151
|
Abramov S, Boytsov A, Bykova D, Penzar DD, Yevshin I, Kolmykov SK, Fridman MV, Favorov AV, Vorontsov IE, Baulin E, Kolpakov F, Makeev VJ, Kulakovskiy IV. Landscape of allele-specific transcription factor binding in the human genome. Nat Commun 2021; 12:2751. [PMID: 33980847 PMCID: PMC8115691 DOI: 10.1038/s41467-021-23007-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
Sequence variants in gene regulatory regions alter gene expression and contribute to phenotypes of individual cells and the whole organism, including disease susceptibility and progression. Single-nucleotide variants in enhancers or promoters may affect gene transcription by altering transcription factor binding sites. Differential transcription factor binding in heterozygous genomic loci provides a natural source of information on such regulatory variants. We present a novel approach to call the allele-specific transcription factor binding events at single-nucleotide variants in ChIP-Seq data, taking into account the joint contribution of aneuploidy and local copy number variation, that is estimated directly from variant calls. We have conducted a meta-analysis of more than 7 thousand ChIP-Seq experiments and assembled the database of allele-specific binding events listing more than half a million entries at nearly 270 thousand single-nucleotide polymorphisms for several hundred human transcription factors and cell types. These polymorphisms are enriched for associations with phenotypes of medical relevance and often overlap eQTLs, making candidates for causality by linking variants with molecular mechanisms. Specifically, there is a special class of switching sites, where different transcription factors preferably bind alternative alleles, thus revealing allele-specific rewiring of molecular circuitry.
Collapse
Affiliation(s)
- Sergey Abramov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexandr Boytsov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria Bykova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry D Penzar
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan Yevshin
- Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Sirius University of Science and Technology, Sochi, Russia
- BIOSOFT.RU LLC, Novosibirsk, Russia
| | - Semyon K Kolmykov
- Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Sirius University of Science and Technology, Sochi, Russia
- BIOSOFT.RU LLC, Novosibirsk, Russia
| | - Marina V Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Favorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ilya E Vorontsov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Eugene Baulin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Mathematical Problems of Biology RAS-The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| | - Fedor Kolpakov
- Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Sirius University of Science and Technology, Sochi, Russia
- BIOSOFT.RU LLC, Novosibirsk, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center Kurchatov Institute, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
152
|
Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol 2021; 226:108707. [DOI: 10.1016/j.clim.2021.108707] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 12/30/2022]
|
153
|
Kumaraswamy A, Welker Leng KR, Westbrook TC, Yates JA, Zhao SG, Evans CP, Feng FY, Morgan TM, Alumkal JJ. Recent Advances in Epigenetic Biomarkers and Epigenetic Targeting in Prostate Cancer. Eur Urol 2021; 80:71-81. [PMID: 33785255 DOI: 10.1016/j.eururo.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT In addition to genetic alterations, epigenetic alterations play a crucial role during prostate cancer progression. A better understanding of the epigenetic factors that promote prostate cancer progression may lead to the design of rational therapeutic strategies to target prostate cancer more effectively. OBJECTIVE To systematically review recent literature on the role of epigenetic factors in prostate cancer and highlight key preclinical and translational data with epigenetic therapies. EVIDENCE ACQUISITION We performed a systemic literature search in PubMed. At the request of the editors, we limited our search to articles published between January 2015 and August 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Clinical trials targeting epigenetic factors were retrieved from clinicaltrials.gov. EVIDENCE SYNTHESIS We retrieved 1451 articles, and 62 were finally selected for review. Twelve additional foundational studies outside this time frame were also included. Findings from both preclinical and clinical studies were reviewed and summarized. We also discuss 12 ongoing clinical studies with epigenetic targeted therapies. CONCLUSIONS Epigenetic mechanisms impact prostate cancer progression. Understanding the role of specific epigenetic factors is critical to determine how we may improve prostate cancer treatment and modulate resistance to standard therapies. Recent preclinical studies and ongoing or completed clinical studies with epigenetic therapies provide a useful roadmap for how to best deploy epigenetic therapies clinically to target prostate cancer. PATIENT SUMMARY Epigenetics is a process by which gene expression is regulated without changes in the DNA sequence itself. Oftentimes, epigenetic changes influence cellular behavior and contribute to cancer development or progression. Understanding how epigenetic changes occur in prostate cancer is the first step toward therapeutic targeting in patients. Importantly, laboratory-based studies and recently completed and ongoing clinical trials suggest that drugs targeting epigenetic factors are promising. More work is necessary to determine whether this class of drugs will add to our existing treatment arsenal in prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Joel A Yates
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christopher P Evans
- Department of Urologic Surgery and UC Davis Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Joshi J Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
154
|
EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. ACTA ACUST UNITED AC 2021; 2:444-456. [PMID: 33899001 DOI: 10.1038/s43018-021-00185-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prostate cancers are considered to be immunologically 'cold' tumors given the very few patients who respond to checkpoint inhibitor (CPI) therapy. Recently, enrichment of interferon-stimulated genes (ISGs) predicted a favorable response to CPI across various disease sites. The enhancer of zeste homolog-2 (EZH2) is overexpressed in prostate cancer and known to negatively regulate ISGs. In the present study, we demonstrate that EZH2 inhibition in prostate cancer models activates a double-stranded RNA-STING-ISG stress response upregulating genes involved in antigen presentation, Th1 chemokine signaling and interferon response, including programmed cell death protein 1 (PD-L1) that is dependent on STING activation. EZH2 inhibition substantially increased intratumoral trafficking of activated CD8+ T cells and increased M1 tumor-associated macrophages, overall reversing resistance to PD-1 CPI. Our study identifies EZH2 as a potent inhibitor of antitumor immunity and responsiveness to CPI. These data suggest EZH2 inhibition as a therapeutic direction to enhance prostate cancer response to PD-1 CPI.
Collapse
|
155
|
Severson TM, Zhu Y, De Marzo AM, Jones T, Simons JW, Nelson WG, Yegnasubramanian S, Freedman ML, Wessels L, Bergman AM, Haffner MC, Zwart W. Epigenetic and transcriptional analysis reveals a core transcriptional program conserved in clonal prostate cancer metastases. Mol Oncol 2021; 15:1942-1955. [PMID: 33576154 PMCID: PMC8253095 DOI: 10.1002/1878-0261.12923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
The epigenomic regulation of transcriptional programs in metastatic prostate cancer is poorly understood. We studied the epigenomic landscape of prostate cancer drivers using transcriptional profiling and ChIP‐seq in four clonal metastatic tumors derived from a single prostate cancer patient. Our epigenomic analyses focused on androgen receptor (AR), which is a key oncogenic driver in prostate cancer, the AR pioneer factor FOXA1, chromatin insulator CCCTC‐Binding Factor, as well as for modified histones H3K27ac and H3K27me3. The vast majority of AR binding sites were shared among healthy prostate, primary prostate cancer, and metastatic tumor samples, signifying core AR‐driven transcriptional regulation within the prostate cell lineage. Genes associated with core AR‐binding events were significantly enriched for essential genes in prostate cancer cell proliferation. Remarkably, the metastasis‐specific active AR binding sites showed no differential transcriptional output, indicating a robust transcriptional program across metastatic samples. Combined, our data reveal a core transcriptional program in clonal metastatic prostate cancer, despite epigenomic differences in the AR cistrome.
Collapse
Affiliation(s)
- Tesa M. Severson
- Division of OncogenomicsOncode InstituteNetherlands Cancer InstituteAmsterdamthe Netherlands
- Division of Molecular OncogenesisOncode InstituteNetherlands Cancer InstituteAmsterdamthe Netherlands
| | - Yanyun Zhu
- Division of OncogenomicsOncode InstituteNetherlands Cancer InstituteAmsterdamthe Netherlands
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer CenterDepartment of PathologyBrady Urological InstituteJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Tracy Jones
- Department of PathologyJohns Hopkins School of MedicineBaltimoreMDUSA
| | | | - William G. Nelson
- Sidney Kimmel Comprehensive Cancer CenterDepartment of PathologyBrady Urological InstituteJohns Hopkins School of MedicineBaltimoreMDUSA
| | | | - Matthew L. Freedman
- Department of Medical OncologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMAUSA
- The Eli and Edythe L. Broad InstituteCambridgeMAUSA
| | - Lodewyk Wessels
- Division of Molecular OncogenesisOncode InstituteNetherlands Cancer InstituteAmsterdamthe Netherlands
| | - Andries M. Bergman
- Division of OncogenomicsOncode InstituteNetherlands Cancer InstituteAmsterdamthe Netherlands
- Department of Medical OncologyNetherlands Cancer InstituteAmsterdamthe Netherlands
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical ResearchFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of PathologyUniversity of WashingtonSeattleWAUSA
- Department of PathologyJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Wilbert Zwart
- Division of OncogenomicsOncode InstituteNetherlands Cancer InstituteAmsterdamthe Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
156
|
Doultsinos D, Mills IG. Derivation and Application of Molecular Signatures to Prostate Cancer: Opportunities and Challenges. Cancers (Basel) 2021; 13:495. [PMID: 33525365 PMCID: PMC7865812 DOI: 10.3390/cancers13030495] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is a high-incidence cancer that requires improved patient stratification to ensure accurate predictions of risk and treatment response. Due to the significant contributions of transcription factors and epigenetic regulators to prostate cancer progression, there has been considerable progress made in developing gene signatures that may achieve this. Some of these are aligned to activities of key drivers such as the androgen receptor, whilst others are more agnostic. In this review, we present an overview of these signatures, the strategies for their derivation, and future perspectives on their continued development and evolution.
Collapse
Affiliation(s)
- Dimitrios Doultsinos
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Patrick G Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
157
|
Bacolla A, Sengupta S, Ye Z, Yang C, Mitra J, De-Paula RB, Hegde ML, Ahmed Z, Mort M, Cooper DN, Mitra S, Tainer JA. Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Res 2021; 49:221-243. [PMID: 33300026 PMCID: PMC7797072 DOI: 10.1093/nar/gkaa1120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Human genome stability requires efficient repair of oxidized bases, which is initiated via damage recognition and excision by NEIL1 and other base excision repair (BER) pathway DNA glycosylases (DGs). However, the biological mechanisms underlying detection of damaged bases among the million-fold excess of undamaged bases remain enigmatic. Indeed, mutation rates vary greatly within individual genomes, and lesion recognition by purified DGs in the chromatin context is inefficient. Employing super-resolution microscopy and co-immunoprecipitation assays, we find that acetylated NEIL1 (AcNEIL1), but not its non-acetylated form, is predominantly localized in the nucleus in association with epigenetic marks of uncondensed chromatin. Furthermore, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed non-random AcNEIL1 binding near transcription start sites of weakly transcribed genes and along highly transcribed chromatin domains. Bioinformatic analyses revealed a striking correspondence between AcNEIL1 occupancy along the genome and mutation rates, with AcNEIL1-occupied sites exhibiting fewer mutations compared to AcNEIL1-free domains, both in cancer genomes and in population variation. Intriguingly, from the evolutionarily conserved unstructured domain that targets NEIL1 to open chromatin, its damage surveillance of highly oxidation-susceptible sites to preserve essential gene function and to limit instability and cancer likely originated ∼500 million years ago during the buildup of free atmospheric oxygen.
Collapse
Affiliation(s)
- Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Zu Ye
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunying Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ruth B De-Paula
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.,Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.,Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
158
|
Reynolds G, Vegh P, Fletcher J, Poyner EFM, Stephenson E, Goh I, Botting RA, Huang N, Olabi B, Dubois A, Dixon D, Green K, Maunder D, Engelbert J, Efremova M, Polański K, Jardine L, Jones C, Ness T, Horsfall D, McGrath J, Carey C, Popescu DM, Webb S, Wang XN, Sayer B, Park JE, Negri VA, Belokhvostova D, Lynch MD, McDonald D, Filby A, Hagai T, Meyer KB, Husain A, Coxhead J, Vento-Tormo R, Behjati S, Lisgo S, Villani AC, Bacardit J, Jones PH, O'Toole EA, Ogg GS, Rajan N, Reynolds NJ, Teichmann SA, Watt FM, Haniffa M. Developmental cell programs are co-opted in inflammatory skin disease. Science 2021; 371:eaba6500. [PMID: 33479125 PMCID: PMC7611557 DOI: 10.1126/science.aba6500] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/03/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
The skin confers biophysical and immunological protection through a complex cellular network established early in embryonic development. We profiled the transcriptomes of more than 500,000 single cells from developing human fetal skin, healthy adult skin, and adult skin with atopic dermatitis and psoriasis. We leveraged these datasets to compare cell states across development, homeostasis, and disease. Our analysis revealed an enrichment of innate immune cells in skin during the first trimester and clonal expansion of disease-associated lymphocytes in atopic dermatitis and psoriasis. We uncovered and validated in situ a reemergence of prenatal vascular endothelial cell and macrophage cellular programs in atopic dermatitis and psoriasis lesional skin. These data illustrate the dynamism of cutaneous immunity and provide opportunities for targeting pathological developmental programs in inflammatory skin diseases.
Collapse
Affiliation(s)
- Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Peter Vegh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - James Fletcher
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elizabeth F M Poyner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Issac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology, NHS Lothian, Lauriston Building, Edinburgh EH3 9EN, UK
| | - Anna Dubois
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kile Green
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Justin Engelbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mirjana Efremova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Krzysztof Polański
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claire Jones
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas Ness
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dave Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jim McGrath
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher Carey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dorin-Mirel Popescu
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Simone Webb
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Xiao-Nong Wang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ben Sayer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Victor A Negri
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital Campus, London SE1 9RT, UK
| | - Daria Belokhvostova
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital Campus, London SE1 9RT, UK
| | - Magnus D Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital Campus, London SE1 9RT, UK
| | - David McDonald
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Akhtar Husain
- Department of Pathology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alexandra-Chloé Villani
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jaume Bacardit
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Philip H Jones
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Neil Rajan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Nick J Reynolds
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital Campus, London SE1 9RT, UK.
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
159
|
Prins GS. Developmental estrogenization: Prostate gland reprogramming leads to increased disease risk with aging. Differentiation 2021; 118:72-81. [PMID: 33478774 DOI: 10.1016/j.diff.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
While estrogens are involved in normal prostate morphogenesis and function, inappropriate early-life estrogenic exposures, either in type, dose or timing, can reprogram the prostate gland and lead to increased disease risk with aging. This process is referred to as estrogen imprinting or developmental estrogenization of the prostate gland. The present review discusses published and new evidence for prostatic developmental estrogenization that includes extensive research in rodent models combined with epidemiology findings that together have helped to uncover the architectural and molecular underpinnings that promote this phenotype. Complex interactions between steroid receptors, developmental morphoregulatory factors, epigenetic machinery and stem-progenitor cell targets coalesce to hard wire structural, cellular and epigenomic reorganization of the tissue which retains a life-long memory of early-life estrogens, ultimately predisposing the gland to prostatitis, hyperplasia and carcinogenesis with aging.
Collapse
Affiliation(s)
- Gail S Prins
- Departments of Urology, Physiology and Pathology, College of Medicine, University of Illinois at Chicago, 820 S Wood Street, MC955, Chicago, 60612, IL, USA.
| |
Collapse
|
160
|
Estrogen Receptor on the move: Cistromic plasticity and its implications in breast cancer. Mol Aspects Med 2020; 78:100939. [PMID: 33358533 DOI: 10.1016/j.mam.2020.100939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Estrogen Receptor (ERα) is a hormone-driven transcription factor, critically involved in driving tumor cell proliferation in the vast majority of breast cancers (BCas). ERα binds the genome at cis-regulatory elements, dictating the expression of a large spectrum of responsive genes in 3D genomic space. While initial reports described a rather static ERα chromatin binding repertoire, we now know that ERα DNA interactions are highly versatile, altered in breast tumor development and progression, and deviate between tumors from patients with differential outcome. Multiple cellular signaling cascades are known to impinge on ERα genomic function, changing its cistrome to retarget the receptor to other regions of the genome and reprogram its impact on breast cell biology. This review describes the current state-of-the-art on which factors manipulate the ERα cistrome and how this alters the response to both endogenous and exogenous hormonal stimuli, ultimately impacting BCa cell progression and response to commonly used therapeutic interventions. Novel insights in ERα cistrome dynamics may pave the way for better patient diagnostics and the development of novel therapeutic interventions, ultimately improving cancer care and patient outcome.
Collapse
|
161
|
Affiliation(s)
- Wadih Arap
- From the Rutgers Cancer Institute of New Jersey (W.A., R.P.) and the Division of Hematology-Oncology, Department of Medicine (W.A.), and the Division of Cancer Biology, Department of Radiation Oncology (R.P.), Rutgers New Jersey Medical School, Newark; and the Department of Neurological Surgery, University of California, San Francisco, San Francisco (J.F.C.)
| | - Renata Pasqualini
- From the Rutgers Cancer Institute of New Jersey (W.A., R.P.) and the Division of Hematology-Oncology, Department of Medicine (W.A.), and the Division of Cancer Biology, Department of Radiation Oncology (R.P.), Rutgers New Jersey Medical School, Newark; and the Department of Neurological Surgery, University of California, San Francisco, San Francisco (J.F.C.)
| | - Joseph F Costello
- From the Rutgers Cancer Institute of New Jersey (W.A., R.P.) and the Division of Hematology-Oncology, Department of Medicine (W.A.), and the Division of Cancer Biology, Department of Radiation Oncology (R.P.), Rutgers New Jersey Medical School, Newark; and the Department of Neurological Surgery, University of California, San Francisco, San Francisco (J.F.C.)
| |
Collapse
|
162
|
Rubin MA, Bristow RG, Thienger PD, Dive C, Imielinski M. Impact of Lineage Plasticity to and from a Neuroendocrine Phenotype on Progression and Response in Prostate and Lung Cancers. Mol Cell 2020; 80:562-577. [PMID: 33217316 PMCID: PMC8399907 DOI: 10.1016/j.molcel.2020.10.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Intratumoral heterogeneity can occur via phenotype transitions, often after chronic exposure to targeted anticancer agents. This process, termed lineage plasticity, is associated with acquired independence to an initial oncogenic driver, resulting in treatment failure. In non-small cell lung cancer (NSCLC) and prostate cancers, lineage plasticity manifests when the adenocarcinoma phenotype transforms into neuroendocrine (NE) disease. The exact molecular mechanisms involved in this NE transdifferentiation remain elusive. In small cell lung cancer (SCLC), plasticity from NE to nonNE phenotypes is driven by NOTCH signaling. Herein we review current understanding of NE lineage plasticity dynamics, exemplified by prostate cancer, NSCLC, and SCLC.
Collapse
Affiliation(s)
- Mark A Rubin
- Department for BioMedical Research, University of Bern and Inselspital, 3010 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3010 Bern, Switzerland.
| | - Robert G Bristow
- Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, University of Manchester, Macclesfield SK10 4TG, UK
| | - Phillip D Thienger
- Department for BioMedical Research, University of Bern and Inselspital, 3010 Bern, Switzerland
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Macclesfield SK10 4TG, UK
| | - Marcin Imielinski
- Pathology and Laboratory Medicine and Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
163
|
Nameki R, Chang H, Reddy J, Corona RI, Lawrenson K. Transcription factors in epithelial ovarian cancer: histotype-specific drivers and novel therapeutic targets. Pharmacol Ther 2020; 220:107722. [PMID: 33137377 DOI: 10.1016/j.pharmthera.2020.107722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are major contributors to cancer risk and somatic development. In preclinical and clinical studies, direct or indirect inhibition of TF-mediated oncogenic gene expression profiles have proven to be effective in many tumor types, highlighting this group of proteins as valuable therapeutic targets. In spite of this, our understanding of TFs in epithelial ovarian cancer (EOC) is relatively limited. EOC is a heterogeneous disease composed of five major histologic subtypes; high-grade serous, low-grade serous, endometrioid, clear cell and mucinous. Each histology is associated with unique clinical etiologies, sensitivity to therapies, and molecular signatures - including diverse transcriptional regulatory programs. While some TFs are shared across EOC subtypes, a set of TFs are expressed in a histotype-specific manner and likely explain part of the histologic diversity of EOC subtypes. Targeting TFs present with unique opportunities for development of novel precision medicine strategies for ovarian cancer. This article reviews the critical TFs in EOC subtypes and highlights the potential of exploiting TFs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
164
|
Ognjenovic NB, Bagheri M, Mohamed GA, Xu K, Chen Y, Mohamed Saleem MA, Brown MS, Nagaraj SH, Muller KE, Gerber SA, Christensen BC, Pattabiraman DR. Limiting Self-Renewal of the Basal Compartment by PKA Activation Induces Differentiation and Alters the Evolution of Mammary Tumors. Dev Cell 2020; 55:544-557.e6. [PMID: 33120014 DOI: 10.1016/j.devcel.2020.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
Differentiation therapy utilizes our understanding of the hierarchy of cellular systems to pharmacologically induce a shift toward terminal commitment. While this approach has been a paradigm in treating certain hematological malignancies, efforts to translate this success to solid tumors have met with limited success. Mammary-specific activation of PKA in mouse models leads to aberrant differentiation and diminished self-renewing potential of the basal compartment, which harbors mammary repopulating cells. PKA activation results in tumors that are more benign, exhibiting reduced metastatic propensity, loss of tumor-initiating potential, and increased sensitivity to chemotherapy. Analysis of tumor histopathology revealed features of overt differentiation with papillary characteristics. Longitudinal single-cell profiling at the hyperplasia and tumor stages uncovered an altered path of tumor evolution whereby PKA curtails the emergence of aggressive subpopulations. Acting through the repression of SOX4, PKA activation promotes tumor differentiation and represents a possible adjuvant to chemotherapy for certain breast cancers.
Collapse
Affiliation(s)
- Nevena B Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Meisam Bagheri
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ke Xu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Meredith S Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kristen E Muller
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Diwakar R Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| |
Collapse
|
165
|
Pioneer of prostate cancer: past, present and the future of FOXA1. Protein Cell 2020; 12:29-38. [PMID: 32946061 PMCID: PMC7815845 DOI: 10.1007/s13238-020-00786-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.
Collapse
|