151
|
Application of magnetic nanoparticles to gene delivery. Int J Mol Sci 2011; 12:3705-22. [PMID: 21747701 PMCID: PMC3131585 DOI: 10.3390/ijms12063705] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/11/2022] Open
Abstract
Nanoparticle technology is being incorporated into many areas of molecular science and biomedicine. Because nanoparticles are small enough to enter almost all areas of the body, including the circulatory system and cells, they have been and continue to be exploited for basic biomedical research as well as clinical diagnostic and therapeutic applications. For example, nanoparticles hold great promise for enabling gene therapy to reach its full potential by facilitating targeted delivery of DNA into tissues and cells. Substantial progress has been made in binding DNA to nanoparticles and controlling the behavior of these complexes. In this article, we review research on binding DNAs to nanoparticles as well as our latest study on non-viral gene delivery using polyethylenimine-coated magnetic nanoparticles.
Collapse
|
152
|
|
153
|
Murakami M, Cabral H, Matsumoto Y, Wu S, Kano MR, Yamori T, Nishiyama N, Kataoka K. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 2011; 3:64ra2. [PMID: 21209412 DOI: 10.1126/scitranslmed.3001385] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanocarrier-mediated drug targeting is an emerging strategy for cancer therapy and is being used, for example, with chemotherapeutic agents for ovarian cancer. Nanocarriers are selectively accumulated in tumors as a result of their enhanced permeability and retention of macromolecules, thereby enhancing the antitumor activity of the nanocarrier-associated drugs. We investigated the real-time subcellular fate of polymeric micelles incorporating (1,2-diaminocyclohexane) platinum(II) (DACHPt/m), the parent complex of oxaliplatin, in tumor tissues by fluorescence-based assessment of their kinetic stability. These observations revealed that DACHPt/m was extravasated from blood vessels to the tumor tissue and dissociated inside each cell. Furthermore, DACHPt/m selectively dissociated within late endosomes, enhancing drug delivery to the nearby nucleus relative to free oxaliplatin, likely by circumvention of the cytoplasmic detoxification systems such as metallothionein and methionine synthase. Thus, these drug-loaded micelles exhibited higher antitumor activity than did oxaliplatin alone, even against oxaliplatin-resistant tumors. These findings suggest that nanocarriers targeting subcellular compartments may have considerable benefits in clinical applications.
Collapse
Affiliation(s)
- Mami Murakami
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Xu R, Fisher M, Juliano RL. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem 2011; 22:870-8. [PMID: 21452893 DOI: 10.1021/bc1002295] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the preparation and physical and biological characterization of human serum albumin-based micelles of approximately 30 nm diameter for the delivery of amphipathic drugs, represented by doxorubicin. The micelles were surface conjugated with cyclic RGD peptides to guide selective delivery to cells expressing the α(v)β(3) integrin. Multiple poly(ethylene glycol)s (PEGs) with molecular weight of 3400 Da were used to form a hydrophilic outer layer, with the inner core formed by albumin conjugated with doxorubicin via disulfide bonds. Additional doxorubicin was physically adsorbed into this core to attain a high drug loading capacity, where each albumin was associated with about 50 doxorubicin molecules. The formed micelles were stable in serum but continuously released doxorubicin when incubated with free thiols at concentrations mimicking the intracellular environment. When incubated with human melanoma cells (M21+) that express the α(v)β(3) integrin, higher uptake and longer retention of doxorubicin was observed with the RGD-targeted micelles than in the case of untargeted control micelles or free doxorubicin. Consequently, the RGD-targeted micelles manifested cytotoxicity at lower doses of drug than control micelles or free drug.
Collapse
Affiliation(s)
- Rongzuo Xu
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | | | | |
Collapse
|
155
|
Harada Y, Yamamoto T, Sakai M, Saiki T, Kawano K, Maitani Y, Yokoyama M. Effects of organic solvents on drug incorporation into polymeric carriers and morphological analyses of drug-incorporated polymeric micelles. Int J Pharm 2011; 404:271-80. [DOI: 10.1016/j.ijpharm.2010.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/21/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
156
|
Nishiya T, Matsumura Y, Kataoka K. [Translational research of DDS based on polymeric micelles]. Nihon Yakurigaku Zasshi 2011; 137:75-78. [PMID: 21321455 DOI: 10.1254/fpj.137.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
157
|
Yang D, Yu L, Van S. Clinically relevant anticancer polymer Paclitaxel therapeutics. Cancers (Basel) 2010; 3:17-42. [PMID: 24212604 PMCID: PMC3756347 DOI: 10.3390/cancers3010017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/10/2010] [Accepted: 12/22/2010] [Indexed: 11/16/2022] Open
Abstract
The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.
Collapse
Affiliation(s)
- Danbo Yang
- Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China; E-Mail: (D.Y.)
| | - Lei Yu
- Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China; E-Mail: (D.Y.)
- Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058, USA; E-Mail: (S.V.)
| | - Sang Van
- Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058, USA; E-Mail: (S.V.)
| |
Collapse
|
158
|
Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 2010; 27:2569-89. [PMID: 20725771 PMCID: PMC2982955 DOI: 10.1007/s11095-010-0233-4] [Citation(s) in RCA: 622] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/27/2010] [Indexed: 12/18/2022]
Abstract
Micelles are colloidal particles with a size around 5-100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a 'magic bullet' a major step forward.
Collapse
Affiliation(s)
- Chris Oerlemans
- Department of Radiology and Nuclear Medicine, University Medical Center, Heidelberglaan 100, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
159
|
Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 2010; 5:1415-33. [DOI: 10.2217/nnm.10.113] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Research in designing and engineering long-circulating nanoparticles, so-called ‘stealth’ nanoparticles, has been attracting increasing interest as a new platform for targeted drug delivery, especially in chemotherapy. In particular, the modification of nanoparticulate surfaces with poly(ethylene glycol) derivatives has illustrated a decreased uptake of nanoparticles by mononuclear phagocyte system cells and, hence, an increased circulation time, allowing passive accumulation in the tumor. The clinical trials on patients with solid tumors are described in this article, to illustrate this generation of promising nanoparticles. In the last few years, the new-generation technique of grafting ligands on the nanoparticle surface in order to target and penetrate specific cancer cells has been developed. This article discusses the benefits of passive targeting for drug delivery to the solid tumors via the enhanced permeability and retention effect, when using stealth nanoparticles, and compares them with the advantages of active targeting.
Collapse
Affiliation(s)
- Ngoc Trinh Huynh
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Emilie Roger
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Nolwenn Lautram
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Jean-Pierre Benoît
- Inserm U646, Université d’Angers, IBS-CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | | |
Collapse
|
160
|
Yokosawa M, Sonoda Y, Sugiyama SI, Saito R, Yamashita Y, Nishihara M, Satoh T, Kumabe T, Yokoyama M, Tominaga T. Convection-enhanced delivery of a synthetic retinoid Am80, loaded into polymeric micelles, prolongs the survival of rats bearing intracranial glioblastoma xenografts. TOHOKU J EXP MED 2010; 221:257-64. [PMID: 20622491 DOI: 10.1620/tjem.221.257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prognosis for the patients with glioblastoma, the most common malignant brain tumor, remains dismal. A major barrier to progress in treatment of glioblastoma is the relative inaccessibility of tumors to chemotherapeutic agents. Convection-enhanced delivery (CED) is a direct intracranial drug infusion technique to deliver chemotherapeutic agents to the central nervous system, circumventing the blood-brain barrier and reducing systemic side effects. CED can provide wider distribution of infused agents compared to simple diffusion. We have reported that CED of a polymeric micelle carrier system could yield a clinically relevant distribution of encapsulated agents in the rat brain. Our aim was to evaluate the efficacy of CED of polymeric micellar Am80, a synthetic agonist with high affinity to nuclear retinoic acid receptor, in a rat model of glioblastoma xenografts. We also used systemic administration of temozolomide, a DNA-alkylating agent, which has been established as the standard of care for newly diagnosed malignant glioma. U87MG human glioma cells were injected into the cerebral hemisphere of nude rats. Rats bearing U87MG xenografts were treated with CED of micellar Am80 (2.4 mg/m(2)) on day 7 after tumor implantation. Temozolomide (200 mg/m(2)/day) was intraperitoneally administered daily for 5 days, starting on day 7 after tumor implantation. CED of micellar Am80 provided significantly longer survival than the control. The combination of CED of micellar Am80 and systemic administration of temozolomide provided significantly longer survival than single treatment. In conclusion, temozolomide combined with CED of micellar Am80 may be a promising method for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Michiko Yokosawa
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Poon Z, Lee JA, Huang S, Prevost RJ, Hammond PT. Highly stable, ligand-clustered "patchy" micelle nanocarriers for systemic tumor targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 7:201-9. [PMID: 20816874 DOI: 10.1016/j.nano.2010.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/28/2010] [Accepted: 07/31/2010] [Indexed: 10/19/2022]
Abstract
UNLABELLED A novel linear-dendritic block copolymer has been synthesized and evaluated for targeted delivery. The use of the dendron as the micellar exterior block in this architecture allows the presentation of a relatively small quantity of ligands in clusters for enhanced targeting, thus maintaining a long circulation time of these "patchy" micelles. The polypeptide linear hydrophobic block drives formation of micelles that carry core-loaded drugs, and their unique design gives them extremely high stability in vivo. We have found that these systems lead to extended time periods of increased accumulation in the tumor (up to 5 days) compared with nontargeted vehicles. We also demonstrate a fourfold increase in efficacy of paclitaxel when delivered in the targeted nanoparticle systems, while significantly decreasing in vivo toxicity of the chemotherapy treatment. FROM THE CLINICAL EDITOR A micellar vehicle using dendrons as the exterior block in combination with a polypeptide hydrophobic block was shown to incorporate and deliver paclitaxel to xenograft tumors with a four-fold increase in efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Zhiyong Poon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
162
|
Gong C, Wei X, Wang X, Wang Y, Guo G, Mao Y, Luo F, Qian Z. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization. NANOTECHNOLOGY 2010; 21:215103. [PMID: 20431208 DOI: 10.1088/0957-4484/21/21/215103] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study aims to develop self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.
Collapse
Affiliation(s)
- ChangYang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Life Sciences, Sichuan University, Chengdu, 610041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Zhang J, Ellsworth K, Ma PX. Hydrophobic pharmaceuticals mediated self-assembly of beta-cyclodextrin containing hydrophilic copolymers: novel chemical responsive nano-vehicles for drug delivery. J Control Release 2010; 145:116-23. [PMID: 20417674 DOI: 10.1016/j.jconrel.2010.04.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/29/2010] [Accepted: 04/17/2010] [Indexed: 11/16/2022]
Abstract
Double hydrophilic copolymers with one polyethylene glycol (PEG) block and one beta-cyclodextrin (beta-CD) flanking block (PEG-b-PCDs) were synthesized through the post-modification of macromolecules. The self-assembly of PEG-b-PCDs in aqueous solutions was initially studied by a fluorescence technique. This measurement together with AFM and TEM characterizations demonstrated the formation of nanoparticles in the presence of lipophilic small molecules. The host-guest interaction between the beta-CD unit of a host copolymer and the hydrophobic group of a guest molecule was found to be the driving force for the observed self-assembly. This spontaneous assembly upon loading of guest molecules was also observed for hydrophobic drugs with various chemical structures. Relatively high drug loading was achieved by this approach. Desirable encapsulation was also achieved for the hydrophobic drugs that cannot efficiently interact with free beta-CD. In vitro release studies suggested that the payload in nano-assemblies could be released in a sustained manner. In addition, both the fluorescence measurement and the in vitro drug release studies suggested that these nano-assemblies mediated by the inclusion complexation exhibited a chemical sensitivity. The release of payload can be accelerated upon the triggering by hydrophobic guest molecules or free beta-CD molecules. These results support the potential applications of the synthesized copolymers for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Jianxiang Zhang
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
164
|
Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 2010; 7:145-58. [PMID: 20095939 DOI: 10.1517/17425240903436479] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD A polymeric micelle is a macromolecular assembly composed of an inner core and an outer shell, and most typically is formed from block copolymers. In the last two decades, polymeric micelles have been actively studied as a new type of drug carrier system, in particular for drug targeting of anticancer drugs to solid tumors. AREAS COVERED IN THIS REVIEW In this review, polymeric micelle drug carrier systems are discussed with a focus on toxicities of the polymeric micelle carrier systems and on pharmacological activities of the block copolymers. In the first section, the importance of the above-mentioned evaluation of these properties is explained, as this importance does not seem to be well recognized compared with the importance of targeting and enhanced pharmacological activity of drugs, particularly in the basic studies. Then, designs, types and classifications of the polymeric micelle system are briefly summarized and explained, followed by a detailed discussion regarding several examples of polymeric micelle carrier systems. WHAT THE READER WILL GAIN Readers will gain a strategy of drug delivery with polymeric carriers as well as recent progress of the polymeric micelle carrier systems in their basic studies and clinical trials. TAKE HOME MESSAGE The purpose of this review is to achieve tight connections between the basic studies and clinical trials.
Collapse
Affiliation(s)
- Masayuki Yokoyama
- Jikei University School of Medicine, Research Center for Medical Science, Medical Engineering Laboratory, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
165
|
Liu M, Fu J, Li J, Wang L, Tan Q, Ren X, Peng Z, Zeng H. Preparation of tri-block copolymer micelles loading novel organoselenium anticancer drug BBSKE and study of tissue distribution of copolymer micelles by imaging in vivo method. Int J Pharm 2010; 391:292-304. [PMID: 20211232 DOI: 10.1016/j.ijpharm.2010.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 12/31/2022]
Abstract
BBSKE (1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)] ethane, PCT: CN02/00412) is a novel organoselenium anticancer drug that plays a role in anticancer through inhibiting TrxR (thioredoxin reductase). In this study, we prepared a tri-block copolymer micelles loading BBSKE utilizing the amphiphilic tri-block copolymers (PEG6000-PLA6000) which we synthesized. And then the characters of the copolymer micelles were investigated. When packaged in polymeric micelles, the water solubility of BBSKE was improved to 0.21 mg/ml. The IC(50) were 7.14 microM, 5.05 microM and 4.23 microM when MCF-7 breast cancer cells were treated with BBSKE after 24h, 48h and 72h. The inhibition effect of polymeric micelles to MCF-7 tumor cells was bettered when folate, whose receptor was highly expressed in various tumors, was coated on the surface of these nanoparticles. Finally, by adopting a new way of imaging in vivo, we studied the distribution of micelles in nude mice with and without MCF-7 tumor. The results demonstrated that this copolymer micelles loading BBSKE can accumulate into tumor efficiently.
Collapse
Affiliation(s)
- Mi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 2010; 7:49-62. [PMID: 20017660 DOI: 10.1517/17425240903380446] [Citation(s) in RCA: 416] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Spontaneously constructed from block copolymers in aqueous media, the polymer micelle has been extensively studied as a potential carrier of poorly water-soluble drugs, but cellular uptake pathways and stability of micelles in blood have not yet been clearly understood. An in-depth insight into the physical and biological behaviors of polymer micelles is necessitated for designing next-generation micelles. AREAS COVERED IN THIS REVIEW This review suggests possible solutions to improve micellar drug loading capacity, scrutinizes the parameters influencing the micelle stability in blood, and also discusses the fate of micelles in cellular and in vivo environment, respectively. Direct and indirect evidences from the literatures mostly published after 90's were collected, analyzed and summarized. WHAT THE READER WILL GAIN A critical analysis of micelle's stability in vivo and micelle-cell interaction is provided to highlight the key issues to be addressed to affirm that micelle can properly work as a drug carrier in clinical settings. TAKE HOME MESSAGE With a clear understanding of its behaviors in biological environment, the polymer micelle is a promising nanocarrier for chemotherapy.
Collapse
Affiliation(s)
- Sungwon Kim
- Purdue University, Department of Industrial and Physical Pharmacy, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
167
|
Abstract
Nanoparticles as drug delivery systems enable unique approaches for cancer treatment. Over the last two decades, a large number of nanoparticle delivery systems have been developed for cancer therapy, including organic and inorganic materials. Many liposomal, polymer-drug conjugates, and micellar formulations are part of the state of the art in the clinics, and an even greater number of nanoparticle platforms are currently in the preclinical stages of development. More recently developed nanoparticles are demonstrating the potential sophistication of these delivery systems by incorporating multifunctional capabilities and targeting strategies in an effort to increase the efficacy of these systems against the most difficult cancer challenges, including drug resistance and metastatic disease. In this chapter, we will review the available preclinical and clinical nanoparticle technology platforms and their impact for cancer therapy.
Collapse
|
168
|
Fonge H, Lee H, Reilly RM, Allen C. Multifunctional Block Copolymer Micelles for the Delivery of 111In to EGFR-Positive Breast Cancer Cells for Targeted Auger Electron Radiotherapy. Mol Pharm 2009; 7:177-86. [DOI: 10.1021/mp900201v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Humphrey Fonge
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada, Toronto General Research Institute, University Health Network, Toronto, ON, Canada, Department of Chemistry, University of Toronto, Toronto, ON, Canada, and STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Helen Lee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada, Toronto General Research Institute, University Health Network, Toronto, ON, Canada, Department of Chemistry, University of Toronto, Toronto, ON, Canada, and STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Raymond M. Reilly
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada, Toronto General Research Institute, University Health Network, Toronto, ON, Canada, Department of Chemistry, University of Toronto, Toronto, ON, Canada, and STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada, Toronto General Research Institute, University Health Network, Toronto, ON, Canada, Department of Chemistry, University of Toronto, Toronto, ON, Canada, and STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
169
|
Zupancich JA, Bates FS, Hillmyer MA. Synthesis and self-assembly of RGD-functionalized PEO-PB amphiphiles. Biomacromolecules 2009; 10:1554-63. [PMID: 19397290 PMCID: PMC2693482 DOI: 10.1021/bm900149b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale micelles in solution. The utilization of these structures as targeted drug delivery vehicles has motivated efforts to prepare bioactive ligand-functionalized polymer micelles. The impact of ligand conjugation on micelle morphology was examined through use of well-characterized poly(ethylene oxide)-b-poly(butadiene) (OB) block copolymers functionalized to varying extents with a biologically relevant RGD-containing peptide sequence. Micelle morphology and dilute solution behavior of RGD-functionalized OB (RGD-OB) copolymers were examined using cryogenic transmission electron microscopy (cryo-TEM) and dynamic mechanical analysis. The direct dispersion of RGD-OB copolymers into deionized water yielded a variety of structures; the observed morphologies deviated from the canonical series predicted by the overall change in amphiphile composition due to peptide conjugation. RGD functionalized spherical micelles, cylindrical micelle networks, and annular multilayer vesicles were prepared. The morphological behavior was attributed to interactions between peptide moieties conjugated to the termini of coronal chains and has implications in the design of targeting micelles for drug delivery applications.
Collapse
|
170
|
Mikhail AS, Allen C. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 2009; 138:214-23. [PMID: 19376167 DOI: 10.1016/j.jconrel.2009.04.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/10/2009] [Indexed: 11/26/2022]
Abstract
The use of block copolymer micelles (BCMs) for the targeted delivery of chemotherapeutics has proven to be a promising approach for improving the therapeutic efficacy of pharmaceutical cancer therapy. Acceleration of the translation of BCM-based drug formulations from the fundamental stages of pre-clinical development to clinical use requires a greater understanding of the transport mechanisms that influence the fate of these nano-carrier systems at the whole body, tissue, and cellular levels. New information emerging regarding the intratumoral distribution, and tumor penetration of BCMs and other nanosystems in vivo, by non-invasive image-based assessment, has the potential to revolutionize our understanding and current approach to drug delivery in this field. This review aims to highlight these and other important advancements as well as to bring attention to the many critical questions that remain to be addressed regarding the fate of BCM-based drug formulations in vivo.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Leslie Dan Faculty of Pharmacy, Institute Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario, Canada
| | | |
Collapse
|
171
|
Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009; 100:572-9. [PMID: 19462526 PMCID: PMC11158079 DOI: 10.1111/j.1349-7006.2009.01103.x] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/25/2008] [Accepted: 12/25/2008] [Indexed: 01/18/2023] Open
Abstract
The size of anticancer agent-incorporating micelles can be controlled within the diameter range of 20-100 nm to ensure that they do not penetrate normal vessel walls. With this development, it is expected that the incidence of drug-induced side-effects may be decreased owing to the reduced drug distribution in normal tissue. Micelle systems can also evade non-specific capture by the reticuloendothelial system because the outer shell of a micelle is covered with polyethylene glycol. Consequently, a polymer micelle carrier can be delivered selectively to a tumor by utilizing the enhanced permeability and retention effect. Moreover, a water-insoluble drug can be incorporated into polymer micelles. Presently, several anticancer agent-incorporating micelle carrier systems are under preclinical and clinical evaluation. Furthermore, nucleic acid-incorporating micelle carrier systems are also being developed.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Investigative Treatment Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan.
| | | |
Collapse
|
172
|
Osada K, Christie RJ, Kataoka K. Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface 2009; 6 Suppl 3:S325-39. [PMID: 19364722 PMCID: PMC2690088 DOI: 10.1098/rsif.2008.0547.focus] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dramatic advances in biological research have revealed the mechanisms underlying many diseases at the molecular level. However, conventional techniques may be inadequate for direct application of this new knowledge to medical treatments. Nanobiotechnology, which integrates biology with the rapidly growing field of nanotechnology, has great potential to overcome many technical problems and lead to the development of effective therapies. The use of nanobiotechnology in drug delivery systems (DDS) is attractive for advanced treatment of conditions such as cancer and genetic diseases. In this review paper for a special issue on biomaterial research in Japan, we discuss the development of DDS based on polymeric micelles mainly in our group for anti-cancer drug and gene delivery, and also address our challenges associated with developing polymeric micelles as super-functionalized nanodevices with intelligent performance.
Collapse
Affiliation(s)
- Kensuke Osada
- Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
173
|
Abstract
Recent developments in nanotechnology offer researchers opportunities to significantly transform cancer therapeutics. This technology has enabled the manipulation of the biological and physicochemical properties of nanomaterials to facilitate more efficient drug targeting and delivery. Clinical investigations suggest that therapeutic nanoparticles can enhance efficacy and reduced side effects compared with conventional cancer therapeutic drugs. Encouraged by rapid and promising progress in cancer nanotechnology, researchers continue to develop novel and efficacious nanoparticles for drug delivery. The use of therapeutic nanoparticles as unique drug delivery systems will be a significant addition to current cancer therapeutics.
Collapse
Affiliation(s)
- Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
174
|
Self-assembled honokiol-loaded micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) copolymer. Int J Pharm 2009; 369:170-5. [DOI: 10.1016/j.ijpharm.2008.10.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/26/2008] [Indexed: 11/22/2022]
|
175
|
Kawaguchi T, Honda T, Nishihara M, Yamamoto T, Yokoyama M. Histological study on side effects and tumor targeting of a block copolymer micelle on rats. J Control Release 2009; 136:240-6. [PMID: 19248812 DOI: 10.1016/j.jconrel.2009.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 11/20/2022]
Abstract
Histological examinations were performed with polymeric micelle-injected rats for evaluations of possible toxicities of polymeric micelle carriers. Weight of major organs as well as body weight of rats was measured after multiple intravenous injections of polymeric micelles forming from poly(ethylene glycol)-b-poly(aspartate) block copolymer. No pathological toxic side effects were observed at two different doses, followed only by activation of the mononuclear phagocyte system (MPS) in the spleen, liver, lung, bone marrow, and lymph node. This finding confirms the absence of--or the very low level of--in vivo toxicity of the polymeric micelle carriers that were reported in previous animal experiments and clinical results. Then, immunohistochemical analyses with a biotinylated polymeric micelle confirmed specific accumulation of the micelle in the MPS. The immunohistochemical analyses also revealed, first, very rapid and specific accumulation of the micelle in the vasculatures of tumor capsule of rat ascites hepatoma AH109A, and second, the micelle's scanty infiltration into tumor parenchyma. This finding suggests a unique tumor-accumulation mechanism that is very different from simple EPR effect-based tumor targeting.
Collapse
Affiliation(s)
- Takanori Kawaguchi
- Department of Pathology, Aizu Central Hospital, Aizu Wakamatsu 965-8611, Japan
| | | | | | | | | |
Collapse
|
176
|
Aliabadi HM, Shahin M, Brocks DR, Lavasanifar A. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet 2009; 47:619-34. [PMID: 18783294 DOI: 10.2165/00003088-200847100-00001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since their discovery in the early 1980s, polymeric micelles have been the subject of several studies as delivery systems that can potentially improve the therapeutic performance and modify the toxicity profile of encapsulated drugs by changing their pharmacokinetic characteristics. The efforts in this area have led in recent years to the advancement of several polymeric micellar formulations to clinical trials, some of which have shown promise in changing the biodistribution of the incorporated drug after intravenous administration as a means of tumour-targeted drug delivery. Recently, the possible benefit of polymeric micellar delivery in enhancing the absorption and bioavailability of incorporated drugs from alternative routes of drug administration has attracted interest. This article provides an overview of the effect of polymeric micellar delivery on absorption, distribution, metabolism and excretion of incorporated therapeutic agents. It also aims to assess the current information on the performance of polymeric micellar delivery systems in modifying the pharmacokinetics/pharmacodynamics of the incorporated drugs in clinical trials, and to re-examine the important structural factors required for successful design of polymeric micellar delivery systems capable of inducing favourable changes in the pharmacokinetics of the encapsulated drug.
Collapse
|
177
|
Kim J, Yoon HJ, Kim S, Wang K, Ishii T, Kim YR, Jang WD. Polymer–metal complex micelles for the combination of sustained drug releasing and photodynamic therapy. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b904224e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
178
|
Kato K. Clinical trials of NK105, a paclitaxel incorporating micellar nanoparticle formation. ACTA ACUST UNITED AC 2009. [DOI: 10.2745/dds.24.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
179
|
|
180
|
Abstract
The purpose of drug delivery systems in cancer chemotherapy is to achieve selective delivery of anti-cancer agents to cancer tissue at an effective concentrations for the appropriate duration of time, so that we may be able to reduce the adverse effects of a drug and simultaneously enhance the anti-tumor effect. Polymeric micelles were expected to increase the accumulation of drugs in tumor tissues utilizing the enhanced permeability and retention effect and to incorporate various kinds of drugs into the inner core by chemical conjugation or physical entrapment with relatively high stability. The size of the micelles can be controlled within the diameter range of 20-100 nm, to ensure that the micelles do not pass through normal vessel walls; therefore, a reduced incidence of the side effects of the drugs may be expected due to the decreased volume of distribution. There are several anti-cancer agent-incorporated micelle carrier systems under clinical evaluation. Phase 1 studies of a cisplatin-incorporated micelle, NC-6004 and an SN-38-incorporated micelle, NK012, are now underway. A Phase 2 study of a paclitaxel-incorporated micelle, NK105, against stomach cancer is also underway.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Investigative Treatment Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| |
Collapse
|
181
|
Inoue T, Yamashita Y, Nishihara M, Sugiyama S, Sonoda Y, Kumabe T, Yokoyama M, Tominaga T. Therapeutic efficacy of a polymeric micellar doxorubicin infused by convection-enhanced delivery against intracranial 9L brain tumor models. Neuro Oncol 2008; 11:151-7. [PMID: 18755917 DOI: 10.1215/15228517-2008-068] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Convection-enhanced delivery (CED) with various drug carrier systems has recently emerged as a novel chemotherapeutic method to overcome the problems of current chemotherapies against brain tumors. Polymeric micelle systems have exhibited dramatically higher in vivo antitumor activity in systemic administration. This study investigated the effectiveness of CED with polymeric micellar doxorubicin (DOX) in a 9L syngeneic rat model. Distribution, toxicity, and efficacy of free, liposomal, and micellar DOX infused by CED were evaluated. Micellar DOX achieved much wider distribution in brain tumor tissue and surrounding normal brain tissue than free DOX. Tissue toxicity increased at higher doses, but rats treated with micellar DOX showed no abnormal neurological symptoms at any dose tested (0.1-1.0 mg/ml). Micellar DOX infused by CED resulted in prolonged median survival (36 days) compared with free DOX (19.6 days; p = 0.0173) and liposomal DOX (16.6 days; p = 0.0007) at the same dose (0.2 mg/ml). This study indicates the potential of CED with the polymeric micelle drug carrier system for the treatment of brain tumors.
Collapse
Affiliation(s)
- Tomoo Inoue
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
Major advances in the use of carrier vehicles delivering pharmacologic agents and enzymes to sites of disease have occurred over the past 10 years. This review focuses on the concepts and clinical evaluation of carrier-mediated anticancer agents that are administered i.v. or orally. The primary types of carrier-mediated anticancer agents are nanoparticles, nanosomes, which are nanoparticle-sized liposomes, and conjugated agents. Nanosomes are further subdivided into stabilized and nonstabilized or conventional nanosomes. Nanospheres and dendrimers are subclasses of nanoparticles. Conjugated agents consist of polymer-linked and pegylated agents. The theoretical advantages of carrier-mediated drugs are greater solubility, longer duration of exposure, selective delivery of entrapped drug to the site of action, superior therapeutic index, and the potential to overcome resistance associated with the regular anticancer agent. The pharmacokinetic disposition of carrier-mediated agents depends on the physiochemical characteristics of the carrier, such as size, surface charge, membrane lipid packing, steric stabilization, dose, and route of administration. The primary sites of accumulation of carrier-mediated agents are the tumor, liver, and spleen, compared with noncarrier formulations. The drug that remains encapsulated in or linked to the carrier (e.g., the nanosome or nanoparticle) is an inactive prodrug, and thus the drug must be released from the carrier to be active. The factors affecting the pharmacokinetic and pharmacodynamic variability of these agents remain unclear, but most likely include the reticuloendothelial system, which has also been called the mononuclear phagocyte system. Future studies need to evaluate the mechanism of clearance of carrier-mediated agents and identify the factors associated with the pharmacokinetic and pharmacodynamic variability of carrier agents in patients and specifically in tumors.
Collapse
Affiliation(s)
- William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina, 3308 Kerr Hall CB 7360, 311 Pharmacy Lane, Chapel Hill, NC 27599-7360, USA.
| |
Collapse
|
183
|
Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 2008; 60:899-914. [PMID: 18406004 DOI: 10.1016/j.addr.2007.11.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 11/15/2007] [Indexed: 12/27/2022]
Abstract
Polymeric micelles are expected to increase the accumulation of drugs in tumor tissues utilizing the EPR effect and to incorporate various kinds of drugs into the inner core by chemical conjugation or physical entrapment with relatively high stability. The size of the micelles can be controlled within the diameter range of 20 to 100 nm, to ensure that the micelles do not pass through normal vessel walls; therefore, a reduced incidence of the side effects of the drugs may be expected due to the decreased volume of distribution. These are several anticancer agent-incorporated micelle carrier systems under clinical evaluation. Phase 1 studies of a CDDP incorporated micelle, Nc-6004, and an sN-38 incorporated micelle, NK012, are now underway. A phase 2 study of a PTX incorporated micelle, NK105, against stomach cancer is also underway.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Investigative Treatment Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa City, 277-8577 Japan
| |
Collapse
|
184
|
Sumitomo M, Koizumi F, Asano T, Horiguchi A, Ito K, Asano T, Kakizoe T, Hayakawa M, Matsumura Y. Novel SN-38–Incorporated Polymeric Micelle, NK012, Strongly Suppresses Renal Cancer Progression. Cancer Res 2008; 68:1631-5. [DOI: 10.1158/0008-5472.can-07-6532] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
185
|
Abstract
Oral administration of anticancer agents is preferred by patients for its convenience and potential for use in outpatient and palliative setting. In addition, oral administration facilitates a prolonged exposure to the cytotoxic agents. Enhancement of bioavailability of emerging cytotoxic agents is a pre-requisite for successful development of oral modes of cancer treatment. Over the last decade, our studies have focused specifically on the utilization of large (MW>10(5)) and non-degradable polymers in oral chemotherapy. A family of block-graft copolymers of the poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) Pluronic(R) polyethers and poly(acrylic acid) (PAA) bound by carbon-carbon bonds emerged, wherein both polymeric components are generally recognized as safe. Animal studies with Pluronic-PAA copolymers demonstrated that these molecules are excreted when administered orally and do not absorb into the systemic circulation. The Pluronic-PAA copolymers are surface-active and self-assemble, at physiological pH, into intra- and intermolecular micelles with hydrophobic cores of dehydrated PPO and multilayered coronas of hydrophilic PEO and partially ionized PAA segments. These micelles efficiently solubilize hydrophobic drugs such as paclitaxel and steroids and protect molecules such as camptothecins from the hydrolytic reactions. High surface activity of the Pluronic-PAA copolymers in water results in interactions with cell membranes and suppression of the membrane pumps such as P-glycoprotein. The ionizable carboxyls in the micellar corona facilitate mucoadhesion that enhances the residence time of the micelles and solubilized drugs in the gastrointestinal tract. Large payloads of the Pluronic-PAA micelles with weakly basic and water-soluble drugs such as doxorubicin and its analogs, mitomycin C, mitoxantrone, fluorouracil, and cyclophosphamide are achieved through electrostatic interactions with the micellar corona. Mechanical and physical properties of the Pluronic-PAA powders, blends, and micelles allow for formulation procedures where an active is simply dispersed into an aqueous Pluronic-PAA micellar formulation followed by optional lyophilization and processing into a ready dosage form. We review a number of in vivo and in vitro experiments demonstrating that that the oral administration of the cytotoxics formulated with the Pluronic-PAA copolymer micelles results in enhanced drug bioavailability.
Collapse
|