9070588. [PMID: 32640590 PMCID: PMC7402093 DOI: 10.3390/antiox9070588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023] Open
Abstract
Dauricine (DAC), an isoquinoline alkaloid, exhibits anti-inflammatory activity. We hypothesized that DAC may prevent the inflammatory bone loss induced by lipopolysaccharide (LPS). LPS-induced bone loss was decreased by DAC in female C57BL/6J mice as evaluated by micro-computerized tomography (μCT) analysis. In vivo tartrate-resistant acid phosphatase (TRAP) staining showed that the increased number of osteoclasts (OCs) in LPS-treated mice was attenuated by DAC, indicating that DAC exhibited bone sparing effects through acting on OCs. DAC also decreased the differentiation and activity of OCs after LPS stimulation in vitro. LPS-induced cytosolic reactive oxygen species (cROS) oxidized PP2A, a serine/threonine phosphatase, leading to the activation of IKKα/β, followed by the nuclear localization of p65. DAC decreased LPS-induced ROS, resulting in the recovery of the activity of PP2A by reducing its oxidized form. Consequently, DAC reduced the phosphorylation of IKKα/β to block the nuclear localization of p65, which decreased NF-κB activation. Taken together, DAC reduced the differentiation and activity of OCs by decreasing ROS via the ROS/PP2A/NF-κB axis, resulting in protection from LPS-induced bone loss. We have demonstrated that LPS-induced bone loss was inhibited by DAC via its action on OCs, implying the therapeutic potential of DAC against inflammatory bone loss.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (M.G.Z.)
| | | | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 44030, Korea;
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (M.G.Z.)
- Correspondence: ; Tel.: +82-52-259-1545; Fax: +82-52-259-1694
| |
Collapse
|
154
|
Ntanasis-Stathopoulos I, Gavriatopoulou M, Terpos E, Fotiou D, Kastritis E, Dimopoulos MA. Monitoring Plasma Cell Dyscrasias With Cell-free DNA Analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e905-e909. [PMID: 32723621 DOI: 10.1016/j.clml.2020.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
The analysis of cell-free tumor DNA (cfDNA) has emerged as a promising method to determine the evolving genomic landscape of the whole tumor compartment, mainly in solid malignancies. Plasma cell dyscrasias are characterized by complex and constantly changing genomic aberrations that are important in terms of prognosis, evaluation of the minimal residual disease, and response monitoring. In multiple myeloma, the detection of clonal immunoglobulin rearrangements and driver gene mutations in the cfDNA has shown high concordance rates with their identification in bone marrow-derived tumor DNA. In Waldenström macroglobulinemia, cfDNA can be a reliable alternative to bone marrow aspiration for determining the mutational status of the MYD88 and CXCR4 genes. Importantly, cfDNA can be representative of the whole bone marrow compartment and of extramedullary sites in contrast to the sampling of a single bone marrow site. However, standardization and validation of the techniques are necessary before integrating cfDNA in the clinical practice. Therefore, we encourage the conduction of clinical trials with novel cfDNA-based designs and the adoption of cfDNA-guided endpoints in order to precisely determine the role of cfDNA in the current management of plasma cell dyscrasias.
Collapse
Affiliation(s)
- Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece.
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Despoina Fotiou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
155
|
Huang SY, Yoon SS, Shimizu K, Chng WJ, Chang CS, Wong RSM, Gao S, Wang Y, Gordon SW, Glennane A, Min CK. Denosumab Versus Zoledronic Acid in Bone Disease Treatment of Newly Diagnosed Multiple Myeloma: An International, Double-Blind, Randomized Controlled Phase 3 Study-Asian Subgroup Analysis. Adv Ther 2020; 37:3404-3416. [PMID: 32524500 PMCID: PMC7467415 DOI: 10.1007/s12325-020-01395-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 11/25/2022]
Abstract
Introduction The primary analysis of a global phase 3 study that evaluated the efficacy and safety of denosumab versus zoledronic acid for preventing skeletal-related events (SREs) in adults with newly diagnosed multiple myeloma (MM) indicated that denosumab was noninferior to zoledronic acid for time to first on-study SREs. Here we present a subgroup analysis to evaluate efficacy and safety in Asian patients. Methods Patients were randomized 1:1 to receive denosumab 120 mg subcutaneously or zoledronic acid intravenously 4 mg every 4 weeks in a double-blind, double-dummy fashion. All patients received standard-of-care first-line antimyeloma treatment. Each patient received either study drug until an estimated 676 patients experienced at least one on-study SRE and the primary efficacy and safety analyses were completed. Results Of 1718 total enrolled patients, 196 Asian patients (denosumab, n = 103; zoledronic acid, n = 93) were included in this subgroup analysis. Fewer patients in the denosumab group developed first on-study SRE compared with the zoledronic acid group; the crude incidence of SREs at the primary analysis cutoff was 38.8% and 50.5%, respectively (HR [95% CI], 0.77 [0.48–1.26]). All 194 patients receiving at least one dose of study drug experienced at least one treatment-emergent AE. The most common AEs reported in either group (denosumab, zoledronic acid) were diarrhea (51.0%, 51.1%), nausea (42.2%, 46.7%), and pyrexia (38.2%, 41.3%). Treatment-emergent renal toxicity occurred in 9/102 (8.8%) and 20/92 (21.7%) patients, respectively. Similar rates of positively adjudicated osteonecrosis of the jaw (7 [6.9%] vs 5 [5.4%]) and treatment-emergent hypocalcemia (19 [18.6%] vs 17 [18.5%]) were reported in the denosumab and zoledronic acid groups, respectively. Conclusion Efficacy and safety outcomes from this Asian subgroup were comparable to those of the full study population. Overall, this analysis supports denosumab as an additional treatment option for standard of care for Asian patients with newly diagnosed MM with lytic bone lesions. Clinical Trial Registration ClinicalTrials.gov NCT01345019.
Collapse
|
156
|
Malandrakis P, Ntanasis-Stathopoulos I, Gavriatopoulou M, Terpos E. Clinical Utility of Selinexor/Dexamethasone in Patients with Relapsed or Refractory Multiple Myeloma: A Review of Current Evidence and Patient Selection. Onco Targets Ther 2020; 13:6405-6416. [PMID: 32669858 PMCID: PMC7335864 DOI: 10.2147/ott.s227166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is one the most common hematological malignancies, and despite the survival prolongation offered by proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs) and anti-CD38 monoclonal antibodies, the need for novel agents is prominent. Selinexor is a first-in-class, oral, selective inhibitor of exportin-1 (XPO1), a vital protein for the exportation of more than 200 tumor suppressor proteins from the nucleus. Both in solid tumors and hematologic malignancies, selinexor-mediated inhibition of nucleus export seems to effectively lead to cancer cell death. Selinexor in combination with dexamethasone (Sd) received an accelerated FDA approval on July 2019 for heavily pretreated patients with relapsed/refractory MM (RRMM) based on the promising results of the Phase II STORM trial. The preliminary results of the randomized Phase III BOSTON trial have shown a 47% increase in progression-free survival among PI-sensitive, RRMM patients who received selinexor with bortezomib-dexamethasone compared with bortezomib-dexamethasone alone. Several different selinexor-containing triplet regimens are currently being tested in the RRMM setting in an umbrella trial, and the preliminary results seem promising. Furthermore, the addition of selinexor in other anti-myeloma agents seems to overcome drug-acquired resistance in preclinical studies. The main toxicities of selinexor are gastrointestinal disorders and hematologic toxicities (mainly thrombocytopenia); however, they are manageable with proper supportive measures. In conclusion, selinexor is a new anti-myeloma drug that seems to be effective in patients who have no other therapeutic options, including patients who have received novel cellular therapies such as CAR-T cells. Its potential role earlier in the therapeutic algorithm of MM is currently under clinical investigation.
Collapse
Affiliation(s)
- Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
157
|
An Early Myeloma Bone Disease Model in Skeletally Mature Mice as a Platform for Biomaterial Characterization of the Extracellular Matrix. JOURNAL OF ONCOLOGY 2020; 2020:3985315. [PMID: 32684931 PMCID: PMC7336213 DOI: 10.1155/2020/3985315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) bone disease is characterized by osteolytic bone tissue destruction resulting in bone pain, fractures, vertebral collapse, and spinal cord compression in patients. Upon initial diagnosis of MM, almost 80% of patients suffer from bone disease. Earlier diagnosis and intervention in MM bone disease would potentially improve treatment outcome and patient survival. New preclinical models are needed for developing novel diagnostic markers of bone structural changes as early as possible in the disease course. Here, we report a proof-of-concept, syngeneic, intrafemoral MOPC315.BM MM murine model in skeletally mature BALB/c mice for detection and characterization of very early changes in the extracellular matrix (ECM) of MM-injected animals. Bioluminescence imaging (BLI) in vivo confirmed myeloma engraftment in 100% of the animals with high osteoclast activity within 21 days after tumor cell inoculation. Early signs of aggressive bone turnover were observed on the outer bone surfaces by high-resolution microcomputed tomography (microCT). Synchrotron phase contrast-enhanced microcomputer tomography (PCE-CT) revealed very local microarchitecture differences highlighting numerous active sites of erosion and new bone at the micrometer scale. Correlative backscattered electron imaging (BSE) and confocal laser scanning microscopy allowed direct comparison of mineralized and nonmineralized matrix changes in the cortical bone. The osteocyte lacunar-canalicular network (OLCN) architecture was disorganized, and irregular-shaped osteocyte lacunae were observed in MM-injected bones after 21 days. Our model provides a potential platform to further evaluate pathological MM bone lesion development at the micro- and ultrastructural levels. These promising results make it possible to combine material science and pharmacological investigations that may improve early detection and treatment of MM bone disease.
Collapse
|
158
|
Hao P, Zhang C, Wang R, Yan P, Peng R. Expression and pathogenesis of VCAM-1 and VLA-4 cytokines in multiple myeloma. Saudi J Biol Sci 2020; 27:1674-1678. [PMID: 32489310 PMCID: PMC7254040 DOI: 10.1016/j.sjbs.2020.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Objective The objective of this study is to investigate the expression of Vascular cell adhesion molecule-1 (VCAM-1) and very late appearing antigen-4 (VLA-4) cytokines in MM (multiple Myeloma). Method Forty patients with MM are selected as the experimental group and 30 healthy persons as the control group. Flow cytometry is used to detect the expression of VCAM-1 (CD106), VLA-4 (CD49d), CD38 and CD138 antigens in experimental group and control group. ELISA (Enzyme Linked Immunosorbent Assay) is used to detect the concentration of VCAM-1 in serum of experimental group and control group. RT-PCR is used to detect the expression of VCAM-1. Results The positive rate and antigen expression rate of VACM-1 antigen in the experimental group were significantly higher than those in the control group (P < 0.05). There were statistical differences of VLA-4 and VCAM-1 antigens between the initial diagnosis group and the relapse/refractory group, and between the relapse/refractory group and the platform stage group (P < 0.05). There were significant differences between VLA-4 antigen and VACM-1 antigen, phase I and phase II, and between phase I and phase III (P < 0.05). The concentration of VCAM-1 and the expression of VCAM-1 mRNA in the experimental group were significantly higher than (P < 0.01). In the different stages of ISS (International Staging System) and different disease groups in the experimental group, the concentration of VCAM-1 and the expression level of VCAM-1 mRNA are significantly different among the three groups of stage I, II and III (P < 0.01). There is a significant difference between the initial diagnosis group, the relapse/refractory group and the platform group (P < 0.05). Conclusion There are abnormal expressions of adhesion molecules VCAM-1 and VLA-4 in multiple myeloma patients, which are related to ISS staging.
Collapse
Affiliation(s)
- Pan Hao
- Department of Nuclear Medicine, LuHe Hospital, Capital Medical University, Beijing City 101149, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peaking University First Hospital, Beijing City 100011, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peaking University First Hospital, Beijing City 100011, China
| | - Ping Yan
- Department of Nuclear Medicine, Peaking University First Hospital, Beijing City 100011, China
| | - Ruchen Peng
- Department of Medical Imaging Center Nuclear Medicine, LuHe Hospital, Capital Medical University, Beijing City 101149, China
| |
Collapse
|
159
|
Nanni C. PET-FDG: Impetus. Cancers (Basel) 2020; 12:cancers12041030. [PMID: 32331374 PMCID: PMC7226158 DOI: 10.3390/cancers12041030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022] Open
Abstract
The International Myeloma Working Group (IMWG)recommends FDG PET/CT (Fluoro-Deoxy-glucose Positron Emission Tomography/Computed Tomography) as the gold standard imaging modality for initial evaluation and response to therapy assessment in multiple myeloma. In fact, FDG PET/CT, provides multiple useful indexes to risk-stratify patients and has significant prognostic value. However, multiple myeloma remains a complex disease to interpret on imaging. The Italian myeloma criteria for PET use (IMPeTUs) were proposed to standardize FDG PET/CT reading in multiple myeloma. In this communication an overview on IMPeTUs is provided as well as some examples of application.
Collapse
Affiliation(s)
- Cristina Nanni
- Nuclear Medicine Bld.30, AOU S. Orsola-Malpighi, Via Massarenti n.9, 40138 Bologna, Italy
| |
Collapse
|
160
|
Ashtar M, Tenshin H, Teramachi J, Bat-Erdene A, Hiasa M, Oda A, Tanimoto K, Shimizu S, Higa Y, Harada T, Oura M, Sogabe K, Nakamura S, Fujii S, Sumitani R, Miki H, Udaka K, Takahashi M, Kagawa K, Endo I, Tanaka E, Matsumoto T, Abe M. The Roles of ROS Generation in RANKL-Induced Osteoclastogenesis: Suppressive Effects of Febuxostat. Cancers (Basel) 2020; 12:E929. [PMID: 32283857 PMCID: PMC7226249 DOI: 10.3390/cancers12040929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of NF-κB ligand (RANKL), a critical mediator of osteoclastogenesis, is upregulated in multiple myeloma (MM). The xanthine oxidase inhibitor febuxostat, clinically used for prevention of tumor lysis syndrome, has been demonstrated to effectively inhibit not only the generation of uric acid but also the formation of reactive oxygen species (ROS). ROS has been demonstrated to mediate RANKL-mediated osteoclastogenesis. In the present study, we therefore explored the role of cancer-treatment-induced ROS in RANKL-mediated osteoclastogenesis and the suppressive effects of febuxostat on ROS generation and osteoclastogenesis. RANKL dose-dependently induced ROS production in RAW264.7 preosteoclastic cells; however, febuxostat inhibited the RANKL-induced ROS production and osteoclast (OC) formation. Interestingly, doxorubicin (Dox) further enhanced RANKL-induced osteoclastogenesis through upregulation of ROS production, which was mostly abolished by addition of febuxostat. Febuxostat also inhibited osteoclastogenesis enhanced in cocultures of bone marrow cells with MM cells. Importantly, febuxostat rather suppressed MM cell viability and did not compromise Dox's anti-MM activity. In addition, febuxostat was able to alleviate pathological osteoclastic activity and bone loss in ovariectomized mice. Collectively, these results suggest that excessive ROS production by aberrant RANKL overexpression and/or anticancer treatment disadvantageously impacts bone, and that febuxostat can prevent the ROS-mediated osteoclastic bone damage.
Collapse
Affiliation(s)
- Mohannad Ashtar
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima 770-8503, Japan; (M.A.); (K.T.); (S.S.); (Y.H.)
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (M.H.); (E.T.)
| | - Jumpei Teramachi
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan;
| | - Ariunzaya Bat-Erdene
- Department of Immunology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia;
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (M.H.); (E.T.)
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Kotaro Tanimoto
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima 770-8503, Japan; (M.A.); (K.T.); (S.S.); (Y.H.)
| | - So Shimizu
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima 770-8503, Japan; (M.A.); (K.T.); (S.S.); (Y.H.)
| | - Yoshiki Higa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima 770-8503, Japan; (M.A.); (K.T.); (S.S.); (Y.H.)
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima 770-8503, Japan;
| | - Kengo Udaka
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Mamiko Takahashi
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| | - Itsuro Endo
- Department of Chronomedicine, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan;
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (M.H.); (E.T.)
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan;
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (A.O.); (T.H.); (M.O.); (K.S.); (S.N.); (S.F.); (R.S.); (K.U.); (M.T.); (K.K.)
| |
Collapse
|
161
|
Herget GW, Wäsch R, Klein L, Schmal H, Terpos E, Engelhardt M. Prevention of bone disease and early detection of impending fractures in multiple myeloma patients can reduce morbidity and mortality: the necessity of interdisciplinary state-of-the-art treatment. Haematologica 2020; 105:859-861. [PMID: 32238466 DOI: 10.3324/haematol.2019.245423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Georg W Herget
- Department of Orthopaedics and Trauma Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany .,Comprehensive Cancer Center Freiburg (CCCF), Medical Center University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center University of Freiburg, Freiburg, Germany.,Department of Medicine I Hematology and Oncology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Lukas Klein
- Department of Orthopaedics and Trauma Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center University of Freiburg, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopaedics and Trauma Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center University of Freiburg, Freiburg, Germany
| | - Evangelos Terpos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Monika Engelhardt
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center University of Freiburg, Freiburg, Germany.,Department of Medicine I Hematology and Oncology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
162
|
Optimizing Immunomodulatory Drug With Proteasome Inhibitor Combinations in Newly Diagnosed Multiple Myeloma. ACTA ACUST UNITED AC 2020; 25:2-10. [PMID: 30694854 DOI: 10.1097/ppo.0000000000000348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the modern era of multiple myeloma therapeutics, proteasome inhibitor (PI) and immunomodulatory drugs (IMiDs) have replaced chemotherapy regimens for newly diagnosed multiple myeloma patients. Treatment combinations that comprise both first- and next-generation PIs, including bortezomib, carfilzomib, and ixazomib and IMiDs, including thalidomide and lenalidomide, have been evaluated in phases II and III clinical trials and have shown significant efficacy with manageable toxicity profiles. Bortezomib or carfilzomib with lenalidomide and dexamethasone (VRD and KRD) are the most promising regimens resulting in significant survival improvement. Disease and patient characteristics should lead the individualization of treatment, with the eligibility for autologous transplant being of principal importance. The addition of a monoclonal antibody to PI with IMiD combinations is currently under clinical investigation and may lead to further treatment optimization.
Collapse
|
163
|
Bone complications in patients with multiple myeloma in five European countries: a retrospective patient chart review. BMC Cancer 2020; 20:170. [PMID: 32126974 PMCID: PMC7055060 DOI: 10.1186/s12885-020-6596-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/31/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bone complications (pathologic fracture, spinal cord compression, surgery to bone and radiation to bone) are a common problem in patients with multiple myeloma (MM). We set out to provide insights into the real-world burden of bone complications in patients with newly diagnosed MM (NDMM). METHODS We conducted a retrospective review of medical charts of patients with NDMM whose disease had progressed following first-line treatment in the 3 months before data collection in 2016 in five European countries (France, Germany, Italy, Spain and the United Kingdom). RESULTS The aggregated study population included 813 patients. Bone pain commonly led to MM diagnosis (63%) and 74% of all patients had two or more bone lesions at initiation of first-line treatment. Furthermore, 26% of patients experienced a new bone complication between MM diagnosis and disease progression following first-line treatment, despite 75% of individuals receiving bisphosphonates. Most bone complications (52%) occurred in the period before initiation of first-line treatment (mean duration: 2.3 months) and more than half of patients (56%) who experienced a new bone complication were hospitalised. Analgesics were used more frequently in patients with bone complications than in those without them (76% vs 50%, respectively). Furthermore, 51% of patients had renal impairment by the time first-line treatment was started. Overall, 25% of patients did not receive bisphosphonates for prevention of bone complications and one in four of those with renal impairment at initiation of first-line treatment did not receive bisphosphonates. CONCLUSIONS Bone complications are common in patients with NDMM. They are frequently associated with hospitalization and analgesic use. Data from this study, conducted in the era of novel anti-myeloma therapies and before the approval of denosumab for use in patients with MM, suggest that although most patients (75%) received bisphosphonates, use of anti-resorptive therapy for prevention of bone complications may be suboptimal in patients with NDMM, irrespective of renal function.
Collapse
|
164
|
Ntanasis-Stathopoulos I, Fotiou D, Terpos E. CCL3 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:13-21. [PMID: 32060842 DOI: 10.1007/978-3-030-36667-4_2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Within the tumor microenvironment, chemokines play a key role in immune cell trafficking regulation and immune landscape formulation. CCL3 or macrophage inflammatory protein-1α (MIP-1α), an important chemokine implicated in both immune surveillance and tolerance, has emerged as a prognostic biomarker in both solid and hematological malignancies. CCL3 exerts both antitumor and pro-tumor behavior which is context dependent highlighting the complexity of the underlying interrelated signaling cascades. Current CCL3-directed therapeutic approaches are investigational and further optimization is required to increase efficacy and minimize adverse events.
Collapse
Affiliation(s)
- Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Despoina Fotiou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
165
|
Raimondo S, Urzì O, Conigliaro A, Lo Bosco G, Parisi S, Carlisi M, Siragusa S, Raimondi L, De Luca A, Giavaresi G, Alessandro R. Extracellular Vesicle microRNAs Contribute to the Osteogenic Inhibition of Mesenchymal Stem Cells in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12020449. [PMID: 32075123 PMCID: PMC7072478 DOI: 10.3390/cancers12020449] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Osteolytic bone disease is the major complication associated with the progression of multiple myeloma (MM). Recently, extracellular vesicles (EVs) have emerged as mediators of MM-associated bone disease by inhibiting the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Here, we investigated a correlation between the EV-mediated osteogenic inhibition and MM vesicle content, focusing on miRNAs. By the use of a MicroRNA Card, we identified a pool of miRNAs, highly expressed in EVs, from MM cell line (MM1.S EVs), expression of which was confirmed in EVs from bone marrow (BM) plasma of patients affected by smoldering myeloma (SMM) and MM. Notably, we found that miR-129-5p, which targets different osteoblast (OBs) differentiation markers, is enriched in MM-EVs compared to SMM-EVs, thus suggesting a selective packaging correlated with pathological grade. We found that miR-129-5p can be transported to hMSCs by MM-EVs and, by the use of miRNA mimics, we investigated its role in recipient cells. Our data demonstrated that the increase of miR-129-5p levels in hMSCs under osteoblastic differentiation stimuli inhibited the expression of the transcription factor Sp1, previously described as a positive modulator of osteoblastic differentiation, and of its target the Alkaline phosphatase (ALPL), thus identifying miR-129-5p among the players of vesicle-mediated bone disease.
Collapse
Affiliation(s)
- Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (O.U.); (A.C.); (S.P.)
| | - Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (O.U.); (A.C.); (S.P.)
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (O.U.); (A.C.); (S.P.)
| | - Giosuè Lo Bosco
- Department of Mathematics and Computer Science, University of Palermo, 90133 Palermo, Italy;
- Department of Sciences for technological innovation, Euro-Mediterranean Institute of Science and Technology, 90133 Palermo, Italy
| | - Sofia Parisi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (O.U.); (A.C.); (S.P.)
| | - Melania Carlisi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Haematology Unit, University of Palermo, 90133 Palermo, Italy; (M.C.); (S.S.)
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Haematology Unit, University of Palermo, 90133 Palermo, Italy; (M.C.); (S.S.)
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (A.D.L.); (G.G.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (A.D.L.); (G.G.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (O.U.); (A.C.); (S.P.)
- Correspondence:
| |
Collapse
|
166
|
Ixazomib Improves Bone Remodeling and Counteracts sonic Hedgehog signaling Inhibition Mediated by Myeloma Cells. Cancers (Basel) 2020; 12:cancers12020323. [PMID: 32019102 PMCID: PMC7073172 DOI: 10.3390/cancers12020323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of plasma cells (PC) in the bone marrow (BM), leading to bone loss and BM failure. Osteolytic bone disease is a common manifestation observed in MM patients and represents the most severe cause of morbidity, leading to progressive skeletal damage and disabilities. Pathogenetic mechanisms of MM bone disease are closely linked to PCs and osteoclast (OCs) hyperactivity, coupled with defective osteoblasts (OBs) function that is unable to counteract bone resorption. The aim of the present study was to investigate the effects of Ixazomib, a third-generation proteasome inhibitor, on osteoclastogenesis and osteogenic differentiation. We found that Ixazomib was able to reduce differentiation of human monocytes into OCs and to inhibit the expression of OC markers when added to the OC medium. Concurrently, Ixazomib was able to stimulate osteogenic differentiation of human mesenchymal stromal cells (MSCs), increasing osteogenic markers, either alone or in combination with the osteogenic medium. Given the key role of Sonic Hedgehog (SHH) signaling in bone homeostasis, we further investigated Ixazomib-induced SHH pathway activation. This set of experiments showed that Ixazomib, but not Bortezomib, was able to bind the Smoothened (SMO) receptor leading to nuclear translocation of GLI1 in human MSCs. Moreover, we demonstrated that PCs act as GLI1 suppressors on MSCs, thus reducing the potential of MSCs to differentiate in OBs. In conclusion, our data demonstrated that Ixazomib regulates bone remodeling by decreasing osteoclastogenesis and prompting osteoblast differentiation via the canonical SHH signaling pathway activation, thus, representing a promising therapeutic option to improve the complex pathological condition of MM patients.
Collapse
|
167
|
Ntanasis-Stathopoulos I, Gavriatopoulou M, Terpos E. Antibody therapies for multiple myeloma. Expert Opin Biol Ther 2020; 20:295-303. [PMID: 31944131 DOI: 10.1080/14712598.2020.1717464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Multiple myeloma (MM) is characterized by the uncontrollable proliferation of plasma cells and the excessive production of a specific type of immunoglobulin. Immune system is deregulated in MM and, thus, immunotherapy is a promising therapeutic strategy.Areas covered: The first approach is to use monoclonal antibodies that recognize specific antigens on the surface of myeloma cells, such as CD38 and B-cell maturation antigen. Upon binding to their target, monoclonal antibodies activate the immune cells to destroy the malignant cell. Anti-CD38 molecules as part of highly effective combination regimens have been approved in both newly diagnosed and relapsed/refractory patients and have significantly changed the myeloma treatment landscape in the recent years. Another strategy is to use antibodies that bind both to a molecule on the surface of the myeloma cell and another molecule on the surface of a T-cell (bispecific antibodies). Consecutively, the T-cell comes close to and recognizes the myeloma cell. These have shown promising results in heavily pre-treated patients.Expert opinion: Antibody therapy has significantly enhanced the armamentarium against MM. Further research should focus on tailoring the combination regimens based on disease and patient characteristics in order to optimize the efficacy and safety.
Collapse
Affiliation(s)
- Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
168
|
Ria R, Vacca A. Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21020613. [PMID: 31963513 PMCID: PMC7013615 DOI: 10.3390/ijms21020613] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma is a B-cell lineage cancer in which neoplastic plasma cells expand in the bone marrow and pathophysiological interactions with components of microenvironment influence many biological aspects of the malignant phenotype, including apoptosis, survival, proliferation, and invasion. Despite the therapeutic progress achieved in the last two decades with the introduction of a more effective and safe new class of drugs (i.e., immunomodulators, proteasome inhibitors, monoclonal antibodies), there is improvement in patient survival, and multiple myeloma (MM) remains a non-curable disease. The bone marrow microenvironment is a complex structure composed of cells, extracellular matrix (ECM) proteins, and cytokines, in which tumor plasma cells home and expand. The role of the bone marrow (BM) microenvironment is fundamental during MM disease progression because modification induced by tumor plasma cells is crucial for composing a "permissive" environment that supports MM plasma cells proliferation, migration, survival, and drug resistance. The "activated phenotype" of the microenvironment of multiple myeloma is functional to plasma cell proliferation and spreading and to plasma cell drug resistance. Plasma cell drug resistance induced by bone marrow stromal cells is mediated by stress-managing pathways, autophagy, transcriptional rewiring, and non-coding RNAs dysregulation. These processes represent novel targets for the ever-increasing anti-MM therapeutic armamentarium.
Collapse
Affiliation(s)
- Roberto Ria
- Correspondence: ; Tel.: +39-080-559-31-06; Fax: +39-080-559-38-04
| | | |
Collapse
|
169
|
Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells 2020; 9:cells9010167. [PMID: 31936617 PMCID: PMC7017193 DOI: 10.3390/cells9010167] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Daratumumab (Dara) is the first-in-class human-specific anti-CD38 mAb approved for the treatment of multiple myeloma (MM). Although recent data have demonstrated very promising results in clinical practice and trials, some patients do not achieve a partial response, and ultimately all patients undergo progression. Dara exerts anti-MM activity via antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and immunomodulatory effects. Deregulation of these pleiotropic mechanisms may cause development of Dara resistance. Knowledge of this resistance may improve the therapeutic management of MM patients.
Collapse
|
170
|
Yang Q, Li K, Li X, Liu J. Identification of Key Genes and Pathways in Myeloma side population cells by Bioinformatics Analysis. Int J Med Sci 2020; 17:2063-2076. [PMID: 32922167 PMCID: PMC7484674 DOI: 10.7150/ijms.48244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Multiple myeloma (MM) is the second most common hematological malignancy, which is still incurable and relapses inevitably, highlighting further understanding of the possible mechanisms. Side population (SP) cells are a group of enriched progenitor cells showing stem-like phenotypes with a distinct low-staining pattern with Hoechst 33342. Compared to main population (MP) cells, the underlying molecular characteristics of SP cells remain largely unclear. This bioinformatics analysis aimed to identify key genes and pathways in myeloma SP cells to provide novel biomarkers, predict MM prognosis and advance potential therapeutic targets. Methods: The gene expression profile GSE109651 was obtained from Gene Expression Omnibus database, and then differentially expressed genes (DEGs) with P-value <0.05 and |log2 fold-change (FC)| > 2 were selected by the comparison of myeloma light-chain (LC) restricted SP (LC/SP) cells and MP CD138+ cells. Subsequently, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) network analysis were performed to identify the functional enrichment analysis of the DEGs and screen hub genes. Cox proportional hazards regression was used to select the potential prognostic DEGs in training dataset (GSE2658). The prognostic value of the potential prognostic genes was evaluated by Kaplan-Meier curve and validated in another external dataset (MMRF-CoMMpass cohort from TCGA). Results: Altogether, 403 up-regulated and 393 down-regulated DEGs were identified. GO analysis showed that the up-regulated DEGs were significantly enriched in innate immune response, inflammatory response, plasma membrane and integral component of membrane, while the down-regulated DEGs were mainly involved in protoporphyrinogen IX and heme biosynthetic process, hemoglobin complex and erythrocyte differentiation. KEGG pathway analysis suggested that the DEGs were significantly enriched in osteoclast differentiation, porphyrin and chlorophyll metabolism and cytokine-cytokine receptor interaction. The top 10 hub genes, identified by the plug-in cytoHubba of the Cytoscape software using maximal clique centrality (MCC) algorithm, were ITGAM, MMP9, ITGB2, FPR2, C3AR1, CXCL1, CYBB, LILRB2, HP and FCER1G. Modules and corresponding GO enrichment analysis indicated that myeloma LC/SP cells were significantly associated with immune system, immune response and cell cycle. The predictive value of the prognostic model including TFF3, EPDR1, MACROD1, ARHGEF12, AMMECR1, NFATC2, HES6, PLEK2 and SNCA was identified, and validated in another external dataset (MMRF-CoMMpass cohort from TCGA). Conclusions: In conclusion, this study provides reliable molecular biomarkers for screening, prognosis, as well as novel therapeutic targets for myeloma LC/SP cells.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Kaihu Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xin Li
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jing Liu
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
171
|
Brunetti G, D'Amelio P, Mori G, Faienza MF. Editorial: Updates on Osteoimmunology: What's New on the Crosstalk Between Bone and Immune Cells. Front Endocrinol (Lausanne) 2020; 11:74. [PMID: 32153510 PMCID: PMC7045046 DOI: 10.3389/fendo.2020.00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
- *Correspondence: Giacomina Brunetti
| | - Patrizia D'Amelio
- Gerontology Section, Department of Medical Sciences, University of Torino, Turin, Italy
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| |
Collapse
|
172
|
Thorsteinsdottir S, Gislason G, Aspelund T, Sverrisdottir I, Landgren O, Turesson I, Björkholm M, Kristinsson SY. Fractures and survival in multiple myeloma: results from a population-based study. Haematologica 2019; 105:1067-1073. [PMID: 31792034 PMCID: PMC7109735 DOI: 10.3324/haematol.2019.230011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma causes lytic bone lesions and fractures. The impact of fractures on multiple myeloma (MM) survival is unclear. The aim of this study was to evaluate the effect of fractures on survival in MM using data from MM patients diagnosed in Sweden in the years 1990-2013, identified from the Swedish Cancer Registry. Information on date of birth, MM diagnosis, fractures, and death was collected from central registries. A Cox regression model was used to compare survival in patients with and without a fracture at MM diagnosis and another Cox model was used with fracture as a time-dependent variable to assess the effect of fracture on survival after MM diagnosis. Results were adjusted for age, sex, year of diagnosis, and previous fractures. A total of 14,013 patients were diagnosed with MM during the study, of whom 1,213 (8.7%) were diagnosed with a fracture at MM diagnosis, and 3,235 (23.1%) after diagnosis. Patients with a fracture at diagnosis were at a significantly increased risk of death (hazard ratio=1.28; 95% confidence interval: 1.19-1.37). The risk of death was significantly increased in patients with a fracture after MM diagnosis (2.00; 1.90-2.10). The impact of fractures on survival did not change significantly between the two calendar periods 1990-1999 and 2000-2013 (0.98; 0.89-1.08). Our large study shows that MM patients with fractures are at a significantly increased risk of dying compared to those without fractures, which stresses the importance of preventing bone disease in MM.
Collapse
Affiliation(s)
- Sigrun Thorsteinsdottir
- Department of Internal Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland .,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gauti Gislason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thor Aspelund
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ingigerdur Sverrisdottir
- Department of Internal Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ola Landgren
- Myeloma Ser vice, Division of Hematologic Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ingemar Turesson
- Department of Hematology and Coagulation Disorders, Skane University Hospital, Malmo, Sweden
| | - Magnus Björkholm
- Department of Medicine, Division of Hematology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Sigurður Y Kristinsson
- Department of Internal Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
173
|
Pacini S, Montali M, Mazziotta F, Schifone CP, Macchia L, Carnicelli V, Panvini FM, Barachini S, Notarfranchi L, Previti GB, Buda G, Petrini M. Mesangiogenic progenitor cells are forced toward the angiogenic fate, in multiple myeloma. Oncotarget 2019; 10:6781-6790. [PMID: 31827721 PMCID: PMC6887577 DOI: 10.18632/oncotarget.27285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) progresses mainly in the bone marrow where the involvement of a specific microenvironment plays a critical role in maintaining plasma cell growth, spread, and survival. In active disease, the switch from a pre-vascular/non-active phase to a vascular phase is coupled with the impairment of bone turnover. Previously, we have isolated Mesangiogenic Progenitor Cells (MPCs), a bone marrow population that showed mesengenic and angiogenic potential, both in vitro and in vivo. MPC differentiation into musculoskeletal tissue and their ability of sprouting angiogenesis are mutually exclusive, suggesting a role in the imbalancing of the microenvironment in multiple myeloma. MPCs from 32 bone marrow samples of multiple myeloma and 23 non-hematological patients were compared in terms of frequency, phenotype, mesengenic/angiogenic potential, and gene expression profile. Defective osteogenesis was recorded for MM-derived MPCs that showed longer angiogenic sprouting distances respect to non-hematological MPCs, retaining this capability after mesengenic induction. This altered MPCs differentiation potential was not detected in asymptomatic myelomatous disease. These in vitro experiments are suggestive of a forced angiogenic fate in MPCs isolated from MM patients, which also showed increased sprouting activity. Taking together our results suggest a possible role of these cells in the “angiogenic switch” in the MM micro-environment.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Pisa, Italy
| | | | - Claudia P Schifone
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Pisa, Italy
| | - Lucia Macchia
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Vittoria Carnicelli
- Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Francesca M Panvini
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Pisa, Italy
| | - Laura Notarfranchi
- Department of Medicine and Surgery, Hematology Division, University of Parma, Parma, Italy
| | | | - Gabriele Buda
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Pisa, Italy
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Pisa, Italy
| |
Collapse
|
174
|
Gu W, An J, Meng H, Yu N, Zhong Y, Meng F, Xu Y, Cornelissen JJLM, Zhong Z. CD44-Specific A6 Short Peptide Boosts Targetability and Anticancer Efficacy of Polymersomal Epirubicin to Orthotopic Human Multiple Myeloma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904742. [PMID: 31560141 DOI: 10.1002/adma.201904742] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Chemotherapy is widely used in the clinic though its benefits are controversial owing to low cancer specificity. Nanovehicles capable of selectively transporting drugs to cancer cells have been energetically pursued to remodel cancer treatment. However, no active targeting nanomedicines have succeeded in clinical translation to date, partly due to either modest targetability or complex fabrication. CD44-specific A6 short peptide (KPSSPPEE) functionalized polymersomal epirubicin (A6-PS-EPI), which boosts targetability and anticancer efficacy toward human multiple myeloma (MM) in vivo, is described. A6-PS-EPI encapsulating 11 wt% EPI is small (≈55 nm), robust, reduction-responsive, and easy to fabricate. Of note, A6 decoration markedly augments the uptake and anticancer activity of PS-EPI in CD44-overexpressing LP-1 MM cells. A6-PS-EPI displays remarkable targeting ability to orthotopic LP-1 MM, causing depleted bone damage and striking survival benefits compared to nontargeted PS-EPI. Overall, A6-PS-EPI, as a simple and intelligent nanotherapeutic, demonstrates high potential for clinical translation.
Collapse
Affiliation(s)
- Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Jingnan An
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Hao Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Na Yu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yinan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Xu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
175
|
He L, Shi X, Liu Z, Ren X, Zhang C, Yang Z, Li Z. Roles Of EAAT1, DHFR, And Fetuin-A In The Pathogenesis, Progression And Prognosis Of Chondrosarcoma. Onco Targets Ther 2019; 12:8411-8420. [PMID: 31695419 PMCID: PMC6811368 DOI: 10.2147/ott.s222426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
Aims Chondrosarcoma (CS) is a high-morbidity, relatively common bone malignancy without well-established biomarkers. The proteins EAAT1, DHFR, and fetuin-A have been investigated in many cancers, but their specific relationship to CS has not been reported. The present study examined EAAT1, DHFR, and fetuin-A expression in CS and the clinicopathological significance of these proteins in CS pathogenesis, progression, and prognosis. Methods EAAT1, DHFR, and fetuin-A protein levels in 80 CS and 25 chondroma specimens were measured by immunohistochemistry and related to histological and clinical factors with chi-squared tests. Following univariate survival analysis, ROC curves calculation, and multivariate analysis. Results EAAT1, DHFR, and fetuin-A expression levels were significantly higher in the CS group than in the chondroma group (p < 0.05). Their immunopositivity rates were significantly greater in tissues with moderate or poor tumor differentiation, AJCC stage III or IV, Enneking stage II or III, and metastasis (p<0.05 or p<0.01 or p<0.001). Kaplan–Meier survival analysis showed significantly shorter survival in patients with moderately or poorly differentiated tumors, AJCC stage III or IV CS, Enneking stage II or III CS, metastasis, invasion, or EAAT1, DHFR, and fetuin-A immunopositivity (p < 0.05 or p < 0.001). Cox regression analysis showed that moderate or poor tumor differentiation, AJCC stage III or IV, Enneking stage II or III, metastasis, invasion, and EAAT1, DHFR, or fetuin-A immunopositivity correlated negatively with postoperative survival and positively with mortality (p < 0.05). The AUCs for EAAT1, DHFR, and fetuin-A were 0.654 (95% CI: 0.532–0.776, p = 0.025), 0.638 (95% CI: 0.519–0.756, p = 0.039), and 0.670 (95% CI: 0.556–0.784, p = 0.011), respectively. Conclusion EAAT1, DHFR, and fetuin-A may be important biomarkers of the pathogenesis and progression of CS and predictors of its prognosis.
Collapse
Affiliation(s)
- Lile He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsa, Hunan 410011, People's Republic of China
| | - Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zhulin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsa, Hunan 410011, People's Republic of China
| |
Collapse
|
176
|
Kyriazoglou A, Ntanasis-Stathopoulos I, Terpos E, Fotiou D, Kastritis E, Dimopoulos MA, Gavriatopoulou M. Emerging Insights Into the Role of the Hippo Pathway in Multiple Myeloma and Associated Bone Disease. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 20:57-62. [PMID: 31734019 DOI: 10.1016/j.clml.2019.09.620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/11/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is an incurable plasma-cell dyscrasia with numerous treatment options currently available; however, drug resistance is usually inevitable, so there is a constant need for novel treatment approaches. The Hippo pathway has emerged as an important mediator of oncogenesis in solid tumors. More recently, its key role in regulating apoptosis and mediating resistance in MM and other hematologic malignancies has been demonstrated in preclinical studies, which provides a strong basis for further clinical investigation. The Hippo pathway is also implicated in the pathogenesis of MM-induced bone disease, as it regulates both osteoblast and osteoclast function. We provide an overview of the available data regarding the role of the Hippo signaling components in the pathophysiology of MM. A better understanding of the underlying interactions at the molecular and cellular levels will lead to novel and promising treatment approaches.
Collapse
Affiliation(s)
- Anastasios Kyriazoglou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece.
| |
Collapse
|
177
|
Ntanasis-Stathopoulos I, Gavriatopoulou M, Fotiou D, Kanellias N, Migkou M, Eleutherakis-Papaiakovou E, Kastritis E, Dimopoulos MA, Terpos E. Screening for Gaucher disease among patients with plasma cell dyscrasias. Leuk Lymphoma 2019; 62:761-763. [PMID: 31566473 DOI: 10.1080/10428194.2019.1672059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
178
|
Grab AL, Seckinger A, Horn P, Hose D, Cavalcanti-Adam EA. Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2019; 96:258-270. [PMID: 31302300 DOI: 10.1016/j.actbio.2019.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is a malignant disease characterized by accumulation of clonal plasma cells in the bone marrow. Uncoupling of bone formation and resorption by myeloma cells leads to osteolytic lesions. These are prone to fracture and represent a possible survival space for myeloma cells under treatment causing disease relapse. Here we report on a novel approach suitable for local treatment of multiple myeloma based on hyaluronic acid (HA) hydrogels mimicking the physical properties of the bone marrow. The HA hydrogels are complexed with heparin to achieve sustained presentation and controlled release of bone morphogenetic protein 6 (BMP-6). Others and we have shown that BMP-6 induces myeloma cell apoptosis and bone formation. Using quartz crystal microbalance and enzyme-linked immunosorbent assay, we measured an initial surface density of 400 ng BMP6/cm2, corresponding to two BMP-6 per heparin molecule, with 50% release within two weeks. HA-hydrogels presenting BMP-6 enhanced the phosphorylation of Smad 1/5 while reducing the activity of BMP-6 antagonist sclerostin. These materials induced osteogenic differentiation of mesenchymal stromal cells and decreased the viability of myeloma cell lines and primary myeloma cells. BMP-6 functionalized HA-hydrogels represent a promising material for local treatment of myeloma-induced bone disease and residual myeloma cells within lesions to minimize disease relapse or fractures. STATEMENT OF SIGNIFICANCE: Multiple myeloma is a hematological cancer characterized by the accumulation of clonal plasma cells in the bone marrow and local suppression of bone formation, resulting in osteolytic lesions and fractures. Despite recent advances in systemic treatment of multiple myeloma, it is rare to achieve a targeted suppression of myeloma cells and healing of bone lesions. Here we present hydrogels which mimic the physico-chemical properties of the bone marrow, consisting of hyaluronic acid with crosslinked heparin for the controlled presentation of bioactive BMP-6. The hydrogels decrease the viability of myeloma cell lines and primary myeloma cells and induces osteogenic differentiation of mesenchymal stromal cells. The presentation of BMP-6 in the hyaluronan hydrogels enhances the phosphorylation of Smad1/5 while reducing the activity of the BMP-6 antagonist sclerostin. As such, BMP-6 functionalized hyaluronan hydrogels represent a promising material for the localized eradication of myeloma cells.
Collapse
Affiliation(s)
- Anna Luise Grab
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute of Physical Chemistry, Department of Biophysical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; Max Planck Institute for Medical Research, Department of Cellular Biophysics and Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, 69120 Heidelberg, Germany
| | - Anja Seckinger
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Horn
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Dirk Hose
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Elisabetta Ada Cavalcanti-Adam
- Institute of Physical Chemistry, Department of Biophysical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; Max Planck Institute for Medical Research, Department of Cellular Biophysics and Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, 69120 Heidelberg, Germany.
| |
Collapse
|
179
|
The Role of Exosomes in Bone Remodeling: Implications for Bone Physiology and Disease. DISEASE MARKERS 2019; 2019:9417914. [PMID: 31485281 PMCID: PMC6710799 DOI: 10.1155/2019/9417914] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
Bone remodeling represents a physiological phenomenon of continuous bone tissue renewal that requires fine orchestration of multiple cell types, which is critical for the understanding of bone disease but not yet clarified in precise detail. Exosomes, which are cell-secreted nanovesicles drawing increasing attention for their broad biosignaling functions, can shed new light on how multiple heterogeneous cells communicate for the purpose of bone remodeling. In the healthy bone, exosomes transmit signals favoring both bone synthesis and resorption, regulating the differentiation, recruitment, and activity of most cell types involved in bone remodeling and even assuming an active role in extracellular matrix mineralization. Additionally, in the ailing bone, they actively participate in pathogenic processes constituting also potential therapeutic agents and drug vectors. The present review summarizes the current knowledge on bone exosomes and bone remodeling in health and disease.
Collapse
|
180
|
Ullah TR. The role of CXCR4 in multiple myeloma: Cells' journey from bone marrow to beyond. J Bone Oncol 2019; 17:100253. [PMID: 31372333 PMCID: PMC6658931 DOI: 10.1016/j.jbo.2019.100253] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
CXCR4 is a pleiotropic chemokine receptor which acts through its ligand CXCL12 to regulate diverse physiological processes. CXCR4/CXCL12 axis plays a pivotal role in proliferation, invasion, dissemination and drug resistance in multiple myeloma (MM). Apart from its role in homing, CXCR4 also affects MM cell mobilization and egression out of the bone marrow (BM) which is correlated with distant organ metastasis. Aberrant CXCR4 expression pattern is associated with osteoclastogenesis and tumor growth in MM through its cross talk with various important cell signalling pathways. A deeper insight into understanding of CXCR4 mediated signalling pathways and its role in MM is essential to identify potential therapeutic interventions. The current therapeutic focus is on disrupting the interaction of MM cells with its protective tumor microenvironment where CXCR4 axis plays an essential role. There are still multiple challenges that need to be overcome to target CXCR4 axis more efficiently and to identify novel combination therapies with existing strategies. This review highlights the role of CXCR4 along with its significant interacting partners as a mediator of MM pathogenesis and summarizes the targeted therapies carried out so far.
Collapse
Key Words
- AMC, Angiogenic monomuclear cells
- BM, Bone marrow
- BMSC, Bone marrow stromal cells
- CAM-DR, Cell adhesion‐mediated drug resistance
- CCR–CC, Chemokine receptor
- CCX–CKR, Chemo Centryx–chemokine receptor
- CD4, Cluster of differentiation 4
- CL—CC, Chemokine ligand
- CNS, Central nervous system
- CSCs, Cancer stem cells
- CTAP-III, Connective tissue-activating peptide-III
- CXCL, CXC chemokine ligand
- CXCR, CXC chemokine receptor
- EGF, Epidermal growth factor
- EMD, Extramedullary disease
- EPC, Endothelial progenitor cells
- EPI, Endogenous peptide inhibitor
- ERK, Extracellular signal related kinase
- FGF, Fibroblast growth factor
- G-CSF, Granulocyte colony-stimulating factor
- GPCRs, G protein-coupled chemokine receptors
- HCC, Hepatocellular carcinoma
- HD, Hodgkin's disease
- HGF, Hepatocyte growth factor
- HIF1α, Hypoxia-inducible factor-1 alpha
- HIV, Human Immunodeficiency Virus
- HMGB1, High Mobility Group Box 1
- HPV, Human papillomavirus
- HSC, Hematopoietic stem cells
- IGF, Insulin-like growth factor
- JAK/STAT, Janus Kinase signal transducer and activator of transcription
- JAM-A, Junctional adhesion molecule-A
- JNK, Jun N-terminal kinase
- MAPK, Mitogen Activated Protein Kinase
- MIF, Macrophage migration inhibitory factor
- MM, Multiple myeloma
- MMP, Matrix metalloproteinases
- MRD, Minimal residual disease
- NHL, Non-Hodgkin's lymphoma
- OCL, Octeoclast
- OPG, Osteoprotegerin
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, Protein kinase C
- PLC, Phospholipase C
- Pim, Proviral Integrations of Moloney virus
- RANKL, Receptor activator of nuclear factor kappa-Β ligand
- RRMM, Relapsed/refractory multiple myeloma
- SFM-DR, Soluble factor mediated drug resistance
- VEGF, Vascular endothelial growth factor
- VHL, Von Hippel-Lindau
- WHIM, Warts, Hypogammaglobulinemia, Infections, and Myelokathexis
- WM, Waldenström macroglobulinemia
Collapse
|
181
|
Kleber M, Ntanasis-Stathopoulos I, Dimopoulos MA, Terpos E. Monoclonal antibodies against RANKL and sclerostin for myeloma-related bone disease: can they change the standard of care? Expert Rev Hematol 2019; 12:651-663. [PMID: 31268745 DOI: 10.1080/17474086.2019.1640115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Over 80% of the patients with multiple myeloma (MM) develop myeloma bone disease (MBD) during the disease course. The clinical consequences include serious skeletal-related events (SRE) that impact survival and quality of life. Bisphosphonates are the mainstay in the treatment of MBD. Currently, new therapeutic strategies are being introduced and broaden the therapeutic options in MBD. Areas covered: The purpose of this review is to summarize the current clinical management of MBD and present novel data regarding monoclonal antibodies against the receptor activator of NF-kappa B ligand (RANKL) and sclerostin that may change the clinical practice. Expert opinion: Our better understanding of the pathophysiology of MBD has identified several factors as potential therapeutic targets. Recent data have shown that the RANKL inhibitor denosumab constitutes a new promising option. The non-inferiority compared with bisphosphonates in terms of SRE prevention, the potential survival benefit, the convenience of subcutaneous administration, and the favorable toxicity profile makes denosumab a valuable alternative for physicians in the current treatment of MBD. Anti-sclerostin antibodies are currently under clinical development. Further investigations are needed to address open questions in the field including the value of anabolic agents combined with anti-resorptive and anti-MM drugs in MBD.
Collapse
Affiliation(s)
- Martina Kleber
- a Division of Hematology, Department of Medicine, University Hospital Basel , Basel , Switzerland.,b Division of Internal Medicine, Department of Medicine, University Hospital Basel , Basel , Switzerland
| | - Ioannis Ntanasis-Stathopoulos
- c Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Meletios A Dimopoulos
- c Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Terpos
- c Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
182
|
Young PE, Okorodudu AO, Yates SG. Hypercalcemia and Altered Mental Status. Clin Chem 2019; 65:833-836. [PMID: 31253607 DOI: 10.1373/clinchem.2018.297556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Paul E Young
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | | | - Sean G Yates
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
183
|
Schulze F, Keperscha B, Appelhans D, Rösen-Wolff A. Immunomodulatory Effects of Dendritic Poly(ethyleneimine) Glycoarchitectures on Human Multiple Myeloma Cell Lines, Mesenchymal Stromal Cells, and in Vitro Differentiated Macrophages for an Ideal Drug Delivery System in the Local Treatment of Multiple Myeloma. Biomacromolecules 2019; 20:2713-2725. [DOI: 10.1021/acs.biomac.9b00475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Felix Schulze
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Bettina Keperscha
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
184
|
Sun F, Cheng Y, Walsh SA, Acevedo MR, Jing X, Han SS, Pisano MD, Tomasson MH, Lichtenstein AK, Zhan F, Hari P, Janz S. Osteolytic disease in IL-6 and Myc dependent mouse model of human myeloma. Haematologica 2019; 105:e111-e115. [PMID: 31221780 DOI: 10.3324/haematol.2019.221127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Susan A Walsh
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Michael R Acevedo
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Xuefang Jing
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Seong Su Han
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Michael D Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Interdisciplinary Graduate Program in Immunology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Michael H Tomasson
- Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Alan K Lichtenstein
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA
| | - Fenghuang Zhan
- Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI .,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
185
|
Béréziat V, Mazurier C, Auclair M, Ferrand N, Jolly S, Marie T, Kobari L, Toillon I, Delhommeau F, Fève B, Larsen AK, Sabbah M, Garderet L. Systemic Dysfunction of Osteoblast Differentiation in Adipose-Derived Stem Cells from Patients with Multiple Myeloma. Cells 2019; 8:cells8050441. [PMID: 31083455 PMCID: PMC6562713 DOI: 10.3390/cells8050441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma is characterized by bone lesions linked to increased osteoclast and decreased osteoblast activities. In particular, the osteoblast differentiation of bone marrow-derived stem cells (MSC) is impaired. Among the potential therapeutic tools for counteracting bone lesions, adipose-derived stem cells (ASC) could represent an appealing source for regenerative medicine due to their similar characteristics with MSC. Our study is among the first giving detailed insights into the osteoblastogenic capacities of ASC isolated by fat aspiration from myeloma patients (MM-ASC) compared to healthy subjects (HD-ASC). We showed that MM-ASC and HD-ASC exhibited comparable morphology, proliferative capacity, and immunophenotype. Unexpectedly, although normal in adipocyte differentiation, MM-ASC present a defective osteoblast differentiation, as indicated by less calcium deposition, decreased alkaline phosphatase activity, and downregulation of RUNX2 and osteocalcin. Furthermore, these ASC-derived osteoblasts displayed enhanced senescence, as shown by an increased β-galactosidase activity and cell cycle inhibitors expression (p16INK4A, p21WAF1/CIP1.), associated with a markedly increased expression of DKK1, a major inhibitor of osteoblastogenesis in multiple myeloma. Interestingly, inhibition of DKK1 attenuated senescence and rescued osteoblast differentiation, highlighting its key role. Our findings show, for the first time, that multiple myeloma is a systemic disease and suggest that ASC from patients would be unsuitable for tissue engineering designed to treat myeloma-associated bone disease.
Collapse
Affiliation(s)
- Véronique Béréziat
- Sorbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Genetic and acquired lipodystrophies, Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), F-75012 Paris, France.
| | - Christelle Mazurier
- orbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, F-75012 Paris, France.
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, F-94017 Paris, France.
| | - Martine Auclair
- Sorbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Genetic and acquired lipodystrophies, Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), F-75012 Paris, France.
| | - Nathalie Ferrand
- Sorbonne Université, INSERM, CNRS, UMR_S 938, Centre de Recherche Saint-Antoine- Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, F-75012 Paris, France.
| | - Séverine Jolly
- orbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, F-75012 Paris, France.
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, F-94017 Paris, France.
| | - Tiffany Marie
- orbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, F-75012 Paris, France.
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, F-94017 Paris, France.
| | - Ladan Kobari
- Sorbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, F-75012 Paris, France.
| | - Indira Toillon
- Sorbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Genetic and acquired lipodystrophies, Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), F-75012 Paris, France.
| | - François Delhommeau
- Sorbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, F-75012 Paris, France.
| | - Bruno Fève
- Sorbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Genetic and acquired lipodystrophies, Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, service d'Endocrinologie, F-75012 Paris, France.
| | - Annette K Larsen
- Sorbonne Université, INSERM, CNRS, UMR_S 938, Centre de Recherche Saint-Antoine- Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, F-75012 Paris, France.
| | - Michèle Sabbah
- Sorbonne Université, INSERM, CNRS, UMR_S 938, Centre de Recherche Saint-Antoine- Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, F-75012 Paris, France.
| | - Laurent Garderet
- Sorbonne Université, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Département d'Hématologie et de Thérapie Cellulaire, F-75012 Paris, France.
| |
Collapse
|
186
|
Corbo F, Brunetti G, Crupi P, Bortolotti S, Storlino G, Piacente L, Carocci A, Catalano A, Milani G, Colaianni G, Colucci S, Grano M, Franchini C, Clodoveo ML, D'Amato G, Faienza MF. Effects of Sweet Cherry Polyphenols on Enhanced Osteoclastogenesis Associated With Childhood Obesity. Front Immunol 2019; 10:1001. [PMID: 31130968 PMCID: PMC6509551 DOI: 10.3389/fimmu.2019.01001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Childhood obesity is associated with the development of severe comorbidities, such as diabetes, cardiovascular diseases, and increased risk of osteopenia/osteoporosis and fractures. The status of low-grade inflammation associated to obesity can be reversed through an enhanced physical activity and by consumption of food enrich of anti-inflammatory compounds, such as omega-3 fatty acids and polyphenols. The aim of this study was to deepen the mechanisms of bone impairment in obese children and adolescents through the evaluation of the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs), and the assessment of the serum levels of RANKL and osteoprotegerin (OPG). Furthermore, we aimed to evaluate the in vitro effects of polyphenol cherry extracts on osteoclastogenesis, as possible dietary treatment to improve bone health in obese subjects. High RANKL levels were measured in obese with respect to controls (115.48 ± 35.20 pg/ml vs. 87.18 ± 17.82 pg/ml; p < 0.01), while OPG levels were significantly reduced in obese than controls (378.02 ± 61.15 pg/ml vs. 436.75 ± 95.53 pg/ml, respectively, p < 0.01). Lower Ad-SoS- and BTT Z-scores were measured in obese compared to controls (p < 0.05). A significant elevated number of multinucleated TRAP+ osteoclasts (OCs) were observed in the un-stimulated cultures of obese subjects compared to the controls. Interestingly, obese subjects displayed a higher percentage of CD14+/CD16+ than controls. Furthermore, in the mRNA extracts of obese subjects we detected a 2.5- and 2-fold increase of TNFα and RANKL transcripts compared to controls, respectively. Each extract of sweet cherries determined a dose-dependent reduction in the formation of multinucleated TRAP+ OCs. Consistently, 24 h treatment of obese PBMCs with sweet cherry extracts from the three cultivars resulted in a significant reduction of the expression of TNFα. In conclusion, the bone impairment in obese children and adolescents is sustained by a spontaneous osteoclastogenesis that can be inhibited in vitro by the polyphenol content of sweet cherries. Thus, our study opens future perspectives for the use of sweet cherry extracts, appropriately formulated as nutraceutical food, as preventive in healthy children and therapeutic in obese ones.
Collapse
Affiliation(s)
- Filomena Corbo
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Crupi
- CREA-VE, Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology, Turi, Italy
| | - Sara Bortolotti
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Laura Piacente
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Gualtiero Milani
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
187
|
He ZC, Li XY, Guo YL, Ma D, Fang Q, Ren LL, Zhang ZY, Wang W, Yu ZY, Zhao P, Wang JS. Heme oxygenase-1 attenuates the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in multiple myeloma cells: Corelated with bortezomib tolerance in multiple myeloma. J Cell Biochem 2019; 120:6972-6987. [PMID: 30368867 DOI: 10.1002/jcb.27879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/24/2023]
Abstract
Osteoclasts (OCs) play an essential role in bone destruction in patients with multiple myeloma (MM). Bortezomib can ameliorate bone destruction in patients with MM, but advanced MM often resists bortezomib. We studied the molecular mechanisms of bortezomib tolerance in MM. The expression of the MM-related genes in newly diagnosed patients with MM and normal donors were studied. C-C motif chemokine ligand 3 (CCL3) is a cytokine involved in the differentiation of OCs, and its expression is closely related to APRIL (a proliferation-inducing ligand). We found that bortezomib treatment inhibited APRIL and CCL3. But the heme oxygenase-1 (HO-1) activator hemin attenuated the inhibitory effects of bortezomib on APRIL and CCL3. We induced mononuclear cells to differentiate into OCs, and the enzyme-linked immunosorbent assay showed that the more OCs differentiated, the higher the levels CCL3 secretions detected. Animal experiments showed that hemin promoted MM cell infiltration in mice. The weight and survival rate of tumor mice were associated with HO-1 expression. Immunohistochemical staining showed that HO-1, APRIL, and CCL3 staining were positively stained in the tumor infiltrating sites. Then, MM cells were transfected with L-HO-1/si-HO-1 expression vectors and cultured with an nuclear factor (NF)-kappa B (κB) pathway inhibitor, QNZ. The results showed that HO-1 was the upstream gene of APRIL, NF-κB, and CCL3. We showed that HO-1 could attenuate the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in MM cells, and the tolerance of MM cells to bortezomib and the promotion of bone destruction are related to HO-1.
Collapse
Affiliation(s)
- Zheng C He
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xin Y Li
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong L Guo
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling L Ren
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhao Y Zhang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Weili Wang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Y Yu
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ji S Wang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
188
|
Terpos E, Ntanasis-Stathopoulos I. Multiple Myeloma: Clinical Updates From the American Society of Hematology Annual Meeting 2018. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:e324-e336. [PMID: 31076371 DOI: 10.1016/j.clml.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 12/28/2022]
Abstract
Herein, we summarize the novel clinical data for multiple myeloma (MM) that were presented in the 2019 Annual Meeting of the American Society of Hematology. Triplet regimens including lenalidomide-dexamethasone for high-risk smoldering MM are effective but longer follow-up data are needed. Among transplant-eligible, newly diagnosed MM (NDMM) patients, carfilzomib- and daratumumab-based combinations are promising as effective and safe induction regimens and do not impair stem cell collection. Maintenance with ixazomib results in prolonged progression-free survival (PFS) compared with placebo. Regarding transplant-ineligible NDMM patients, large phase III studies showed that the additional use of daratumumab in backbone first-line regimens provides deep responses and PFS prolongation, whereas dose-/schedule-adjusted lenalidomide-dexamethasone has similar efficacy and is more tolerable than continuous lenalidomide-dexamethasone. In the relapsed/refractory setting carfilzomib- and daratumumab-based regimens remain highly effective and safe treatments, whereas the introduction of venetoclax, isatuximab, atezolizumab, and oprozomib broadens the therapeutic options. Among heavily pretreated MM patients, selinexor and melflufen showed particularly encouraging results. Novel immunotherapeutic approaches including chimeric antigen receptor T cells against B-cell maturation antigen and bispecific antibodies constitute a promising alternative that remains to be evaluated in later-phase studies.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | -
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
189
|
Terpos E, Kastritis E, Ntanasis‐Stathopoulos I, Christoulas D, Papatheodorou A, Eleutherakis‐Papaiakovou E, Kanellias N, Fotiou D, Ziogas DC, Migkou M, Roussou M, Trougakos IP, Gavriatopoulou M, Dimopoulos MA. Consolidation therapy with the combination of bortezomib and lenalidomide (VR) without dexamethasone in multiple myeloma patients after transplant: Effects on survival and bone outcomes in the absence of bisphosphonates. Am J Hematol 2019; 94:400-407. [PMID: 30592079 DOI: 10.1002/ajh.25392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022]
Abstract
Optimizing consolidation treatment in transplant-eligible newly diagnosed multiple myeloma patients in order to improve efficacy and bone-related outcomes is intriguing. We conducted an open-label, prospective study evaluating the efficacy and safety of bortezomib and lenalidomide (VR) consolidation after ASCT, in the absence of dexamethasone and bisphosphonates. Fifty-nine patients, who received bortezomib-based induction, were given 4 cycles of VR starting on day 100 post-ASCT. After ASCT, 58% of patients improved their response status, while following VR consolidation 39% further deepened their response; stringent complete response rates increased to 51% after VR from 24% post-ASCT. VR consolidation resulted in a significant reduction of soluble receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio and sclerostin circulating levels, which was more pronounced among patients achieving very good partial response or better. After a median follow-up of 62 months, no skeletal-related events (SREs) were observed, despite the lack of bisphosphonates administration. The median TTP after ASCT was 37 months, while median overall survival (OS) has not been reached yet; the probability of 4- and 5-year OS was 81% and 64%, respectively. In conclusion, VR consolidation is an effective, dexamethasone- and bisphosphonate-free approach, which offers long OS with improvements on bone metabolism and no SREs.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | - Ioannis Ntanasis‐Stathopoulos
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | | | | | | | - Nikolaos Kanellias
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | - Dimitrios C. Ziogas
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | - Maria Roussou
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology National and Kapodistrian University of Athens Athens Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics National and Kapodistrian University of Athens, School of Medicine Athens Greece
| |
Collapse
|
190
|
D'Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol 2019; 15:004-4. [PMID: 30937279 PMCID: PMC6429006 DOI: 10.1016/j.jbo.2018.10.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Bone metastases (BM) are a common complication of cancer, whose management often requires a multidisciplinary approach. Despite the recent therapeutic advances, patients with BM may still experience skeletal-related events and symptomatic skeletal events, with detrimental impact on quality of life and survival. A deeper knowledge of the mechanisms underlying the onset of lytic and sclerotic BM has been acquired in the last decades, leading to the development of bone-targeting agents (BTA), mainly represented by anti-resorptive drugs and bone-seeking radiopharmaceuticals. Recent pre-clinical and clinical studies have showed promising effects of novel agents, whose safety and efficacy need to be confirmed by prospective clinical trials. Among BTA, adjuvant bisphosphonates have also been shown to reduce the risk of BM in selected breast cancer patients, but failed to reduce the incidence of BM from lung and prostate cancer. Moreover, adjuvant denosumab did not improve BM free survival in patients with breast cancer, suggesting the need for further investigation to clarify BTA role in early-stage malignancies. The aim of this review is to describe BM pathogenesis and current treatment options in different clinical settings, as well as to explore the mechanism of action of novel potential therapeutic agents for which further investigation is needed.
Collapse
Key Words
- ActRIIA, activin-A type IIA receptor
- BC, breast cancer
- BM, bone metastases
- BMD, bone mineral density
- BMPs, bone morphogenetic proteins
- BMSC, bone marrow stromal cells
- BPs, bisphosphonates
- BTA, bone targeting agents
- BTM, bone turnover markers
- Bone metastases
- Bone targeting agents
- CCR, chemokine-receptor
- CRPC, castration-resistant PC
- CXCL-12, C–X–C motif chemokine-ligand-12
- CXCR-4, chemokine-receptor-4
- DFS, disease-free survival
- DKK1, dickkopf1
- EBC, early BC
- ECM, extracellular matrix
- ET-1, endothelin-1
- FDA, food and drug administration
- FGF, fibroblast growth factor
- GAS6, growth-arrest specific-6
- GFs, growth factors
- GnRH, gonadotropin-releasing hormone
- HER-2, human epidermal growth factor receptor 2
- HR, hormone receptor
- IL, interleukin
- LC, lung cancer
- MAPK, mitogen-activated protein kinase
- MCSF, macrophage colony-stimulating factor
- MCSFR, MCSF receptor
- MIP-1α, macrophage inflammatory protein-1 alpha
- MM, multiple myeloma
- MPC, malignant plasma cells
- N-BPs, nitrogen-containing BPs
- NF-κB, nuclear factor-κB
- ONJ, osteonecrosis of the jaw
- OS, overall survival
- Osteotropic tumors
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PFS, progression-free survival
- PIs, proteasome inhibitors
- PSA, prostate specific antigen
- PTH, parathyroid hormone
- PTH-rP, PTH related protein
- QoL, quality of life
- RANK-L, receptor activator of NF-κB ligand
- RT, radiation therapy
- SREs, skeletal-related events
- SSEs, symptomatic skeletal events
- Skeletal related events
- TGF-β, transforming growth factor β
- TK, tyrosine kinase
- TKIs, TK inhibitors
- TNF, tumornecrosis factor
- VEGF, vascular endothelial growth factor
- VEGFR, VEGF receptor
- mTOR, mammalian target of rapamycin
- non-N-BPs, non-nitrogen containing BPs
- v-ATPase, vacuolar-type H+ ATPase
Collapse
Affiliation(s)
- Stella D'Oronzo
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| | - Robert Coleman
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Rd, Sheffield S10 2SJ, England, UK
| | - Janet Brown
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Rd, Sheffield S10 2SJ, England, UK
| | - Francesco Silvestris
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
191
|
Production of Soluble Receptor Activator of Nuclear Factor Kappa-Β Ligand and Osteoprotegerin by Apical Periodontitis Cells in Culture and Their Modulation by Cytokines. Mediators Inflamm 2019; 2019:8325380. [PMID: 31011287 PMCID: PMC6442274 DOI: 10.1155/2019/8325380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 01/16/2023] Open
Abstract
RANKL, a bone-destructive cytokine, and OPG, its osteoprotective counterpart, are expressed in periapical lesions (PLs), which represent hystopatological manifestations of apical periodontitis. However, their regulation in PLs has not been elucidated yet. Therefore, our aim was to study the production of RANKL and OPG and their modulation by pro- and anti-inflammatory cytokines in PL cell cultures. Isolated PL cells were cultured alone or with addition of TNF-α, IFN-ϒ, IL-17, IL-4, IL-10, and IL- 33, respectively. The levels of RANKL and OPG in supernatants were measured by ELISA. The proportion of CD3+ (T cells) and CD19+/CD138+ (B cells/plasma cells) within isolated PLs was determined by immunocytochemistry. The levels of RANKL were higher in cultures of symptomatic PLs compared to asymptomatic PLs and PLs with the dominance of T cells (T-type lesions) over B cells/plasma cells (B-type lesions). A higher proportion of osteodestructive processes (RANKL/OPG ratio > 1.0) were detected in symptomatic PLs. The production of RANKL was upregulated by IFN-ϒ and IL-17 and higher concentrations of IL-33. IL-10 and lower concentrations of IL-33 augmented the production of OPG. The addition of either RANKL or anti-RANKL antibody to the cultures did not modify significantly the production of OPG. In conclusion, this original PL cell culture model suggests that increased bone destruction through upregulated production of RANKL could be associated with exacerbation of inflammation in PLs with the predominance of Th1 and Th17 responses and increased secretion of IL-33. In contrast, IL-10 and lower levels of IL-33, through upregulation of OPG, may suppress osteolytic processes.
Collapse
|
192
|
The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 2019; 34:56-66. [DOI: 10.1016/j.blre.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
193
|
The role of cement augmentation with percutaneous vertebroplasty and balloon kyphoplasty for the treatment of vertebral compression fractures in multiple myeloma: a consensus statement from the International Myeloma Working Group (IMWG). Blood Cancer J 2019; 9:27. [PMID: 30808868 PMCID: PMC6391474 DOI: 10.1038/s41408-019-0187-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/09/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM) represents approximately 15% of haematological malignancies and most of the patients present with bone involvement. Focal or diffuse spinal osteolysis may result in significant morbidity by causing painful progressive vertebral compression fractures (VCFs) and deformities. Advances in the systemic treatment of myeloma have achieved high response rates and prolonged the survival significantly. Early diagnosis and management of skeletal events contribute to improving the prognosis and quality of life of MM patients. The management of patients with significant pain due to VCFs in the acute phase is not standardised. While some patients are successfully treated conservatively, and pain relief is achieved within a few weeks, a large percentage has disabling pain and morbidity and hence they are considered for surgical intervention. Balloon kyphoplasty and percutaneous vertebroplasty are minimally invasive procedures which have been shown to relieve pain and restore function. Despite increasing positive evidence for the use of these procedures, the indications, timing, efficacy, safety and their role in the treatment algorithm of myeloma spinal disease are yet to be elucidated. This paper reports an update of the consensus statement from the International Myeloma Working Group on the role of cement augmentation in myeloma patients with VCFs.
Collapse
|
194
|
Myeloma bone disease: from biology findings to treatment approaches. Blood 2019; 133:1534-1539. [PMID: 30760454 DOI: 10.1182/blood-2018-11-852459] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/10/2019] [Indexed: 12/16/2022] Open
Abstract
Bone disease is a cardinal complication of multiple myeloma that affects quality of life and survival. Osteocytes have emerged as key players in the development of myeloma-related bone disease. Along with other factors, they participate in increased osteoclast activity, decreased osteoblast function, and immunosuppressed marrow microenvironment, which deregulate bone turnover and result in bone loss and skeletal-related events. Denosumab is a novel alternative to bisphosphonates against myeloma bone disease. Special considerations in this constantly evolving field are thoroughly discussed.
Collapse
|
195
|
Voskaridou E, Ntanasis-Stathopoulos I, Christoulas D, Sonnleitner L, Papaefstathiou A, Dimopoulou M, Missbichler A, Kanellias N, Repa K, Papatheodorou A, Peppa M, Hawa G, Terpos E. Denosumab effects on serum levels of the bone morphogenetic proteins antagonist noggin in patients with transfusion-dependent thalassemia and osteoporosis. ACTA ACUST UNITED AC 2019; 24:318-324. [PMID: 30665323 DOI: 10.1080/16078454.2019.1570617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Noggin is an antagonist of bone morphogenetic proteins (BMPs) and has a strong effect on osteogenesis. Osteoporosis is a common complication of transfusion dependent beta-thalassemia (TDT) and denosumab has been recently emerged as a promising therapeutic option. This was a post hoc investigation of serum noggin levels among TDT patients with osteoporosis who participated in a randomized, placebo-control, phase 2b study. METHODS Patients received either 60 mg denosumab (n = 32) or placebo (n = 31) every 6 months for 12 months. Noggin was measured, for the first time in thalassemia patients, at baseline and at 12 months, using a recently developed high sensitivity fluorescent immunoassay. RESULTS Both groups showed a significant increase in noggin serum levels (denosumab p < 0.001; placebo p < 0.0001). Interestingly, the increase was higher in the placebo group. Furthermore, we observed a strong correlation between noggin and wrist bone mineral density (r = -0.641, p = 0.002) only in the denosumab group. CONCLUSION In conclusion, higher noggin levels reflected more BMP inhibition, since our assay detects free bioactive noggin, which in turn impaired bone formation in placebo group. Therefore, denosumab possibly regulates noggin and favours bone turnover in TDT patients with osteoporosis through a novel mechanism of action.
Collapse
Affiliation(s)
- Ersi Voskaridou
- a Thalassemia and Sickle Cell Disease Center , "Laiko" General Hospital , Athens , Greece
| | - Ioannis Ntanasis-Stathopoulos
- b Department of Clinical Therapeutics , School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | | | | | - Athanasios Papaefstathiou
- e Endocrine Unit, Second Department of Internal Medicine-Propaedeutic , Research Institute and Diabetes Center, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Maria Dimopoulou
- a Thalassemia and Sickle Cell Disease Center , "Laiko" General Hospital , Athens , Greece
| | | | - Nikolaos Kanellias
- b Department of Clinical Therapeutics , School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Konstantina Repa
- a Thalassemia and Sickle Cell Disease Center , "Laiko" General Hospital , Athens , Greece
| | | | - Melpomeni Peppa
- e Endocrine Unit, Second Department of Internal Medicine-Propaedeutic , Research Institute and Diabetes Center, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | | | - Evangelos Terpos
- b Department of Clinical Therapeutics , School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
196
|
Terpos E, Katodritou E, Symeonidis A, Zagouri F, Gerofotis A, Christopoulou G, Gavriatopoulou M, Christoulas D, Ntanasis-Stathopoulos I, Kourakli A, Konstantinidou P, Kastritis E, Dimopoulos MA. Effect of induction therapy with lenalidomide, doxorubicin and dexamethasone on bone remodeling and angiogenesis in newly diagnosed multiple myeloma. Int J Cancer 2019; 145:559-568. [PMID: 30650184 DOI: 10.1002/ijc.32125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 11/08/2022]
Abstract
There is limited data regarding the efficacy and safety of lenalidomide, adriamycin and dexamethasone (RAD) combination on newly diagnosed multiple myeloma (NDMM) patients. There is also scarce information about the effect of lenalidomide on bone metabolism and angiogenesis in NDMM. Thus, we conducted a Phase 2 study to evaluate the efficacy and safety of RAD regimen as induction in transplant-eligible NDMM patients and we studied the effects on bone metabolism and angiogenesis. A total of 45 patients were enrolled. Following four cycles of RAD, the overall response rate was 66.7% and after a median follow up of 29.1 months (range 21.0-34.9), the median survival outcomes have not been reached yet. RAD had a favorable toxicity profile and did not impair stem cell collection. RAD significantly reduced bone resorption markers CTX (p = 0.03) and TRACP-5b (p < 0.01). Interestingly, RAD also increased bone formation markers bone-specific alkaline phosphatase (p = 0.036), procollagen type 1 amino-terminal propeptide (p = 0.028) and osteocalcin (p = 0.026), which has not been described before with lenalidomide-containing regimens in the absence of bortezomib coadministration. Furthermore, the angiogenic cytokines VEGF (p = 0.01), angiogenin (p = 0.02) and bFGF (p < 0.01) were significantly reduced post-RAD induction. Our results suggest that RAD is an effective induction regimen before autologous stem cell transplantation with beneficial effects on bone metabolism and angiogenesis.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Eirini Katodritou
- Department of Hematology, Theagenio Cancer Hospital, Thessaloniki, Greece
| | - Argiris Symeonidis
- Department of Internal Medicine, Division of Hematology, University of Patras Medical School, Patras, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Antonis Gerofotis
- Department of Hematology, Theagenio Cancer Hospital, Thessaloniki, Greece
| | - Georgia Christopoulou
- Department of Internal Medicine, Division of Hematology, University of Patras Medical School, Patras, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Alexandra Kourakli
- Department of Internal Medicine, Division of Hematology, University of Patras Medical School, Patras, Greece
| | | | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
197
|
Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol 2019; 12:2. [PMID: 30621731 PMCID: PMC6325886 DOI: 10.1186/s13045-018-0689-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell malignancy associated with osteolytic bone disease. Recently, the role of MM-derived exosomes in the osteoclastogenesis has been demonstrated although the underlying mechanism is still unknown. Since exosomes-derived epidermal growth factor receptor ligands (EGFR) are involved in tumor-associated osteolysis, we hypothesize that the EGFR ligand amphiregulin (AREG) can be delivered by MM-derived exosomes and participate in MM-induced osteoclastogenesis. Methods Exosomes were isolated from the conditioned medium of MM1.S cell line and from bone marrow (BM) plasma samples of MM patients. The murine cell line RAW264.7 and primary human CD14+ cells were used as osteoclast (OC) sources. Results We found that AREG was specifically enriched in exosomes from MM samples and that exosomes-derived AREG led to the activation of EGFR in pre-OC, as showed by the increase of mRNA expression of its downstream SNAIL in both RAW264.7 and CD14+ cells. The presence of neutralizing anti-AREG monoclonal antibody (mAb) reverted this effect. Consequently, we showed that the effect of MM-derived exosomes on osteoclast differentiation was inhibited by the pre-treatment of exosomes with anti-AREG mAb. In addition, we demonstrated the ability of MM-derived AREG-enriched exosomes to be internalized into human mesenchymal stromal cells (MSCs) blocking osteoblast (OB) differentiation, increasing MM cell adhesion and the release of the pro-osteoclastogenic cytokine interleukin-8 (IL8). Accordingly, anti-AREG mAb inhibited the release of IL8 by MSCs suggesting that both direct and indirect effects are responsible for AREG-enriched exosomes involvement on MM-induced osteoclastogenesis. Conclusions In conclusion, our data indicate that AREG is packed into MM-derived exosomes and implicated in OC differentiation through an indirect mechanism mediated by OBs. Electronic supplementary material The online version of this article (10.1186/s13045-018-0689-y) contains supplementary material, which is available to authorized users.
Collapse
|
198
|
Essex AL, Pin F, Huot JR, Bonewald LF, Plotkin LI, Bonetto A. Bisphosphonate Treatment Ameliorates Chemotherapy-Induced Bone and Muscle Abnormalities in Young Mice. Front Endocrinol (Lausanne) 2019; 10:809. [PMID: 31803146 PMCID: PMC6877551 DOI: 10.3389/fendo.2019.00809] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is frequently accompanied by several side effects, including nausea, diarrhea, anorexia and fatigue. Evidence from ours and other groups suggests that chemotherapy can also play a major role in causing not only cachexia, but also bone loss. This complicates prognosis and survival among cancer patients, affects quality of life, and can increase morbidity and mortality rates. Recent findings suggest that soluble factors released from resorbing bone directly contribute to loss of muscle mass and function secondary to metastatic cancer. However, it remains unknown whether similar mechanisms also take place following treatments with anticancer drugs. In this study, we found that young male CD2F1 mice (8-week old) treated with the chemotherapeutic agent cisplatin (2.5 mg/kg) presented marked loss of muscle and bone mass. Myotubes exposed to bone conditioned medium from cisplatin-treated mice showed severe atrophy (-33%) suggesting a bone to muscle crosstalk. To test this hypothesis, mice were administered cisplatin in combination with an antiresorptive drug to determine if preservation of bone mass has an effect on muscle mass and strength following chemotherapy treatment. Mice received cisplatin alone or combined with zoledronic acid (ZA; 5 μg/kg), a bisphosphonate routinely used for the treatment of osteoporosis. We found that cisplatin resulted in progressive loss of body weight (-25%), in line with reduced fat (-58%) and lean (-17%) mass. As expected, microCT bone histomorphometry analysis revealed significant reduction in bone mass following administration of chemotherapy, in line with reduced trabecular bone volume (BV/TV) and number (Tb.N), as well as increased trabecular separation (Tb.Sp) in the distal femur. Conversely, trabecular bone was protected when cisplatin was administered in combination with ZA. Interestingly, while the animals exposed to chemotherapy presented significant muscle wasting (~-20% vs. vehicle-treated mice), the administration of ZA in combination with cisplatin resulted in preservation of muscle mass (+12%) and strength (+42%). Altogether, these observations support our hypothesis of bone factors targeting muscle and suggest that pharmacological preservation of bone mass can benefit muscle mass and function following chemotherapy.
Collapse
Affiliation(s)
- Alyson L. Essex
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joshua R. Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lynda F. Bonewald
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
- IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Otolaryngology – Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Andrea Bonetto
| |
Collapse
|
199
|
Zhang Y, Lin XY, Zhang JH, Xie ZL, Deng H, Huang YF, Huang XH. Apoptosis of mouse myeloma cells induced by curcumin via the Notch3-p53 signaling axis. Oncol Lett 2019; 17:127-134. [PMID: 30655747 PMCID: PMC6313093 DOI: 10.3892/ol.2018.9591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Resistance to apoptosis is a characteristic of cancer. Curcumin has become a potential anticancer drug for its pro-apoptotic effects, but the underlying mechanisms remain unclear. Furthermore, the Notch3-p53 signaling axis serves an important role in cell fate. The present study was designed to investigate the antitumor effect of curcumin by the Notch3-p53 axis in mouse myeloma P3X63Ag8 cells. The effects of curcumin on the viability of P3X63Ag8 cells were evaluated using an MTT assay. Quantitative expression of the Notch3-p53 signaling axis-associated genes was measured by reverse transcription-quantitative polymerase chain reaction, and western blot analysis was used to investigate the expression of proteins. Additionally, flow cytometry was used to measure the ratio of apoptosis. The results demonstrated that curcumin could significantly inhibit cell viability. No significant pro-apoptotic effect was observed when the concentration of curcumin was <30 µM. At 30 µM, curcumin-treated cells exhibited an apoptotic phenomenon, and the ratio of late apoptosis increased with the concentration of curcumin, and reached 28.4 and 51.8% in the medium- and high-dose groups, respectively. Curcumin inhibited the expression of Notch3, while the middle- and high-dose groups promoted p53. The expression of Notch3-responsive genes Hes family BHLH transcription factor 1 and Hes-related family transcription factor with YRPW motif 1 were notably promoted. Curcumin treatment significantly downregulated B-cell lymphoma-2 (Bcl-2) at the mRNA and protein levels, but upregulated Bcl-2-associated X. These data indicated that curcumin exhibited antitumor effects in mouse myeloma cells with induction of apoptosis by affecting the Notch3-p53 signaling axis.
Collapse
Affiliation(s)
- Ying Zhang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Xin-Yu Lin
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
- Department of Zoology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Jiao-Hui Zhang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Zheng-Lu Xie
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Yi-Fang Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Xiao-Hong Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
200
|
Paquin AR, Kumar SK, Buadi FK, Gertz MA, Lacy MQ, Dispenzieri A, Dingli D, Hwa L, Fonder A, Hobbs M, Hayman SR, Zeldenrust SR, Lust JA, Russell SJ, Leung N, Kapoor P, Go RS, Lin Y, Gonsalves WI, Kourelis T, Warsame R, Kyle RA, Rajkumar SV. Overall survival of transplant eligible patients with newly diagnosed multiple myeloma: comparative effectiveness analysis of modern induction regimens on outcome. Blood Cancer J 2018; 8:125. [PMID: 30538223 PMCID: PMC6289963 DOI: 10.1038/s41408-018-0163-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
Overall survival (OS) of multiple myeloma has improved remarkably over time, with the recent Intergroupe Francophone du Myelome (IFM) 2009 randomized trial reporting a 4-year OS rate of approximately 82% in patients receiving modern therapy. However, survival estimates from clinical trials may overestimate outcomes seen in clinical practice even with the adjustment for age and other key characteristics. The purpose of this study was to determine the OS of myeloma patients seen in routine clinical practice who resembled the cohort studied in the IFM 2009 trial. A second goal was to conduct a brief comparative effectiveness analysis of bortezomib, lenalidomide, dexamethasone, and other major induction regimens used during the study period. We studied all patients with myeloma 65 years of age and younger, seen at the Mayo Clinic between January 1, 2010 and August 31, 2015, who had a stem cell harvest performed within 12 months of initial diagnosis. Patients with baseline serum creatinine >2 mg/dL were excluded. Five hundred and eighteen patients were studied. The 4-year OS rate was 82.3%, comparable to results achieved in the contemporaneous IFM randomized trial. The 4-year OS rates for standard and high-risk myeloma were 86.3% and 68.2%, respectively.
Collapse
Affiliation(s)
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martha Q Lacy
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Lisa Hwa
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Amie Fonder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Miriam Hobbs
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - John A Lust
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Rahma Warsame
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Robert A Kyle
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|