151
|
Ahmad BA, Sanghani IM, Sayabugari R, Biju H, Siddegowda A, Ittiachen Kinattingal M, Yartha SGR, Gaonkar PM, Andrabi SS, Vaghamashi YK, Korwar A. Beyond Blood Sugar: Investigating the Cardiovascular Effects of Antidiabetic Drugs. Cureus 2023; 15:e46373. [PMID: 37920618 PMCID: PMC10618835 DOI: 10.7759/cureus.46373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 11/04/2023] Open
Abstract
Cardiovascular disease is a major comorbidity associated with diabetes mellitus. Various antidiabetic drugs are currently used to treat type 2 diabetes mellitus and have varying effects on the cardiovascular system. Some drugs, such as glucagon-like peptide 1 (GLP-1) agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors, are cardioprotective, whereas others, such as insulin, have deleterious effects on the cardiovascular system. This narrative review assessed the impact of antidiabetic drugs on cardiovascular health in the management of diabetes mellitus. It critically examines various classes of these medications, including conventional options such as metformin and newer agents such as incretin-based therapies and SGLT-2.
Collapse
Affiliation(s)
- Binish A Ahmad
- Department of Internal Medicine, King Edward Medical University, Lahore, PAK
| | - Isha M Sanghani
- Department of Internal Medicine, Punyashlok Ahilyadevi Holkar Government Medical College, Baramati, IND
| | | | - Hannah Biju
- Department of Internal Medicine, Kristu Jayanti College, Bengaluru, IND
| | | | - Minnu Ittiachen Kinattingal
- Department of Internal Medicine, New Hope Clinical Research, Charlotte, USA
- Department of Internal Medicine, Karuna Medical College, Palakkad, IND
| | | | - Prajyoth M Gaonkar
- Department of Internal Medicine, Punyashlok Ahilyadevi Holkar Government Medical College, Baramati, IND
| | - Syed Shireen Andrabi
- Department of Internal Medicine, School of Medicne, Tehran University of Medical Sciences, Tehran, IRN
| | | | - Arunika Korwar
- Department of Internal Medicine, KJ Somaiya Medical College, Mumbai, IND
| |
Collapse
|
152
|
Song Z, Yan A, Guo Z, Zhang Y, Wen T, Li Z, Yang Z, Chen R, Wang Y. Targeting metabolic pathways: a novel therapeutic direction for type 2 diabetes. Front Cell Infect Microbiol 2023; 13:1218326. [PMID: 37600949 PMCID: PMC10433779 DOI: 10.3389/fcimb.2023.1218326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease that causes multi-organ complications, seriously affecting patients' quality of life and survival. Understanding its pathogenesis remains challenging, with current clinical treatment regimens often proving ineffective. Methods In this study, we established a mouse model of T2DM and employed 16s rDNA sequencing to detect changes in the species and structure of gut flora. Additionally, we used UPLC-Q-TOF-MS to identify changes in urinary metabolites of T2DM mice, analyzed differential metabolites and constructed differential metabolic pathways. Finally, we used Pearman correlation analysis to investigate the relationship between intestinal flora and differential metabolites in T2DM mice, aiming to elucidate the pathogenesis of T2DM and provide an experimental basis for its clinical treatment. Results Our findings revealed a reduction in both the species diversity and abundance of intestinal flora in T2DM mice, with significantly decreased levels of beneficial bacteria such as Lactobacillus and significantly increased levels of harmful bacteria such as Helicobacter pylori. Urinary metabolomics results identified 31 differential metabolites between T2DM and control mice, including Phosphatidylcholine, CDP-ethanolamine and Leukotriene A4, which may be closely associated with the glycerophospholipid and arachidonic acid pathways. Pearman correlation analysis showed a strong correlation between dopamine and gonadal, estradiol and gut microbiota, may be a novel direction underlying T2DM. Conclusion In conclusion, our study suggests that alterations in gut microbiota and urinary metabolites are characteristic features of T2DM in mice. Furthermore, a strong correlation between dopamine, estradiol and gut microbiota, may be a novel direction underlying T2DM, the aim is to provide new ideas for clinical treatment and basic research.
Collapse
Affiliation(s)
- Zhihui Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - An Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zehui Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
153
|
Marassi M, Fadini GP. The cardio-renal-metabolic connection: a review of the evidence. Cardiovasc Diabetol 2023; 22:195. [PMID: 37525273 PMCID: PMC10391899 DOI: 10.1186/s12933-023-01937-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Type 2 diabetes (T2D), cardiovascular disease (CVD) and chronic kidney disease (CKD), are recognized among the most disruptive public health issues of the current century. A large body of evidence from epidemiological and clinical research supports the existence of a strong interconnection between these conditions, such that the unifying term cardio-metabolic-renal (CMR) disease has been defined. This coexistence has remarkable epidemiological, pathophysiologic, and prognostic implications. The mechanisms of hyperglycemia-induced damage to the cardio-renal system are well validated, as are those that tie cardiac and renal disease together. Yet, it remains controversial how and to what extent CVD and CKD can promote metabolic dysregulation. The aim of this review is to recapitulate the epidemiology of the CMR connections; to discuss the well-established, as well as the putative and emerging mechanisms implicated in the interplay among these three entities; and to provide a pathophysiological background for an integrated therapeutic intervention aiming at interrupting this vicious crosstalks.
Collapse
Affiliation(s)
- Marella Marassi
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Gian Paolo Fadini
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy.
| |
Collapse
|