151
|
Wan Y, Maurer M, He HZ, Xia YQ, Hao SJ, Zhang WL, Yee NS, Zheng SY. Enrichment of extracellular vesicles with lipid nanoprobe functionalized nanostructured silica. LAB ON A CHIP 2019; 19:2346-2355. [PMID: 31232418 PMCID: PMC6669184 DOI: 10.1039/c8lc01359d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoscale extracellular vesicles (nEVs) have recently demonstrated potential value in cancer diagnostics and treatment monitoring, but translation has been limited by technical challenges in nEV isolation. Thus, we have developed a one-step nEV isolation platform that utilizes nEV size-matched silica nanostructures and a surface-conjugated lipid nanoprobe with an integrated microfluidic mixer. The reported platform has 28.8% capture efficiency from pancreatic cancer plasma and can sufficiently enrich nEVs for simpler positive identification of point mutations, particularly KRAS, in nEV DNA from the plasma of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie Maurer
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Zhang He
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Qiu Xia
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Si-Jie Hao
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wen-Long Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nelson S. Yee
- Department of Medicine, Hematology/Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, Univeristy Park, PA 16802, USA
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
152
|
Gao X, Li S, Ding F, Fan H, Shi L, Zhu L, Li J, Feng J, Zhu X, Zhang C. Rapid Detection of Exosomal MicroRNAs Using Virus‐Mimicking Fusogenic Vesicles. Angew Chem Int Ed Engl 2019; 58:8719-8723. [PMID: 31095853 DOI: 10.1002/anie.201901997] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/15/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Xihui Gao
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Sha Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
- Medical CollegeAnhui University of Science and Technology 168th Taifeng Road Huainan 232001 China
| | - Fei Ding
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hongjia Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Leilei Shi
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Lijuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jing Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Jing Feng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
153
|
|
154
|
Zhang P, Zhou X, Zeng Y. Multiplexed immunophenotyping of circulating exosomes on nano-engineered ExoProfile chip towards early diagnosis of cancer. Chem Sci 2019; 10:5495-5504. [PMID: 31293733 PMCID: PMC6544119 DOI: 10.1039/c9sc00961b] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/19/2019] [Indexed: 12/28/2022] Open
Abstract
Circulating exosomes have been studied as a promising biomarker for non-invasive cancer diagnosis, as they are implicated in tumor initiation, progression, and metastasis. However, the clinical significance of circulating exosomes has not been revealed thoroughly, due to the technical limitation in sensitive and multiplexed detection of cargoes on exosomes, such as proteins and nucleic acids. Herein we developed an integrated exosome profiling platform (ExoProfile chip) to afford superior sensitivity and multiplexed capability for quantitative detection of a panel of surface protein markers on exosomes. To achieve this goal, we innovatively constructed 3D porous serpentine nanostructures via patterned colloidal self-assembly to provide enormous reaction sites and improve biosensing efficiency of exosomes. Meanwhile, the switchable microfluidic design enabled the simultaneous detection of eight markers on single addition of exosome samples. The ExoProfile chip was validated with purified exosomes from SKOV3 cells, which yielded a limit of detection of 21 exosomes per μL. We applied the ExoProfile chip to clinical analysis of circulating exosomes using only 10 μL ovarian cancer plasma and completing the analysis within 3 h. The diagnostic power of seven markers (EGFR, HER2, CA125, FRα, CD24, EpCAM, and CD9 plus CD63) were evaluated with receiver operator characteristic curve and heatmap clustering. Compared to single biomarker, the combined assessment of a biomarker panel was demonstrated to display improved accuracy in distinguishing early and late stage cancer. The results suggested the ExoProfile chip as a promising platform for molecular fingerprinting of circulating exosomes towards early cancer diagnosis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry , Ralph N Adams Institute for Bioanalytical Chemistry , University of Kansas , Lawrence , KS 66045 , USA .
| | - Xin Zhou
- Department of Chemistry , Ralph N Adams Institute for Bioanalytical Chemistry , University of Kansas , Lawrence , KS 66045 , USA .
| | - Yong Zeng
- Department of Chemistry , Ralph N Adams Institute for Bioanalytical Chemistry , University of Kansas , Lawrence , KS 66045 , USA .
- University of Kansas Cancer Center , Kansas City , KS 66160 , USA
| |
Collapse
|
155
|
Zhang K, Yue Y, Wu S, Liu W, Shi J, Zhang Z. Rapid Capture and Nondestructive Release of Extracellular Vesicles Using Aptamer-Based Magnetic Isolation. ACS Sens 2019; 4:1245-1251. [PMID: 30915846 DOI: 10.1021/acssensors.9b00060] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) play important roles in cell-cell communication by transferring cargo proteins and nucleic acids between cells. Due to their small size (50-150 nm) and low density, rapid capture and nondestructive release of EVs remains a technical challenge which significantly hinders study of their biofunction and biomedical application. To address this issue, we designed a DNA aptamer-based system that enabled rapid capture and nondestructive release of EVs in 90 min with similar isolation efficiency to ultracentrifugation (around 78%). Moreover, because we designed a DNA structure-switch process to release the exosomes, the isolated EVs maintained high bioactivity in cell-uptake assay and wound-healing assays. Using this method, we can isolate EVs from clinical samples and found that the amount of MUC1 positive EVs in breast cancer patient plasma sample is significantly higher than that in healthy donors. This DNA aptamer-based magnetic isolation strategy can be potentially applied for the biofunction study of EVs and EV-based point-of-care clinical tests.
Collapse
Affiliation(s)
- Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| | - Yale Yue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan Province, 450001, China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
| |
Collapse
|
156
|
Gao X, Li S, Ding F, Fan H, Shi L, Zhu L, Li J, Feng J, Zhu X, Zhang C. Rapid Detection of Exosomal MicroRNAs Using Virus‐Mimicking Fusogenic Vesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xihui Gao
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Sha Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
- Medical CollegeAnhui University of Science and Technology 168th Taifeng Road Huainan 232001 China
| | - Fei Ding
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hongjia Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Leilei Shi
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Lijuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jing Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Jing Feng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
157
|
Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019; 11:eaav8521. [PMID: 31092696 PMCID: PMC7104415 DOI: 10.1126/scitranslmed.aav8521] [Citation(s) in RCA: 651] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-sized, lipid membrane-enclosed vesicles secreted by most, if not all, cells and contain lipids, proteins, and various nucleic acid species of the source cell. EVs act as important mediators of intercellular communication that influence both physiological and pathological conditions. Given their ability to transfer bioactive components and surmount biological barriers, EVs are increasingly being explored as potential therapeutic agents. EVs can potentiate tissue regeneration, participate in immune modulation, and function as potential alternatives to stem cell therapy, and bioengineered EVs can act as delivery vehicles for therapeutic agents. Here, we cover recent approaches and advances of EV-based therapies.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
- Evox Therapeutics Limited, Medawar Centre, Robert Robinson Avenue, Oxford OX4 4HG, UK
| | - Meadhbh Á Brennan
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- INSERM UMR 1238, PhyOS, Faculty of Medicine, Université de Nantes, 44034 Nantes cedex 1, France
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
- Evox Therapeutics Limited, Medawar Centre, Robert Robinson Avenue, Oxford OX4 4HG, UK
| |
Collapse
|
158
|
Zhang P, Yeo JC, Lim CT. Advances in Technologies for Purification and Enrichment of Extracellular Vesicles. SLAS Technol 2019; 24:477-488. [PMID: 31088199 DOI: 10.1177/2472630319846877] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-bound vesicles secreted by cells. Subtypes of EVs such as microvesicles and exosomes are further categorized mainly by their different biogenesis mechanisms. EVs have been revealed to play an important role in disease diagnosis and intercellular communication. Despite the wide interest in EVs, the technologies for the purification and enrichment of EVs are still in their infancy. The isolation of EVs, especially exosomes, is inherently challenging due to their small size and heterogeneity. In this review, we mainly introduce the advances of techniques in isolating microvesicles and exosomes according to their approaches. Also, we discuss the limitations of currently reported technologies in terms of their specificity and efficiency, and provide our thoughts about future developments of EV purification and enrichment technology.
Collapse
Affiliation(s)
- Pan Zhang
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation & Technology, National University of Singapore, Singapore
| | - Chwee Teck Lim
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore.,Institute for Health Innovation & Technology, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore
| |
Collapse
|
159
|
Notarangelo M, Zucal C, Modelska A, Pesce I, Scarduelli G, Potrich C, Lunelli L, Pederzolli C, Pavan P, la Marca G, Pasini L, Ulivi P, Beltran H, Demichelis F, Provenzani A, Quattrone A, D'Agostino VG. Ultrasensitive detection of cancer biomarkers by nickel-based isolation of polydisperse extracellular vesicles from blood. EBioMedicine 2019; 43:114-126. [PMID: 31047861 PMCID: PMC6558028 DOI: 10.1016/j.ebiom.2019.04.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/06/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are secreted membranous particles intensively studied for their potential cargo of diagnostic markers. Efficient and cost-effective isolation methods need to be established for the reproducible and high-throughput study of EVs in the clinical practice. METHODS We designed the nickel-based isolation (NBI) to rapidly isolate EVs and combined it with newly-designed amplified luminescent proximity homogeneous assay or digital PCR to detect biomarkers of clinical utility. FINDINGS From plasma of 46 healthy donors, we systematically recovered small EV (~250 nm of mean diameter; ~3 × 1010/ml) and large EV (~560 nm of mean diameter; ~5 × 108/ml) lineages ranging from 50 to 700 nm, which displayed hematopoietic/endothelial cell markers that were also used in spike-in experiments using EVs from tumor cell lines. In retrospective studies, we detected picomolar concentrations of prostate-specific membrane antigen (PSMA) in fractions of EVs isolated from the plasma of prostate cancer patients, discriminating them from control subjects. Directly from oil-encapsulated EVs for digital PCR, we identified somatic BRAF and KRAS mutations circulating in the plasma of metastatic colorectal cancer (CRC) patients, matching 100% of concordance with tissue diagnostics. Importantly, with higher sensitivity and specificity compared with immuno-isolated EVs, we revealed additional somatic alterations in 7% of wild-type CRC cases that were subsequently validated by further inspections in the matched tissue biopsies. INTERPRETATION We propose NBI-combined approaches as simple, fast, and robust strategies to probe the tumor heterogeneity and contribute to the development of EV-based liquid biopsy studies. FUND: Associazione Italiana per la Ricerca sul Cancro (AIRC), Fondazione Cassa di Risparmio Trento e Rovereto (CARITRO), and the Italian Ministero Istruzione, Università e Ricerca (Miur).
Collapse
Affiliation(s)
- Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Chiara Zucal
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Angelika Modelska
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Isabella Pesce
- Cell Analysis and Separation Core Facility (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Giorgina Scarduelli
- Advanced Imaging Core Facility (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Cristina Potrich
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Cecilia Pederzolli
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Paola Pavan
- Immunohematology and Cell Factory Unit, Meyer Children's University Hospital, Viale Pieraccini 24, Florence 50139, Italy
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, Centro di Eccellenza Denothe, Aou Meyer University of Florence, Viale Pieraccini 6, 50139, Italy
| | - Luigi Pasini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, Meldola 47014, Italy
| | - Paola Ulivi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, Meldola 47014, Italy
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Vito G D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy.
| |
Collapse
|
160
|
Zhou X, Luo B, Kang K, Zhang Y, Jiang P, Lan F, Yi Q, Wu Y. Leukocyte-Repelling Biomimetic Immunomagnetic Nanoplatform for High-Performance Circulating Tumor Cells Isolation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900558. [PMID: 30932344 DOI: 10.1002/smll.201900558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Indexed: 05/20/2023]
Abstract
Downstream studies of circulating tumor cells (CTCs), which may provide indicative evaluation information for therapeutic efficacy, cancer metastases, and cancer prognosis, are seriously hindered by the poor purity of enriched CTCs as large amounts of interfering leukocytes still nonspecifically bind to the isolation platform. In this work, biomimetic immunomagnetic nanoparticles (BIMNs) with the following features are designed: i) the leukocyte membrane camouflage, which could greatly reduce homologous leukocyte interaction and actualize high-purity CTCs isolation, is easily extracted by graphene nanosheets; ii) facile antibody conjugation can be achieved through the "insertion" of biotinylated lipid molecules into leukocyte-membrane-coated nanoparticles and streptavidin conjunction; iii) layer-by-layer assembly techniques could integrate high-magnetization Fe3 O4 nanoparticles and graphene nanosheets efficiently. Consequently, the resulting BIMNs achieve a capture efficiency above 85.0% and CTCs purity higher than 94.4% from 1 mL blood with 20-200 CTCs after 2 min incubation. Besides, 98.0% of the isolated CTCs remain viable and can be directly cultured in vitro. Moreover, application of the BIMNs to cancer patients' peripheral blood shows good reproducibility (mean relative standard deviation 8.7 ± 5.6%). All results above suggest that the novel biomimetic nanoplatform may serve as a promising tool for CTCs enrichment and detection from clinical samples.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yujia Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Peipei Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
161
|
Wang S, Wang J, Wei W, Ma G. Exosomes: The Indispensable Messenger in Tumor Pathogenesis and the Rising Star in Antitumor Applications. ACTA ACUST UNITED AC 2019; 3:e1900008. [PMID: 32627408 DOI: 10.1002/adbi.201900008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Indexed: 12/27/2022]
Abstract
As natural secreted nanovesicles through the endolysosomal pathway, exosomes have attracted increasing attention over the past decades. An overwhelming number of studies have provided evidence for the intriguing roles that exosomes play in intercellular communication. They are widely involved in the transmission of biomolecule cargos between original cells and neighboring/distant cells in normal physiological processes. In addition, it has also been demonstrated that exosomes play vital roles in multiple biological pathways in the development of numerous diseases including cancer. Moreover, both natural and modified exosomes showed promising potential in serving as a versatile nanoplatform for cancer diagnosis and cancer therapy. This review aims to present a comprehensive and critical overview on the recent advances in exosome nanoscience and nanotechnology, ranging from their biogenesis, secretion, isolation, and biological function in tumor pathogenesis to their extensive antitumor applications.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
162
|
Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng 2019; 3:438-451. [PMID: 31123323 PMCID: PMC6556143 DOI: 10.1038/s41551-019-0356-9] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
The performance of current microfluidic methods for exosome detection is constrained by boundary conditions, as well as fundamental limits to microscale mass transfer and interfacial exosome binding. Here, we show that a microfluidic chip designed with self-assembled three-dimensional herringbone nanopatterns can detect low levels of tumour-associated exosomes in plasma (10 exosomes μl-1, or approximately 200 vesicles per 20 μl of spiked sample) that would otherwise be undetectable by standard microfluidic systems for biosensing. The nanopatterns promote microscale mass transfer, increase surface area and probe density to enhance the efficiency and speed of exosome binding, and permit drainage of the boundary fluid to reduce near-surface hydrodynamic resistance, thus promoting particle-surface interactions for exosome binding. We used the device for the detection-in 2 μl plasma samples from 20 ovarian cancer patients and 10 age-matched controls-of exosome subpopulations expressing CD24, epithelial cell adhesion molecule and folate receptor alpha proteins, and suggest exosomal folate receptor alpha as a potential biomarker for early detection and progression monitoring of ovarian cancer. The nanolithography-free nanopatterned device should facilitate the use of liquid biopsies for cancer diagnosis.
Collapse
|
163
|
Chen J, Xu Y, Wang X, Liu D, Yang F, Zhu X, Lu Y, Xing W. Rapid and efficient isolation and detection of extracellular vesicles from plasma for lung cancer diagnosis. LAB ON A CHIP 2019; 19:432-443. [PMID: 30604797 DOI: 10.1039/c8lc01193a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanoscale vesicles that provide promising biomarkers for the non-invasive diagnosis of cancer because they carry important cancer-related DNA, RNA and protein biomarkers. However, the clinical application of EVs is limited by tedious and non-standardized isolation methods that require bulky instrumentation. Here, we propose an easy-to-operate, simple dielectrophoretic (DEP) method for EV isolation with higher recovery efficiency (>83%) and higher purity than ultracentrifugation (UC). The DEP chip reduces the isolation procedure from 8 h to 30 min. To facilitate subsequent analysis, our DEP chip achieved integration of EV isolation and in situ lysis of EVs for the first time. Our chip also achieved on-chip siRNA delivery to EVs isolated by DEP. We found that EVs isolated from the plasma of lung cancer patients contained higher levels of miR-21, miR-191 and miR-192 compared to those from healthy people. With on-chip detection, EGFR in EVs could distinguish lung cancer patients from healthy people. Overall, this study provides an efficient and practical approach to the isolation and detection of EVs, which could be used for the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Junge Chen
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Yang Y, Li C, Shi H, Chen T, Wang Z, Li G. A pH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta 2019; 192:325-330. [DOI: 10.1016/j.talanta.2018.09.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022]
|
165
|
Chen Y, Wang L, Guo D, Sheng C, Dai H, Shi X, Zhang W, Huang Q, Peng C, Chen W. A rapid and efficient technique for liposomal and nonliposomal drug pharmacokinetics studies using magnetic nanoprobes and its application to leakage kinetics of liposomes. J Chromatogr A 2018; 1580:2-11. [PMID: 30391033 DOI: 10.1016/j.chroma.2018.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
Currently, the pharmacokinetics of liposomes was researched in vivo by measuring the total amount of drug in plasma. This method of using the total drug amount instead of the free drug amount virtually increase the apparent exposure and apparent biological distribution. To solve this problem, we developed a rapid and efficient method by using well-established streptavidin-functional Fe3O4@PDA as the separation nanoprobes to efficiently isolate biotin-labeled DTX-liposomes over 75% from plasma in the presence of magnetic field. The isolation procedure takes only 20 min and the concentration of DTX in liposomes from plasma was determined by LC-MS/MS. The method for the determination of DTX in plasma was linear in the range of 5-5000 ng/mL, and the correlation coefficient was 0.9989. Results obtained in this study clearly demonstrated that the pharmacokinetic parameters of non-liposomal drug and total drug are different in vivo. Therefore, traditional method for studying the pharmacokinetics of liposomes in vivo is unreasonable, and the new method mentioned here provided a strategy for studying the pharmacokinetics of liposomes.
Collapse
Affiliation(s)
- Yunna Chen
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Lei Wang
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China.
| | - Dongdong Guo
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chenming Sheng
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Haozhi Dai
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Xiaoyan Shi
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Wenjing Zhang
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Qianqian Huang
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Can Peng
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Weidong Chen
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China.
| |
Collapse
|
166
|
Wan Y, Liu B, Lei H, Zhang B, Wang Y, Huang H, Chen S, Feng Y, Zhu L, Gu Y, Zhang Q, Ma H, Zheng SY. Nanoscale extracellular vesicle-derived DNA is superior to circulating cell-free DNA for mutation detection in early-stage non-small-cell lung cancer. Ann Oncol 2018; 29:2379-2383. [PMID: 30339193 PMCID: PMC6311950 DOI: 10.1093/annonc/mdy458] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The comparison between relatively intact nanoscale extracellular vesicle-derived DNA (nEV-DNA) and fragmented circulating cell-free DNA (cfDNA) in mutation detection among patients with non-small-cell lung cancer (NSCLC) has not been carried out yet, and thus deserves investigation. Patients and methods Both nEV-DNA and cfDNA was obtained from 377 NSCLC patients with known EGFR mutation status and 69 controls. The respective EGFRE19del/T790M/L858R mutation status was interrogated with amplification-refractory-mutation-system-based PCR assays (ARMS-PCR). Results Neither nEV-DNA nor cfDNA levels show a strong correlation with tumor volumes. There is no correlation between cfDNA and nEV-DNA levels either. The detection sensitivity of nEV-DNA and cfDNA using ARMS-PCR in early-stage NSCLC was 25.7% and 14.2%, respectively, with 96.6% and 91.7% specificity, respectively. In late-stage NSCLC, both nEV-DNA and cfDNA show ∼80% sensitivity and over 95% specificity. Conclusions nEV-DNA is superior to cfDNA for mutation detection in early-stage NSCLC using ARMS-PCR. However, the advantages vanish in late-stage NSCLC.
Collapse
Affiliation(s)
- Y Wan
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, USA; Penn State Material Research Institute, The Pennsylvania State University, University Park, USA
| | - B Liu
- Department of Pathology, Suzhou Municipal Hospital, Affiliate Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - H Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; PerMed Biomedicine Institute, Shanghai, China
| | - B Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Y Wang
- PerMed Biomedicine Institute, Shanghai, China
| | - H Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - S Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Y Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - L Zhu
- PerMed Biomedicine Institute, Shanghai, China
| | - Y Gu
- PerMed Biomedicine Institute, Shanghai, China
| | - Q Zhang
- PerMed Biomedicine Institute, Shanghai, China
| | - H Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - S-Y Zheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, USA; Penn State Material Research Institute, The Pennsylvania State University, University Park, USA; Penn State Cancer Institute, University Park, USA; Department of Electrical Engineering, The Pennsylvania State University, University Park, USA.
| |
Collapse
|
167
|
Chen J, Xu Y, Lu Y, Xing W. Isolation and Visible Detection of Tumor-Derived Exosomes from Plasma. Anal Chem 2018; 90:14207-14215. [PMID: 30372048 DOI: 10.1021/acs.analchem.8b03031] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes are nanosized extracellular vesicles (ranging from 30 to 120 nm) released from many cells that provide promising biomarkers for the noninvasive diagnosis of cancer. However, traditional exosome-isolation methods are tedious, nonstandardized, and require bulky instrumentation, thus limiting its clinical applications. In this paper, an anion-exchange (AE)-based isolation method was first proposed to isolate exosomes directly from plasma and cell-culture medium with AE magnetic beads within 30 min. Exosomes isolated with AE magnetic beads had higher recovery efficiency (>90%) and less protein impurities than those isolated by ultracentrifugation (UC). Prostate-cancer (PCa) exosomes in plasma were detected in a visual, label-free, and quantitative manner with aptamer-capped Fe3O4 nanoparticles for the first time. The linear range of PCa exosomes was estimated from 0.4 × 108 to 6.0 × 108 particles/mL with a detection limit of 3.58 × 106 particles/mL. The present study provides an efficient and practical approach for the rapid isolation and visible detection of exosomes, which is promising for the early diagnosis of PCa.
Collapse
Affiliation(s)
- Junge Chen
- School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Youchun Xu
- School of Medicine , Tsinghua University , Beijing 100084 , China.,National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Ying Lu
- School of Medicine , Tsinghua University , Beijing 100084 , China.,National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Wanli Xing
- School of Medicine , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou 310003 , China
| |
Collapse
|
168
|
Zhang P, Samuel G, Crow J, Godwin AK, Zeng Y. Molecular assessment of circulating exosomes toward liquid biopsy diagnosis of Ewing sarcoma family of tumors. Transl Res 2018; 201:136-153. [PMID: 30031766 PMCID: PMC6424494 DOI: 10.1016/j.trsl.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 12/16/2022]
Abstract
Ewing sarcoma was first described in 1921 in the Proceedings of the New York Pathological Society by an eminent American pathologist from Cornell named James R. Ewing as a "diffuse endothelioma of bone." Since this initial description, more has been discovered regarding Ewing sarcoma and in the 1980's both Ewing sarcoma and peripheral primitive neuroectodermal tumors due to their similar features and shared identical genetic abnormality were grouped into a class of cancers entitled Ewing sarcoma family of tumors (ESFTs). Ewing sarcoma is the second most common pediatric osseous malignancy followed by osteosarcoma, with highest incidence among 10-20 years old. Ewing sarcoma is consistently associated with chromosomal translocation and functional fusion of the EWSR1 gene to any of several structurally related transcription factor genes of the E26 transformation-specific family. These tumor-specific molecular rearrangements are useful for primary diagnosis, may provide prognostic information, and present potential therapeutic targets. Therefore, ways to rapidly and efficiently detect these defining genomic alterations are of clinical relevance. Within the past decade, liquid biopsies including extracellular vesicles (EVs), have emerged as a promising alternative and/or complimentary approach to standard tumor biopsies. It was recently reported that fusion mRNAs from tumor-specific chromosome translocations can be detected in Ewing sarcoma cell-derived exosomes. Within this review, we overview the current advances in Ewing sarcoma and the opportunities and challenges in exploiting circulating exosomes, primarily small bioactive EVs (30-180 nm), as developing sources of biomarkers for diagnosis and therapeutic response monitoring in children and young adult patients with ESFT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, University of Kansas, Lawrence, Kansas
| | - Glenson Samuel
- Division of Hematology, Oncology and Bone Marrow Transplant, Children's Mercy Hospitals & Clinics, Kansas City, Missouri
| | - Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; University of Kansas Cancer Center, Kansas City, Kansas.
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, Kansas; University of Kansas Cancer Center, Kansas City, Kansas.
| |
Collapse
|
169
|
Wang W, Luo J, Wang S. Recent Progress in Isolation and Detection of Extracellular Vesicles for Cancer Diagnostics. Adv Healthc Mater 2018; 7:e1800484. [PMID: 30009550 DOI: 10.1002/adhm.201800484] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are emerging as one of the many new and promising biomarkers for liquid biopsy of cancer due to their loading capability of some specific proteins and nucleic acids that are closely associated with cancer states. As such, the isolation and detection of cancer-derived EVs offer important information in noninvasive diagnosis of early-stage cancer and real-time monitoring of cancer development. In light of the importance of EVs, over the last decade, researchers have made remarkable innovations to advance the development of EV isolation and detection methods by taking advantage of microfluidics, biomolecule probes, nanomaterials, surface plasmon, optics, and so on. This review introduces the basic properties of EVs and common cancer-derived EV ingredients, and provides a comprehensive overview of EV isolation and detection strategies, with emphasis on liquid biopsies of EVs for cancer diagnostics.
Collapse
Affiliation(s)
- Wenshuo Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jing Luo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
170
|
Cheng HL, Fu CY, Kuo WC, Chen YW, Chen YS, Lee YM, Li KH, Chen C, Ma HP, Huang PC, Wang YL, Lee GB. Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system. LAB ON A CHIP 2018; 18:2917-2925. [PMID: 30118128 DOI: 10.1039/c8lc00386f] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
According to World Health Organization reports, cardiovascular diseases (CVDs) are amongst the major causes of death globally and are responsible for over 18 million deaths every year. Traditional detection methods for CVDs include cardiac computerized tomography scans, electrocardiography, and myocardial perfusion imaging scans. Although diagnosis of CVDs through such bio-imaging techniques is common, these methods are relatively costly and cannot detect CVDs in their earliest stages. In contrast, the levels of certain micro RNA (miRNA) biomarkers extracted from extracellular vesicles (EVs) in the bloodstream have been recognized as promising indicators for early CVD detection. However, detection and quantification of miRNA using existing methods are relatively labor-intensive and time-consuming. In this study, a new integrated microfluidic system equipped with highly sensitive field-effect transistors (FETs) was capable of performing EV extraction, EV lysis, target miRNA isolation and miRNA detection within 5 h. The limit of detection was within the physiological range (femtomolar) for two targeted miRNAs, miR-21 and miR-126, meaning that this integrated microfluidic system has the potential to be used as a tool for early detection of CVDs.
Collapse
Affiliation(s)
- Hong-Lin Cheng
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan 30013.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Zhang P, Dong B, Zeng E, Wang F, Jiang Y, Li D, Liu D. In Vivo Tracking of Multiple Tumor Exosomes Labeled by Phospholipid-Based Bioorthogonal Conjugation. Anal Chem 2018; 90:11273-11279. [PMID: 30178994 DOI: 10.1021/acs.analchem.8b01506] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are cell-secreted nanoscale membrane vesicles that play critical roles in many pathophysiological processes. The clinical value of exosomes is under intense investigation, yet current knowledge regarding their in vivo properties is very limited because of the lack of efficient labeling techniques. Here, we report a phospholipid-based bioorthogonal labeling strategy to endow exosomes with optical probes without influencing their native biological functions. We investigated the dynamic in vivo biodistribution and organotropic uptake of multiple tumor exosomes in a single mouse. The results indicate that the exosomes derived from different cell lines show specific organotropic uptake. This phospholipid-based labeling strategy opens a new window to directly visualize and monitor exosome trafficking in living systems and holds great promise for exploring exosome-involved biological events such as cancer metastasis.
Collapse
Affiliation(s)
- Pengjuan Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Bo Dong
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Erzao Zeng
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Fengchao Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Ying Jiang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Dianqi Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| |
Collapse
|
172
|
Rehman FU, Du T, Shaikh S, Jiang X, Chen Y, Li X, Yi H, Hui J, Chen B, Selke M, Wang X. Nano in nano: Biosynthesized gold and iron nanoclusters cargo neoplastic exosomes for cancer status biomarking. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2619-2631. [PMID: 30130583 DOI: 10.1016/j.nano.2018.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023]
Abstract
Timely detection is crucial for successful treatment of cancer. The current study describes a new approach that involves utilization of the tumor cell environment for bioimaging with in-situ biosynthesized nanoscale gold and iron probes and subsequent dissemination of Au-Fe nanoclusters from cargo exosomes within the circulatory system. We have isolated the Au-Fe cargo exosomes from the blood of the treated murine models after in situ biosyntheses from their respective pre-ionic solutions (HAuCl4, FeCl2), whereas Na2SeO3 supplementation added into Au lethal effect. The microarray data of various differentially expressed genes revealed the up-regulated tumor ablation and metal binding genes in SGC-7901 cell lines after treatment with Au-Fe-Se triplet ionic solution. The isolation of Au-Fe nanoclusters cargo exosomes (nano in nano) after secretion from deeply seated tumors may help in early diagnosis and reveal the tumor ablation status during and after the relevant treatment like radio-chemo therapies et al.
Collapse
Affiliation(s)
- Fawad Ur Rehman
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tianyu Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Sana Shaikh
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xuerui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaoqi Li
- NanJing Foreign Language School, Nanjing, China
| | - Huan Yi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jiang Hui
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, USA
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
173
|
Zhang Y, Wu X, Andy Tao W. Characterization and Applications of Extracellular Vesicle Proteome with Post-Translational Modifications. Trends Analyt Chem 2018; 107:21-30. [PMID: 31598025 DOI: 10.1016/j.trac.2018.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are a diverse population of complex membrane-encapsulated vesicles released by a variety of cell types and exist in most of body fluids. Continuously growing number of reports revealed that EVs participate in multiple biological processes, such as intercellular communication, immune regulation, and dissemination of cancer cells. Accordingly, recent attention has been given to the characterization of extracellular vesicles and their components. This review focuses on state-of-the-art proteomic technologies to analyze proteomes of EVs, especially their post-translational modifications (PTMs). With their strong biological relevance and the relatively noninvasive accessibility from body fluids, the promising potential and early applications of EV proteome and its PTMs as attracting biomarker sources are also evaluated.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.,Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
174
|
Mrowczynski OD, Zacharia BE, Connor JR. Exosomes and their implications in central nervous system tumor biology. Prog Neurobiol 2018; 172:71-83. [PMID: 30003942 DOI: 10.1016/j.pneurobio.2018.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 05/04/2018] [Accepted: 06/30/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are 20-100 nm cellular derived vesicles that upon discovery, were thought to be a form of cellular recycling of intracellular contents. More recently, these vesicles are under investigation for their purported significant roles in intercellular communication in both healthy and diseased states. Herein, we focus on the secretion of exosomes associated with glioblastoma, as most exosome studies on brain tumors have been performed in this tumor type. However, we included exosomes secreted from other forms of brain tumors for comparison as available. Exosomes contain intracellular content that can be transferred to other cells in the tumor or to cells of the immune system and endothelial cells. These recipient cells may subsequently take on oncogenic properties, including therapeutic resistance, cancer progression, and angiogenesis. Genetic components (DNA, RNA and miRNA) of the cell of origin may be included in the secreted exosomes. The presence of genetic material in the exosomes could serve as a biomarker for mutations in tumors, potentially leading to novel treatment strategies. In the last decade, exosomes have been identified as having a major impact on multiple aspects of medicine and tumor biology, and appear to be primed for a critical position in cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Oliver D Mrowczynski
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
175
|
He F, Wang J, Yin BC, Ye BC. Quantification of Exosome Based on a Copper-Mediated Signal Amplification Strategy. Anal Chem 2018; 90:8072-8079. [PMID: 29890831 DOI: 10.1021/acs.analchem.8b01187] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exosomes, a class of small extracellular vesicles, play important roles in various physiological and pathological processes by serving as vehicles for transferring and delivering membrane and cytosolic molecules between cells. Since exosomes widely exist in various body fluids and carry molecular information on their originating cells, they are being regarded as potential noninvasive biomarkers. Nevertheless, the development of convenient and quantitative exosome analysis methods is still technically challenging. Here, we present a low-cost assay for direct capture and rapid detection of exosomes based on a copper-mediated signal amplification strategy. The assay involves three steps. First, bulk nanovesicles are magnetically captured by cholesterol-modified magnetic beads (MB) via hydrophobic interaction between cholesterol moieties and lipid membranes. Second, bead-binding nanovesicles of exosomes with a specific membrane protein are anchored with aptamer-modified copper oxide nanoparticles (CuO NPs) to form sandwich complexes (MB-exosome-CuO NP). Third, the resultant sandwich complexes are dissolved by acidolysis to turn CuO NP into copper(II) ions (Cu2+), which can be reduced to fluorescent copper nanoparticles (CuNPs) by sodium ascorbate in the presence of poly(thymine). The fluorescence emission of CuNPs increases with the increase of Cu2+ concentration, which is directly proportional to the concentration of exosomes. Our method allows quantitative analysis of exosomes in the range of 7.5 × 104 to 1.5 × 107 particles/μL with a detection of limit of 4.8 × 104 particles/μL in biological sample. The total working time is about 2 h. The assay has the potential to be a simple and cost-effective method for routine exosome analysis in biological samples.
Collapse
Affiliation(s)
- Fang He
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Jing Wang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , Zhejiang , China.,School of Chemistry and Chemical Engineering , Shihezi University , Xinjiang 832000 , China
| |
Collapse
|
176
|
Cheng G, Li W, Ha L, Han X, Hao S, Wan Y, Wang Z, Dong F, Zou X, Mao Y, Zheng SY. Self-Assembly of Extracellular Vesicle-like Metal-Organic Framework Nanoparticles for Protection and Intracellular Delivery of Biofunctional Proteins. J Am Chem Soc 2018; 140:7282-7291. [PMID: 29809001 DOI: 10.1021/jacs.8b03584] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intracellular delivery of biofunctional enzymes or therapeutic proteins through systemic administration is of great importance in therapeutic intervention of various diseases. However, current strategies face substantial challenges owing to various biological barriers, including susceptibility to protein degradation and denaturation, poor cellular uptake, and low transduction efficiency into the cytosol. Here, we developed a biomimetic nanoparticle platform for systemic and intracellular delivery of proteins. Through a biocompatible strategy, guest proteins are caged in the matrix of metal-organic frameworks (MOFs) with high efficiency (up to ∼94%) and high loading content up to ∼50 times those achieved by surface conjunction, and the nanoparticles were further decorated with the extracellular vesicle (EV) membrane with an efficiency as high as ∼97%. In vitro and in vivo study manifests that the EV-like nanoparticles can not only protect proteins against protease digestion and evade the immune system clearance but also selectively target homotypic tumor sites and promote tumor cell uptake and autonomous release of the guest protein after internalization. Assisted by biomimetic nanoparticles, intracellular delivery of the bioactive therapeutic protein gelonin significantly inhibits the tumor growth in vivo and increased 14-fold the therapeutic efficacy. Together, our work not only proposes a new concept to construct a biomimetic nanoplatform but also provides a new solution for systemic and intracellular delivery of protein.
Collapse
|
177
|
Tian Q, He C, Liu G, Zhao Y, Hui L, Mu Y, Tang R, Luo Y, Zheng S, Wang B. Nanoparticle Counting by Microscopic Digital Detection: Selective Quantitative Analysis of Exosomes via Surface-Anchored Nucleic Acid Amplification. Anal Chem 2018; 90:6556-6562. [DOI: 10.1021/acs.analchem.8b00189] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qingchang Tian
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029 China
| | - Chuanjiang He
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029 China
| | - Guowu Liu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029 China
| | - Yueqi Zhao
- Center for Biomaterials and Biopathways and Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
| | - Lanlan Hui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029 China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of CyberSystems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways and Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
| | - Yan Luo
- College of Biomedical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029 China
| |
Collapse
|
178
|
Lewis JM, Vyas AD, Qiu Y, Messer KS, White R, Heller MJ. Integrated Analysis of Exosomal Protein Biomarkers on Alternating Current Electrokinetic Chips Enables Rapid Detection of Pancreatic Cancer in Patient Blood. ACS NANO 2018; 12:3311-3320. [PMID: 29570265 DOI: 10.1021/acsnano.7b08199] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) typically has nonspecific symptoms and is often found too late to treat. Because diagnosis of PDAC involves complex, invasive, and expensive procedures, screening populations at increased risk will depend on developing rapid, sensitive, specific, and cost-effective tests. Exosomes, which are nanoscale vesicles shed into blood from tumors, have come into focus as valuable entities for noninvasive liquid biopsy diagnostics. However, rapid capture and analysis of exosomes with their protein and other biomarkers have proven difficult. Here, we present a simple method integrating capture and analysis of exosomes and other extracellular vesicles directly from whole blood, plasma, or serum onto an AC electrokinetic microarray chip. In this process, no pretreatment or dilution of sample is required, nor is it necessary to use capture antibodies or other affinity techniques. Subsequent on-chip immunofluorescence analysis permits specific identification and quantification of target biomarkers within as little as 30 min total time. In this initial validation study, the biomarkers glypican-1 and CD63 were found to reflect the presence of PDAC and thus were used to develop a bivariate model for detecting PDAC. Twenty PDAC patient samples could be distinguished from 11 healthy subjects with 99% sensitivity and 82% specificity. In a smaller group of colon cancer patient samples, elevated glypican-1 was observed for metastatic but not for nonmetastatic disease. The speed and simplicity of ACE exosome capture and on-chip biomarker detection, combined with the ability to use whole blood, will enable seamless "sample-to-answer" liquid biopsy screening and improve early stage cancer diagnostics.
Collapse
|
179
|
Manandhar S, Kothandan VK, Oh J, Yoo SH, Hwang J, Hwang SR. A pharmaceutical investigation into exosomes. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0391-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
180
|
Fang X, Duan Y, Adkins GB, Pan S, Wang H, Liu Y, Zhong W. Highly Efficient Exosome Isolation and Protein Analysis by an Integrated Nanomaterial-Based Platform. Anal Chem 2018; 90:2787-2795. [PMID: 29381333 PMCID: PMC5820131 DOI: 10.1021/acs.analchem.7b04861] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes play important roles in mediating intercellular communication and regulating a variety of biological processes, but clear understanding of their functions and biogenesis has not been achieved, due to the high technical difficulties involved in analysis of small vesicular structures that contain a high proportion of membrane structures. Herein, we designed a novel approach to integrate two nanomaterials carrying varied surface properties, the hydrophilic, macroporous graphene foam (GF) and the amphiphilic periodic mesoporous organosilica (PMO), for efficient exosome isolation from human serum and effective protein profiling. The high specific surface area of GF, after modification with the antibody against the exosomal protein marker, CD63, allowed highly specific isolation of exosomes from complex biological samples with high recovery. Since the organic solvent, methanol, turned out to be the most effective lysis solution for releasing the exosomal proteins, the amphiphilic PMO was employed to rapidly recover the exosomal proteins, including the highly hydrophobic membrane proteins. The fine pores of PMO also acted as the nanoreactors to accelerate protein digestion that produced peptides subject to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 334 proteins with 111 membrane proteins [31% of these contained >2 transmembrane domains (TMD)] were identified using the integrated GF/PMO platform. In contrast, with the commercial exosome isolation kit and the in-solution protein digestion method, only 151 proteins were found, with 28 being membrane proteins (only one contained three TMDs). Our results support that the integrated GF/PMO platform is of great value to facilitate the comprehensive characterization of exosomal proteins for better understanding of their functions and for identification of more exosome-based disease markers.
Collapse
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Yaokai Duan
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Gary Brent Adkins
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Songqin Pan
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Hua Wang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
- Yancheng Normal University, Jiangsu, China
| | - Yang Liu
- Environmental Toxicology Program, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A
- Environmental Toxicology Program, University of California-Riverside, Riverside, CA 92521, U.S.A
| |
Collapse
|
181
|
Boriachek K, Islam MN, Möller A, Salomon C, Nguyen NT, Hossain MSA, Yamauchi Y, Shiddiky MJA. Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702153. [PMID: 29282861 DOI: 10.1002/smll.201702153] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/26/2017] [Indexed: 05/20/2023]
Abstract
Exosomes are nanoscale (≈30-150 nm) extracellular vesicles of endocytic origin that are shed by most types of cells and circulate in bodily fluids. Exosomes carry a specific composition of proteins, lipids, RNA, and DNA and can work as cargo to transfer this information to recipient cells. Recent studies on exosomes have shown that they play an important role in various biological processes, such as intercellular signaling, coagulation, inflammation, and cellular homeostasis. These functional roles are attributed to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting the physiological and pathological conditions in various diseases, including cancer and neurodegenerative, infectious, and autoimmune diseases (e.g., cancer initiation, progression, and metastasis). Due to these unique characteristics, exosomes are considered promising biomarkers for the diagnosis and prognosis of various diseases via noninvasive or minimally invasive procedures. Over the last decade, a plethora of methodologies have been developed for analyzing disease-specific exosomes using optical and nonoptical tools. Here, the major biological functions, significance, and potential role of exosomes as biomarkers and therapeutics are discussed. Furthermore, an overview of the most commonly used techniques for exosome analysis, highlighting the major technical challenges and limitations of existing techniques, is presented.
Collapse
Affiliation(s)
- Kseniia Boriachek
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW, 2519, Australia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW, 2519, Australia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, 305-0044, Japan
| | - Muhammad J A Shiddiky
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
182
|
Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, Fang Y, Xia Y, Cheng G, He X, Zheng SY. Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Res 2018; 78:798-808. [PMID: 29217761 PMCID: PMC5811376 DOI: 10.1158/0008-5472.can-17-2880] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Extracellular nanovesicles (ENV) released by many cells contain lipids, proteins, and nucleic acids that contribute to intercellular communication. ENVs have emerged as biomarkers and therapeutic targets but they have also been explored as drug delivery vehicles. However, for the latter application, clinical translation has been limited by low yield and inadequate targeting effects. ENV vectors with desired targeting properties can be produced from parental cells engineered to express membrane-bound targeting ligands, or they can be generated by fusion with targeting liposomes; however, neither approach has met clinical requirements. In this study, we demonstrate that mechanical extrusion of approximately 107 cells grafted with lipidated ligands can generate cancer cell-targeting ENV and can be prepared in approximately 1 hour. This rapid and economic approach could pave the way for clinical implementation in the future.Significance: A new and rapid method for production of drug-targeting nanovesicles has implications for cancer treatment by chimeric antigen receptor T cells and other therapies. Cancer Res; 78(3); 798-808. ©2017 AACR.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania.
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Lixue Wang
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Chuandong Zhu
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Qin Zheng
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | | | - Jinlong Tong
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Yuan Fang
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Gong Cheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Xia He
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania.
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
183
|
Ko J, Bhagwat N, Yee SS, Ortiz N, Sahmoud A, Black T, Aiello NM, McKenzie L, O'Hara M, Redlinger C, Romeo J, Carpenter EL, Stanger BZ, Issadore D. Combining Machine Learning and Nanofluidic Technology To Diagnose Pancreatic Cancer Using Exosomes. ACS NANO 2017; 11:11182-11193. [PMID: 29019651 DOI: 10.1021/acsnano.7b05503] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Circulating exosomes contain a wealth of proteomic and genetic information, presenting an enormous opportunity in cancer diagnostics. While microfluidic approaches have been used to successfully isolate cells from complex samples, scaling these approaches for exosome isolation has been limited by the low throughput and susceptibility to clogging of nanofluidics. Moreover, the analysis of exosomal biomarkers is confounded by substantial heterogeneity between patients and within a tumor itself. To address these challenges, we developed a multichannel nanofluidic system to analyze crude clinical samples. Using this platform, we isolated exosomes from healthy and diseased murine and clinical cohorts, profiled the RNA cargo inside of these exosomes, and applied a machine learning algorithm to generate predictive panels that could identify samples derived from heterogeneous cancer-bearing individuals. Using this approach, we classified cancer and precancer mice from healthy controls, as well as pancreatic cancer patients from healthy controls, in blinded studies.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Neha Bhagwat
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Stephanie S Yee
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Natalia Ortiz
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Amine Sahmoud
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Taylor Black
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Nicole M Aiello
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Lydie McKenzie
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Mark O'Hara
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Colleen Redlinger
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Janae Romeo
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Erica L Carpenter
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Ben Z Stanger
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - David Issadore
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
184
|
He F, Liu H, Guo X, Yin BC, Ye BC. Direct Exosome Quantification via Bivalent-Cholesterol-Labeled DNA Anchor for Signal Amplification. Anal Chem 2017; 89:12968-12975. [PMID: 29139297 DOI: 10.1021/acs.analchem.7b03919] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fang He
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Liu
- The
Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Xinggang Guo
- The
Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Bin-Cheng Yin
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, China
- Collaborative
Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,
College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
185
|
A comprehensive overview of exosomes in ovarian cancer: emerging biomarkers and therapeutic strategies. J Ovarian Res 2017; 10:73. [PMID: 29100532 PMCID: PMC5670635 DOI: 10.1186/s13048-017-0368-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanoparticles(40-100 nm) secreted by most cells in the body, which can be isolated from several types of extracellular fluids. It has been shown that exosomes play a key role in intercellular communication and in transportation of genetic information. Emerging evidence shows that exosomes are mediators of metastasis in tumour cells, stromal cells and the extracellular matrix component through the shuttling of cargo, such as proteins, lipids, RNAs, double-stranded DNAs, non-transcribed RNAs, and microRNAs. This phenomenon has been indicated in both tumourigenesis and drug resistance. In this review, we introduce new methods of exosome extraction, focusing on the emerging role of exosomes in ovarian cancer, and discuss their potential clinical applications.
Collapse
|
186
|
|