151
|
Jokura K, Shibata D, Yamaguchi K, Shiba K, Makino Y, Shigenobu S, Inaba K. CTENO64 Is Required for Coordinated Paddling of Ciliary Comb Plate in Ctenophores. Curr Biol 2019; 29:3510-3516.e4. [DOI: 10.1016/j.cub.2019.08.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
|
152
|
Liebeskind BJ, Aldrich RW, Marcotte EM. Ancestral reconstruction of protein interaction networks. PLoS Comput Biol 2019; 15:e1007396. [PMID: 31658251 PMCID: PMC6837550 DOI: 10.1371/journal.pcbi.1007396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022] Open
Abstract
The molecular and cellular basis of novelty is an active area of research in evolutionary biology. Until very recently, the vast majority of cellular phenomena were so difficult to sample that cross-species studies of biochemistry were rare and comparative analysis at the level of biochemical systems was almost impossible. Recent advances in systems biology are changing what is possible, however, and comparative phylogenetic methods that can handle this new data are wanted. Here, we introduce the term "phylogenetic latent variable models" (PLVMs, pronounced "plums") for a class of models that has recently been used to infer the evolution of cellular states from systems-level molecular data, and develop a new parameterization and fitting strategy that is useful for comparative inference of biochemical networks. We deploy this new framework to infer the ancestral states and evolutionary dynamics of protein-interaction networks by analyzing >16,000 predominantly metazoan co-fractionation and affinity-purification mass spectrometry experiments. Based on these data, we estimate ancestral interactions across unikonts, broadly recovering protein complexes involved in translation, transcription, proteostasis, transport, and membrane trafficking. Using these results, we predict an ancient core of the Commander complex made up of CCDC22, CCDC93, C16orf62, and DSCR3, with more recent additions of COMMD-containing proteins in tetrapods. We also use simulations to develop model fitting strategies and discuss future model developments.
Collapse
Affiliation(s)
- Benjamin J. Liebeskind
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Richard W. Aldrich
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
153
|
de Mendoza A, Hatleberg WL, Pang K, Leininger S, Bogdanovic O, Pflueger J, Buckberry S, Technau U, Hejnol A, Adamska M, Degnan BM, Degnan SM, Lister R. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat Ecol Evol 2019; 3:1464-1473. [PMID: 31558833 PMCID: PMC6783312 DOI: 10.1038/s41559-019-0983-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022]
Abstract
Vertebrates have highly methylated genomes at CpG positions, whereas invertebrates have sparsely methylated genomes. This increase in methylation content is considered a major regulatory innovation of vertebrate genomes. However, here we report that a sponge, proposed as the potential sister group to the rest of animals, has a highly methylated genome. Despite major differences in genome size and architecture, we find similarities between the independent acquisitions of the hypermethylated state. Both lineages show genome-wide CpG depletion, conserved strong transcription factor methyl-sensitivity and developmental methylation dynamics at 5-hydroxymethylcytosine enriched regions. Together, our findings trace back patterns associated with DNA methylation in vertebrates to the early steps of animal evolution. Thus, the sponge methylome challenges previous hypotheses concerning the uniqueness of vertebrate genome hypermethylation and its implications for regulatory complexity.
Collapse
Affiliation(s)
- Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.
| | - William L Hatleberg
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin Pang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sven Leininger
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Sam Buckberry
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Australian Research Council Centre for Excellence for Coral Reef Studies, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.
| |
Collapse
|
154
|
Okamura B, Long PF, Mydlarz LD. Chemical Responses to the Biotic and Abiotic Environment by Early Diverging Metazoans Revealed in the Post-Genomic Age. Integr Comp Biol 2019; 59:731-738. [PMID: 31353399 DOI: 10.1093/icb/icz125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For many years methodological constraints limited insights on the molecular biology of non-model organisms. However, the development of various sequencing platforms has led to an explosion of transcriptomic and genomic data on non-model systems. As a consequence the molecular drivers of organismal phenotypes are becoming clearer and the chemicals that animals use to detect and respond to their environments are increasingly being revealed-this latter area inspired our symposium theme. The papers in this volume broadly address this theme by their more specific focus in one of the following general areas: 1) sensory biology and the molecular basis of perception, 2) chemicals deployed to deal with the biotic and abiotic environment, and 3) chemical interactions along the parasite-mutualist continuum. Here we outline and synthesize the content of these papers-an exercise which demonstrates that sophisticated gene repertoires enable early diverging metazoans to encode many of the signaling, sensory, defensive, and offensive capacities typically associated with animals that have complex nervous systems. We then consider opportunities and associated challenges that may delay progress in comparative functional biochemistry, a reinvigorated field that can be expected to rapidly expand with new 'omics data. Future knowledge of chemical adaptations should afford new perspectives on the comparative evolution of chemical mediators.
Collapse
Affiliation(s)
- Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Paul F Long
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Laura D Mydlarz
- Department of Biology, University of Texas, Arlington, TX 76019-0498, USA
| |
Collapse
|
155
|
Sachkova M, Burkhardt P. Exciting times to study the identity and evolution of cell types. Development 2019; 146:146/18/dev178996. [DOI: 10.1242/dev.178996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The EMBO/EMBL Symposium on ‘The Identity and Evolution of Cell Types’ took place in Heidelberg, Germany, on 15-19 May 2019. The symposium, which brought together a diverse group of speakers addressing a wide range of questions in multiple model systems, provided a platform to discuss how the concept of a cell type should be considered in the era of single cell omics techniques and how cell type evolution can be studied.
Collapse
Affiliation(s)
- Maria Sachkova
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| |
Collapse
|
156
|
Elkhatib W, Smith CL, Senatore A. A Na + leak channel cloned from Trichoplax adhaerens extends extracellular pH and Ca 2+ sensing for the DEG/ENaC family close to the base of Metazoa. J Biol Chem 2019; 294:16320-16336. [PMID: 31527080 PMCID: PMC6827283 DOI: 10.1074/jbc.ra119.010542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Acid-sensitive ion channels belonging to the degenerin/epithelial sodium channel (DEG/ENaC) family activate in response to extracellular protons and are considered unique to deuterostomes. However, sensitivity to pH/protons is more widespread, where, for example, human ENaC Na+ leak channels are potentiated and mouse BASIC and Caenorhabditis elegans ACD-1 Na+ leak channels are blocked by extracellular protons. For many DEG/ENaC channels, extracellular Ca2+ ions modulate gating, and in some cases, the binding of protons and Ca2+ is interdependent. Here, we functionally characterize a DEG/ENaC channel from the early-diverging animal Trichoplax adhaerens, TadNaC6, that conducts Na+-selective leak currents in vitro sensitive to blockade by both extracellular protons and Ca2+. We determine that proton block is enhanced in low external Ca2+ concentration, whereas calcium block is enhanced in low external proton concentration, indicative of competitive binding of these two ligands to extracellular sites of the channel protein. TadNaC6 lacks most determinant residues for proton and Ca2+ sensitivity in other DEG/ENaC channels, and a mutation of one conserved residue (S353A) associated with Ca2+ block in rodent BASIC channels instead affected proton sensitivity, all indicative of independent evolution of H+ and Ca2+ sensitivity. Strikingly, TadNaC6 was potently activated by the general DEG/ENaC channel blocker amiloride, a rare feature only reported for the acid-activated channel ASIC3. The sequence and structural divergence of TadNaC6, coupled with its noncanonical functional features, provide unique opportunities for probing the proton, Ca2+, and amiloride regulation of DEG/ENaC channels and insight into the possible core-gating features of ancestral ion channels.
Collapse
Affiliation(s)
- Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Carolyn L Smith
- NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
157
|
Shafer MER. Cross-Species Analysis of Single-Cell Transcriptomic Data. Front Cell Dev Biol 2019; 7:175. [PMID: 31552245 PMCID: PMC6743501 DOI: 10.3389/fcell.2019.00175] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/12/2019] [Indexed: 01/30/2023] Open
Abstract
The ability to profile hundreds of thousands to millions of single cells using scRNA-sequencing has revolutionized the fields of cell and developmental biology, providing incredible insights into the diversity of forms and functions of cell types across many species. These technologies hold the promise of developing detailed cell type phylogenies which can describe the evolutionary and developmental relationships between cell types across species. This will require sampling of many species and taxa using single-cell transcriptomics, and methods to classify cell type homologies and diversifications. Many tools currently exist for analyzing single cell data and identifying cell types. However, cross-species comparisons are complicated by many biological and technical factors. These factors include batch effects common to deep-sequencing approaches, well known evolutionary relationships between orthologous and paralogous genes, and less well-understood evolutionary forces shaping transcriptome variation between species. In this review, I discuss recent developments in computational methods for the comparison of single-cell-omic data across species. These approaches have the potential to provide invaluable insight into how evolutionary forces act at the level of the cell and will further our understanding of the evolutionary origins of animal and cellular diversity.
Collapse
Affiliation(s)
- Maxwell E. R. Shafer
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
158
|
Hartenstein V, Martinez P. Phagocytosis in cellular defense and nutrition: a food-centered approach to the evolution of macrophages. Cell Tissue Res 2019; 377:527-547. [PMID: 31485720 PMCID: PMC6750737 DOI: 10.1007/s00441-019-03096-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
The uptake of macromolecules and larger energy-rich particles into the cell is known as phagocytosis. Phagocytosed material is enzymatically degraded in membrane-bound vesicles of the endosome/lysosome system (intracellular digestion). Whereas most, if not all, cells of the animal body are equipped with the molecular apparatus for phagocytosis and intracellular digestion, a few cell types are specialized for a highly efficient mode of phagocytosis. These are the ("professional") macrophages, motile cells that seek out and eliminate pathogenic invaders or damaged cells. Macrophages form the backbone of the innate immune system. Developmentally, they derive from specialized compartments within the embryonic mesoderm and early vasculature as part of the process of hematopoiesis. Intensive research has revealed in detail molecular and cellular mechanisms of phagocytosis and intracellular digestion in macrophages. In contrast, little is known about a second type of cell that is "professionally" involved in phagocytosis, namely the "enteric phagocyte." Next to secretory (zymogenic) cells, enteric phagocytes form one of the two major cell types of the intestine of most invertebrate animals. Unlike vertebrates, these invertebrates only partially digest food material in the intestinal lumen. The resulting food particles are absorbed by phagocytosis or pinocytosis and digested intracellularly. In this review, we provide a brief overview of the enteric phagocytes described electron microscopically for diverse invertebrate clades, to then to compare these cells with the "canonical" phagocyte ultrastructure established for macrophages. In addition, we will review observations and speculations associated with the hypothesis that macrophages are evolutionarily derived from enteric phagocytes. This idea was already proposed in the late nineteenth century by Elias Metschnikoff who pioneered the research of phagocytosis for both macrophages and enteric phagocytes. We presume that modern approaches to better understand phagocytosis will be helped by considering the deep evolutionary relationship between the two cell types.
Collapse
Affiliation(s)
- V Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - P Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Passeig Lluı's Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
159
|
Steinmetz PRH. A non-bilaterian perspective on the development and evolution of animal digestive systems. Cell Tissue Res 2019; 377:321-339. [PMID: 31388768 PMCID: PMC6733828 DOI: 10.1007/s00441-019-03075-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
Digestive systems and extracellular digestion are key animal features, but their emergence during early animal evolution is currently poorly understood. As the last common ancestor of non-bilaterian animal groups (sponges, ctenophores, placozoans and cnidarians) dates back to the beginning of animal life, their study and comparison provides important insights into the early evolution of digestive systems and functions. Here, I have compiled an overview of the development and cell biology of digestive tissues in non-bilaterian animals. I will highlight the fundamental differences between extracellular and intracellular digestive processes, and how these are distributed among animals. Cnidarians (e.g. sea anemones, corals, jellyfish), the phylogenetic outgroup of bilaterians (e.g. vertebrates, flies, annelids), occupy a key position to reconstruct the evolution of bilaterian gut evolution. A major focus will therefore lie on the development and cell biology of digestive tissues in cnidarians, especially sea anemones, and how they compare to bilaterian gut tissues. In that context, I will also review how a recent study on the gastrula fate map of the sea anemone Nematostella vectensis challenges our long-standing conceptions on the evolution of cnidarian and bilaterian germ layers and guts.
Collapse
Affiliation(s)
- Patrick R H Steinmetz
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5006, Bergen, Norway.
| |
Collapse
|
160
|
Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays Biochem 2019; 63:389-405. [DOI: 10.1042/ebc20180048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
AbstractAnimals (metazoans) include some of the most complex living organisms on Earth, with regard to their multicellularity, numbers of differentiated cell types, and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have major roles in the development of tissues during embryogenesis and in maintaining homoeostasis throughout life, yet insight into the ECM proteins which may have contributed to the transition from unicellular eukaryotes to multicellular animals remains sparse. Recent phylogenetic studies place either ctenophores or poriferans as the closest modern relatives of the earliest emerging metazoans. Here, we review the literature and representative genomic and transcriptomic databases for evidence of ECM and ECM-affiliated components known to be conserved in bilaterians, that are also present in ctenophores and/or poriferans. Whereas an extensive set of related proteins are identifiable in poriferans, there is a strikingly lack of conservation in ctenophores. From this perspective, much remains to be learnt about the composition of ctenophore mesoglea. The principal ECM-related proteins conserved between ctenophores, poriferans, and bilaterians include collagen IV, laminin-like proteins, thrombospondin superfamily members, integrins, membrane-associated proteoglycans, and tissue transglutaminase. These are candidates for a putative ancestral ECM that may have contributed to the emergence of the metazoans.
Collapse
|
161
|
Mayorova TD, Hammar K, Winters CA, Reese TS, Smith CL. The ventral epithelium of Trichoplax adhaerens deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides. Biol Open 2019; 8:bio045674. [PMID: 31366453 PMCID: PMC6737977 DOI: 10.1242/bio.045674] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023] Open
Abstract
The disk-shaped millimeter-sized marine animal, Trichoplax adhaerens, is notable because of its small number of cell types and primitive mode of feeding. It glides on substrates propelled by beating cilia on its lower surface and periodically pauses to feed on underlying microorganisms, which it digests externally. Here, a combination of advanced electron and light microscopic techniques are used to take a closer look at its secretory cell types and their roles in locomotion and feeding. We identify digestive enzymes in lipophils, a cell type implicated in external digestion and distributed uniformly throughout the ventral epithelium except for a narrow zone near its edge. We find three morphologically distinct types of gland cell. The most prevalent contains and secretes mucus, which is shown to be involved in adhesion and gliding. Half of the mucocytes are arrayed in a tight row around the edge of the ventral epithelium while the rest are scattered further inside, in the region containing lipophils. The secretory granules in mucocytes at the edge label with an antibody against a neuropeptide that was reported to arrest ciliary beating during feeding. A second type of gland cell is arrayed in a narrow row just inside the row of mucocytes while a third is located more centrally. Our maps of the positions of the structurally distinct secretory cell types provide a foundation for further characterization of the multiple peptidergic cell types in Trichoplax and the microscopic techniques we introduce provide tools for carrying out these studies.
Collapse
Affiliation(s)
- Tatiana D Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Katherine Hammar
- Central Microscopy Facility, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Christine A Winters
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Thomas S Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Carolyn L Smith
- Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
162
|
Animal cell type diversity. Nat Ecol Evol 2019; 3:1277-1278. [PMID: 31383948 DOI: 10.1038/s41559-019-0964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
163
|
Ancient animal genome architecture reflects cell type identities. Nat Ecol Evol 2019; 3:1289-1293. [PMID: 31383947 DOI: 10.1038/s41559-019-0946-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/13/2019] [Indexed: 01/04/2023]
Abstract
The level of conservation of ancient metazoan gene order (synteny) is remarkable. Despite this, the functionality of the vast majority of such regions in metazoan genomes remains elusive. Utilizing recently published single-cell expression data from several anciently diverging metazoan species, we reveal the level of correspondence between cell types and genomic synteny, identifying genomic regions conferring ancient cell type identity.
Collapse
|
164
|
Arsenault SV, Glastad KM, Hunt BG. Leveraging technological innovations to investigate evolutionary transitions to eusociality. CURRENT OPINION IN INSECT SCIENCE 2019; 34:27-32. [PMID: 31247414 DOI: 10.1016/j.cois.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The study of the major transition to eusociality presents several challenges to researchers, largely resulting from the importance of complex behavioral phenotypes and the shift from individual to group level selection. These challenges are being met with corresponding technological improvements. Advances in resource development for non-model taxa, behavioral tracking, nucleic acid sequencing, and reverse genetics are facilitating studies of hypotheses that were previously intractable. These innovations are resulting in the development of new model systems tailored to the exploration of specific behavioral phenotypes and the querying of underlying molecular mechanisms that drive eusocial behaviors. Here, we present a brief overview of how methodological innovations are advancing our understanding of the evolution of eusociality.
Collapse
Affiliation(s)
- Samuel V Arsenault
- Department of Entomology, University of Georgia, Athens, GA 30602, United States
| | - Karl M Glastad
- Department of Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
165
|
Colgren J, Nichols SA. The significance of sponges for comparative studies of developmental evolution. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e359. [PMID: 31352684 DOI: 10.1002/wdev.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
Sponges, ctenophores, placozoans, and cnidarians have key evolutionary significance in that they bracket the time interval during which organized animal tissues were first assembled, fundamental cell types originated (e.g., neurons and myocytes), and developmental patterning mechanisms evolved. Sponges in particular have often been viewed as living surrogates for early animal ancestors, largely due to similarities between their feeding cells (choanocytes) with choanoflagellates, the unicellular/colony-forming sister group to animals. Here, we evaluate these claims and highlight aspects of sponge biology with comparative value for understanding developmental evolution, irrespective of the purported antiquity of their body plan. Specifically, we argue that sponges strike a different balance between patterning and plasticity than other animals, and that environmental inputs may have prominence over genetically regulated developmental mechanisms. We then present a case study to illustrate how contractile epithelia in sponges can help unravel the complex ancestry of an ancient animal cell type, myocytes, which sponges lack. Sponges represent hundreds of millions of years of largely unexamined evolutionary experimentation within animals. Their phylogenetic placement lends them key significance for learning about the past, and their divergent biology challenges current views about the scope of animal cell and developmental biology. This article is characterized under: Comparative Development and Evolution > Evolutionary Novelties Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, Colorado
| |
Collapse
|
166
|
Smith CL, Mayorova TD. Insights into the evolution of digestive systems from studies of Trichoplax adhaerens. Cell Tissue Res 2019; 377:353-367. [PMID: 31270610 DOI: 10.1007/s00441-019-03057-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/09/2019] [Indexed: 01/01/2023]
Abstract
Trichoplax, a member of the phylum Placozoa, is a tiny ciliated marine animal that glides on surfaces feeding on algae and cyanobacteria. It stands out from other animals in that it lacks an internal digestive system and, instead, digests food trapped under its lower surface. Here we review recent work on the phenotypes of its six cell types and their roles in digestion and feeding behavior. Phylogenomic analyses place Placozoa as sister to Eumetazoa, the clade that includes Cnidaria and Bilateria. Comparing the phenotypes of cells in Trichoplax to those of cells in the digestive epithelia of Eumetazoa allows us to make inferences about the cell types and mode of feeding of their ancestors. From our increasingly mechanistic understanding of feeding in Trichoplax, we get a glimpse into how primitive animals may have hunted and consumed food prior to the evolution of neurons, muscles, and internal digestive systems.
Collapse
Affiliation(s)
- Carolyn L Smith
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tatiana D Mayorova
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
167
|
Newman SA. Inherency of Form and Function in Animal Development and Evolution. Front Physiol 2019; 10:702. [PMID: 31275153 PMCID: PMC6593199 DOI: 10.3389/fphys.2019.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
I discuss recent work on the origins of morphology and cell-type diversification in Metazoa – collectively the animals – and propose a scenario for how these two properties became integrated, with the help of a third set of processes, cellular pattern formation, into the developmental programs seen in present-day metazoans. Inherent propensities to generate familiar forms and cell types, in essence a parts kit for the animals, are exhibited by present-day organisms and were likely more prominent in primitive ones. The structural motifs of animal bodies and organs, e.g., multilayered, hollow, elongated and segmented tissues, internal and external appendages, branched tubes, and modular endoskeletons, can be accounted for by the properties of mesoscale masses of metazoan cells. These material properties, in turn, resulted from the recruitment of “generic” physical forces and mechanisms – adhesion, contraction, polarity, chemical oscillation, diffusion – by toolkit molecules that were partly conserved from unicellular holozoan antecedents and partly novel, distributed in the different metazoan phyla in a fashion correlated with morphological complexity. The specialized functions of the terminally differentiated cell types in animals, e.g., contraction, excitability, barrier function, detoxification, excretion, were already present in ancestral unicellular organisms. These functions were implemented in metazoan differentiation in some cases using the same transcription factors as in single-celled ancestors, although controlled by regulatory mechanisms that were hybrids between earlier-evolved processes and regulatory innovations, such as enhancers. Cellular pattern formation, mediated by released morphogens interacting with biochemically responsive and excitable tissues, drew on inherent self-organizing processes in proto-metazoans to transform clusters of holozoan cells into animal embryos and organs.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
168
|
Gruber-Vodicka HR, Leisch N, Kleiner M, Hinzke T, Liebeke M, McFall-Ngai M, Hadfield MG, Dubilier N. Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nat Microbiol 2019; 4:1465-1474. [PMID: 31182796 PMCID: PMC6784892 DOI: 10.1038/s41564-019-0475-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/26/2019] [Indexed: 02/02/2023]
Abstract
Placozoa is an enigmatic phylum of simple, microscopic, marine metazoans1,2. Although intracellular bacteria have been found in all members of this phylum, almost nothing is known about their identity, location and interactions with their host3–6. We used metagenomic and metatranscriptomic sequencing of single host individuals, plus metaproteomic and imaging analyses, to show that the placozoan Trichoplax sp. H2 lives in symbiosis with two intracellular bacteria. One symbiont forms an undescribed genus in the Midichloriaceae (Rickettsiales)7,8 and has a genomic repertoire similar to that of rickettsial parasites9,10, but does not seem to express key genes for energy parasitism. Correlative image analyses and three-dimensional electron tomography revealed that this symbiont resides in the rough endoplasmic reticulum of its host’s internal fibre cells. The second symbiont belongs to the Margulisbacteria, a phylum without cultured representatives and not known to form intracellular associations11–13. This symbiont lives in the ventral epithelial cells of Trichoplax, probably metabolizes algal lipids digested by its host and has the capacity to supplement the placozoan’s nutrition. Our study shows that one of the simplest animals has evolved highly specific and intimate associations with symbiotic, intracellular bacteria and highlights that symbioses can provide access to otherwise elusive microbial dark matter. Using a multi-omics approach, together with imaging analyses, the authors characterize the two intracellular bacterial symbionts of Trichoplax, one of the simplest animals.
Collapse
Affiliation(s)
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Tjorven Hinzke
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Michael G Hadfield
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
169
|
Keren-Shaul H, Kenigsberg E, Jaitin DA, David E, Paul F, Tanay A, Amit I. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat Protoc 2019; 14:1841-1862. [PMID: 31101904 DOI: 10.1038/s41596-019-0164-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/12/2019] [Indexed: 11/09/2022]
Abstract
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4-9 orders of magnitude. Relying solely on unbiased sampling to characterize cellular niches becomes infeasible, as the marginal utility of collecting more cells diminishes quickly. Furthermore, in many clinical samples, the relevant cell types are scarce and efficient processing is critical. We developed an integrated pipeline for index sorting and massively parallel single-cell RNA sequencing (MARS-seq2.0) that builds on our previously published MARS-seq approach. MARS-seq2.0 is based on >1 million cells sequenced with this pipeline and allows identification of unique cell types across different tissues and diseases, as well as unique model systems and organisms. Here, we present a detailed step-by-step procedure for applying the method. In the improved procedure, we combine sub-microliter reaction volumes, optimization of enzymatic mixtures and an enhanced analytical pipeline to substantially lower the cost, improve reproducibility and reduce well-to-well contamination. Data analysis combines multiple layers of quality assessment and error detection and correction, graphically presenting key statistics for library complexity, noise distribution and sequencing saturation. Importantly, our combined FACS and single-cell RNA sequencing (scRNA-seq) workflow enables intuitive approaches for depletion or enrichment of cell populations in a data-driven manner that is essential to efficient sampling of complex tissues. The experimental protocol, from cell sorting to a ready-to-sequence library, takes 2-3 d. Sequencing and processing the data through the analytical pipeline take another 1-2 d.
Collapse
Affiliation(s)
- Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Ephraim Kenigsberg
- Precision Immunology Institute, Icahn Institute for Data Science and Genomic Technology, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Franziska Paul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
170
|
DuBuc TQ, Ryan JF, Martindale MQ. "Dorsal-Ventral" Genes Are Part of an Ancient Axial Patterning System: Evidence from Trichoplax adhaerens (Placozoa). Mol Biol Evol 2019; 36:966-973. [PMID: 30726986 PMCID: PMC6501881 DOI: 10.1093/molbev/msz025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Placozoa are a morphologically simplistic group of marine animals found globally in tropical and subtropical environments. They consist of two named species, Trichoplax adhaerens and more recently Hoilungia hongkongensis, both with roughly six morphologically distinct cell types. With a sequenced genome, a limited number of cell types, and a simple flattened morphology, Trichoplax is an ideal model organism from which to explore the biology of an animal with a cellular complexity analagous to that of the earliest animals. Using a new approach for identification of gene expression patterns, this research looks at the relationship of Chordin/TgfΒ signaling and the axial patterning system of Placozoa. Our results suggest that placozoans have an oral-aboral axis similar to cnidarians and that the parahoxozoan ancestor (common ancestor of Placozoa and Cnidaria) was likely radially symmetric.
Collapse
Affiliation(s)
- Timothy Q DuBuc
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
- Kewalo Marine Laboratory and the Department of Biology, University of Hawaii, Manoa, Honolulu, HI
- Centre for Chromosome Biology, Bioscience Building, National University of Ireland Galway, Galway, Ireland
| | - Joseph F Ryan
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
| |
Collapse
|
171
|
Arendt D, Bertucci PY, Achim K, Musser JM. Evolution of neuronal types and families. Curr Opin Neurobiol 2019; 56:144-152. [PMID: 30826503 PMCID: PMC6556553 DOI: 10.1016/j.conb.2019.01.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/12/2022]
Abstract
Solving nervous system evolution requires cross-species comparison of neuronal types. Neuronal types are commonly defined by their specific structure and function. We provide an operational definition of cell types that allows evolutionary comparison. The identity of neuronal types is best reflected by specifying transcription factors. Families of related neuronal types are conserved across large evolutionary distances.
Major questions in the evolution of neurons and nervous systems remain unsolved, such as the origin of the first neuron, the possible convergent evolution of neuronal phenotypes, and the transition from a relatively simple decentralized nerve net to the complex, centralized nervous systems found in modern bilaterian animals. In recent years, comparative single-cell transcriptomics has opened up new research avenues addressing these issues. Here, we review recent conceptual progress toward an evolutionary definition of cell types, and how it facilitates the identification and large-scale comparison of neuronal types and neuron type families from single-cell data — with the family of GABAergic neurons in distinct parts of the vertebrate forebrain as prime example. We also highlight strategies to infer cell type-specific innovation, so-called apomeres, from single-cell data.
Collapse
Affiliation(s)
- Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012, Heidelberg, Germany.
| | - Paola Yanina Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | - Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | - Jacob M Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| |
Collapse
|
172
|
Norekian TP, Moroz LL. Neural system and receptor diversity in the ctenophore
Beroe abyssicola. J Comp Neurol 2019; 527:1986-2008. [DOI: 10.1002/cne.24633] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Department of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
173
|
Babonis LS, DeBiasse MB, Francis WR, Christianson LM, Moss AG, Haddock SHD, Martindale MQ, Ryan JF. Integrating Embryonic Development and Evolutionary History to Characterize Tentacle-Specific Cell Types in a Ctenophore. Mol Biol Evol 2018; 35:2940-2956. [PMID: 30169705 PMCID: PMC6278862 DOI: 10.1093/molbev/msy171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin of novel traits can promote expansion into new niches and drive speciation. Ctenophores (comb jellies) are unified by their possession of a novel cell type: the colloblast, an adhesive cell found only in the tentacles. Although colloblast-laden tentacles are fundamental for prey capture among ctenophores, some species have tentacles lacking colloblasts and others have lost their tentacles completely. We used transcriptomes from 36 ctenophore species to identify gene losses that occurred specifically in lineages lacking colloblasts and tentacles. We cross-referenced these colloblast- and tentacle-specific candidate genes with temporal RNA-Seq during embryogenesis in Mnemiopsis leidyi and found that both sets of candidates are preferentially expressed during tentacle morphogenesis. We also demonstrate significant upregulation of candidates from both data sets in the tentacle bulb of adults. Both sets of candidates were enriched for an N-terminal signal peptide and protein domains associated with secretion; among tentacle candidates we also identified orthologs of cnidarian toxin proteins, presenting tantalizing evidence that ctenophore tentacles may secrete toxins along with their adhesive. Finally, using cell lineage tracing, we demonstrate that colloblasts and neurons share a common progenitor, suggesting the evolution of colloblasts involved co-option of a neurosecretory gene regulatory network. Together these data offer an initial glimpse into the genetic architecture underlying ctenophore cell-type diversity.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL
| | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL
| | - Warren R Francis
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA
| | | | - Anthony G Moss
- Department of Biological Sciences, Auburn University, Auburn, AL
| | | | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL
| |
Collapse
|
174
|
Norekian TP, Moroz LL. Neuromuscular organization of the Ctenophore
Pleurobrachia bachei. J Comp Neurol 2018; 527:406-436. [DOI: 10.1002/cne.24546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Departments of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
175
|
High Cell Diversity and Complex Peptidergic Signaling Underlie Placozoan Behavior. Curr Biol 2018; 28:3495-3501.e2. [DOI: 10.1016/j.cub.2018.08.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
|
176
|
Laumer CE, Gruber-Vodicka H, Hadfield MG, Pearse VB, Riesgo A, Marioni JC, Giribet G. Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. eLife 2018; 7:e36278. [PMID: 30373720 PMCID: PMC6277202 DOI: 10.7554/elife.36278] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that support for the Cnidaria + Bilateria clade can be assigned to this source of systematic error. In interpreting these results, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.
Collapse
Affiliation(s)
- Christopher E Laumer
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
| | | | - Michael G Hadfield
- Kewalo Marine LaboratoryPacific Biosciences Research Center and the University of Hawaii-ManoaHonoluluUnited States
| | - Vicki B Pearse
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzUnited States
| | - Ana Riesgo
- Invertebrate Division, Life Sciences DepartmentThe Natural History MuseumLondonUnited Kingdom
| | - John C Marioni
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|