151
|
Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Hue Beauvais C, Vassetzky Y, Rosen JM, Devinoy E. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia 2010; 15:85-100. [PMID: 20157770 PMCID: PMC3006238 DOI: 10.1007/s10911-010-9170-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 12/16/2022] Open
Abstract
Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.
Collapse
Affiliation(s)
- Monique Rijnkels
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
152
|
Lineage-specific combinatorial action of enhancers regulates mouse erythroid Gata1 expression. Blood 2010; 115:3463-71. [PMID: 20154211 DOI: 10.1182/blood-2009-07-232876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Precise spatiotemporal control of Gata1 expression is required in both early hematopoietic progenitors to determine erythroid/megakaryocyte versus granulocyte/monocyte lineage output and in the subsequent differentiation of erythroid cells and megakaryocytes. An enhancer element upstream of the mouse Gata1 IE (1st exon erythroid) promoter, mHS-3.5, can direct both erythroid and megakaryocytic expression. However, loss of this element ablates only megakaryocytes, implying that an additional element has erythroid specificity. Here, we identify a double DNaseI hypersensitive site, mHS-25/6, as having erythroid but not megakaryocytic activity in primary cells. It binds an activating transcription factor complex in erythroid cells where it also makes physical contact with the Gata1 promoter. Deletion of mHS-25/6 or mHS-3.5 in embryonic stem cells has only a modest effect on in vitro erythroid differentiation, whereas loss of both elements ablates both primitive and definitive erythropoiesis with an almost complete loss of Gata1 expression. Surprisingly, Gata2 expression was also concomitantly low, suggesting a more complex interaction between these 2 factors than currently envisaged. Thus, whereas mHS-3.5 alone is sufficient for megakaryocytic development, mHS-3.5 and mHS-25/6 collectively regulate erythroid Gata1 expression, demonstrating lineage-specific differences in Gata1 cis-element use important for development of these 2 cell types.
Collapse
|
153
|
Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 2009; 42:53-61. [PMID: 20010836 DOI: 10.1038/ng.496] [Citation(s) in RCA: 527] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/09/2009] [Indexed: 12/12/2022]
Abstract
The discovery of interchromosomal interactions in higher eukaryotes points to a functional interplay between genome architecture and gene expression, challenging the view of transcription as a one-dimensional process. However, the extent of interchromosomal interactions and the underlying mechanisms are unknown. Here we present the first genome-wide analysis of transcriptional interactions using the mouse globin genes in erythroid tissues. Our results show that the active globin genes associate with hundreds of other transcribed genes, revealing extensive and preferential intra- and interchromosomal transcription interactomes. We show that the transcription factor Klf1 mediates preferential co-associations of Klf1-regulated genes at a limited number of specialized transcription factories. Our results establish a new gene expression paradigm, implying that active co-regulated genes and their regulatory factors cooperate to create specialized nuclear hot spots optimized for efficient and coordinated transcriptional control.
Collapse
|
154
|
Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proc Natl Acad Sci U S A 2009; 106:21771-6. [PMID: 19959666 DOI: 10.1073/pnas.0909331106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is well established that all of the cis-acting sequences required for fully regulated human alpha-globin expression are contained within a region of approximately 120 kb of conserved synteny. Here, we show that activation of this cluster in erythroid cells dramatically affects expression of apparently unrelated and noncontiguous genes in the 500 kb surrounding this domain, including a gene (NME4) located 300 kb from the alpha-globin cluster. Changes in NME4 expression are mediated by physical cis-interactions between this gene and the alpha-globin regulatory elements. Polymorphic structural variation within the globin cluster, altering the number of alpha-globin genes, affects the pattern of NME4 expression by altering the competition for the shared alpha-globin regulatory elements. These findings challenge the concept that the genome is organized into discrete, insulated regulatory domains. In addition, this work has important implications for our understanding of genome evolution, the interpretation of genome-wide expression, expression-quantitative trait loci, and copy number variant analyses.
Collapse
|
155
|
Intronic enhancers coordinate epithelial-specific looping of the active CFTR locus. Proc Natl Acad Sci U S A 2009; 106:19934-9. [PMID: 19897727 DOI: 10.1073/pnas.0900946106] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The regulated expression of large human genes can depend on long-range interactions to establish appropriate three-dimensional structures across the locus. The cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encompasses 189 kb of genomic DNA, shows a complex pattern of expression with both spatial and temporal regulation. The flanking loci, ASZ1 and CTTNBP2, show very different tissue-specific expression. The mechanisms governing control of CFTR expression remain poorly understood, although they are known to involve intronic regulatory elements. Here, we show a complex looped structure of the CFTR locus in cells that express the gene, which is absent from cells in which the gene is inactive. By using chromatin conformation capture (3C) with a bait probe at the CFTR promoter, we demonstrate close interaction of this region with sequences in the middle of the gene about 100 kb from the promoter and with regions 3' to the locus that are about 200 kb away. We show that these interacting regions correspond to prominent DNase I hypersensitive sites within the locus. Moreover, these sequences act cooperatively in reporter gene constructs and recruit proteins that modify chromatin structure. The model for CFTR gene expression that is revealed by our data provides a paradigm for other large genes with multiple regulatory elements lying within both introns and intergenic regions. We anticipate that these observations will enable original approaches to designing regulated transgenes for tissue-specific gene therapy protocols.
Collapse
|
156
|
Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 2009; 61:800-30. [PMID: 19621348 DOI: 10.1002/iub.226] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human erythropoiesis is a complex multistep developmental process that begins at the level of pluripotent hematopoietic stem cells (HSCs) at bone marrow microenvironment (HSCs niche) and terminates with the production of erythrocytes (RBCs). This review covers the basic and contemporary aspects of erythropoiesis. These include the: (a) cell-lineage restricted pathways of differentiation originated from HSCs and going downward toward the blood cell development; (b) model systems employed to study erythropoiesis in culture (erythroleukemia cell lines and embryonic stem cells) and in vivo (knockout animals: avian, mice, zebrafish, and xenopus); (c) key regulators of erythropoiesis (iron, hypoxia, stress, and growth factors); (d) signaling pathways operating at hematopoietic stem cell niche for homeostatic regulation of self renewal (SCF/c-kit receptor, Wnt, Notch, and Hox) and for erythroid differentiation (HIF and EpoR). Furthermore, this review presents the mechanisms through which transcriptional factors (GATA-1, FOG-1, TAL-1/SCL/MO2/Ldb1/E2A, EKLF, Gfi-1b, and BCL11A) and miRNAs regulate gene pattern expression during erythroid differentiation. New insights regarding the transcriptional regulation of alpha- and beta-globin gene clusters were also presented. Emphasis was also given on (i) the developmental program of erythropoiesis, which consists of commitment to terminal erythroid maturation and hemoglobin production, (two closely coordinated events of erythropoieis) and (ii) the capacity of human embryonic and umbilical cord blood (UCB) stem cells to differentiate and produce RBCs in culture with highly selective media. These most recent developments will eventually permit customized red blood cell production needed for transfusion.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
157
|
Abstract
The genome forms extensive and dynamic physical interactions with itself in the form of chromosome loops and bridges, thus exploring the three-dimensional space of the nucleus. It is now possible to examine these interactions at the molecular level, and we have gained glimpses of their functional implications. Chromosomal interactions can contribute to the silencing and activation of genes within the three-dimensional context of the nuclear architecture. Technical advances in detecting these interactions contribute to our understanding of the functional organization of the genome, as well as its adaptive plasticity in response to environmental changes during development and disease.
Collapse
Affiliation(s)
- Anita Göndör
- Department of Microbiology, Tumor and Cell Biology, Nobels väg 16, Box 280, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
158
|
Anguita E, Villegas A, Iborra F, Hernández A. GFI1B controls its own expression binding to multiple sites. Haematologica 2009; 95:36-46. [PMID: 19773260 DOI: 10.3324/haematol.2009.012351] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Transcription factors play essential roles in both normal and malignant hematopoiesis. This is the case for the growth factor independent 1b (GFI1B) transcription factor, which is required for erythroid and megakaryocytic differentiation and over-expressed in leukemic patients and cell lines. DESIGN AND METHODS To investigate GFI1B regulation, we searched for multispecies conserved non-coding elements between GFI1B and neighboring genes. We used a formaldehyde-assisted isolation of regulatory elements (FAIRE) assay and DNase1 hypersensitivity to assess the chromatin conformation of these sites. Next, we analyzed transcription factor binding and histone modifications at the GFI1B locus including the conserved non-coding elements by a chromatin immunoprecipitation assay. Finally, we studied the interaction of the GFI1B promoter and the conserved non-coding elements with the chromatin conformation capture technique and used immunofluorescence to evaluate GFI1B levels in individual cells. RESULTS We localized several conserved non-coding elements containing multiple erythroid specific transcription factor binding sites at the GFI1B locus. In GFI1B-expressing cells a subset of these conserved non-coding elements and the promoter adopt a close spatial conformation, localize with open chromatin sites, harbor chromatin modifications associated with gene activation and bind multiple transcription factors and co-repressors. Conclusions Our findings indicate that GFI1B regulatory elements behave as activators and repressors. Different protein levels within a cell population suggest that cells must activate and repress GFI1B continuously to control its final level. These data are consistent with a model of GFI1B regulation in which GFI1B binds to its own promoter and to the conserved non-coding elements as its levels rise. This would attract repressor complexes that progressively down-regulate the gene. GFI1B expression would decrease until a stage at which the activating complexes predominate and expression increases.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clinico San Carlos, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
159
|
Ohneda K, Ohmori S, Ishijima Y, Nakano M, Yamamoto M. Characterization of a functional ZBP-89 binding site that mediates Gata1 gene expression during hematopoietic development. J Biol Chem 2009; 284:30187-99. [PMID: 19723625 DOI: 10.1074/jbc.m109.026948] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
GATA-1 is a lineage-restricted transcription factor that plays essential roles in hematopoietic development. The Gata1 gene hematopoietic enhancer allowed Gata1 reporter expression in erythroid cells and megakaryocytes of transgenic mice. The Gata1 hematopoietic enhancer activity is strictly dependent on a GATA site located in the 5' region of the enhancer. However, the importance of the GC-rich region adjacent to the 3'-end of this GATA site has been also suggested. In this study, we show that this GC-rich region contains five contiguous deoxyguanosine residues (G(5) string) that are bound by multiple nuclear proteins. Interestingly, deletion of one deoxyguanosine residue from the G(5) string (G(4) mutant) specifically eliminates binding to ZBP-89, a Krüppel-like transcription factor, but not to Sp3 and other binding factors. We demonstrate that GATA-1 and ZBP-89 occupy chromatin regions of the Gata1 enhancer and physically associate in vitro through zinc finger domains. Gel mobility shift assays and DNA affinity precipitation assays suggest that binding of ZBP-89 to this region is reduced in the absence of GATA-1 binding to the G1HE. Luciferase reporter assays demonstrate that ZBP-89 activates the Gata1 enhancer depending on the G(5) string sequence. Finally, transgenic mouse studies reveal that the G(4) mutation significantly reduced the reporter activity of the Gata1 hematopoietic regulatory domain encompassing an 8.5-kbp region of the Gata1 gene. These data provide compelling evidence that the G(5) string is necessary for Gata1 gene expression in vivo and ZBP-89 is the functional trans-acting factor for this cis-acting region.
Collapse
Affiliation(s)
- Kinuko Ohneda
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan.
| | | | | | | | | |
Collapse
|
160
|
Kim SI, Bresnick EH, Bultman SJ. BRG1 directly regulates nucleosome structure and chromatin looping of the alpha globin locus to activate transcription. Nucleic Acids Res 2009; 37:6019-27. [PMID: 19696073 PMCID: PMC2764439 DOI: 10.1093/nar/gkp677] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
α globin expression must be regulated properly to prevent the occurrence of α-thalassemias, yet many questions remain unanswered regarding the mechanism of transcriptional activation. Identifying factors that regulate chromatin structure of the endogenous α globin locus in developing erythroblasts will provide important mechanistic insight. Here, we demonstrate that the BRG1 catalytic subunit of SWI/SNF-related complexes co-immunoprecipitates with GATA-1 and EKLF in murine fetal liver cells in vivo and is recruited to the far-upstream major-regulatory element (MRE) and α2 promoter. Furthermore, based on our analysis of Brg1null/ENU1 mutant mice, BRG1 regulates DNase I sensitivity, H3ac, and H3K4me2 but not CpG methylation at both sites. Most importantly, BRG1 is required for chromatin loop formation between the MRE and α2 promoter and for maximal RNA Polymerase II occupancy at the α2 promoter. Consequently, Brg1 mutants express α globin mRNA at only 5–10% of wild-type levels and die at mid-gestation. These data identify BRG1 as a chromatin-modifying factor required for nucleosome remodeling and transcriptional activation of the α globin locus. These data also demonstrate that chromatin looping between the MRE and α2 promoter is required as part of the transcriptional activation mechanism.
Collapse
Affiliation(s)
- Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI, USA
| | | | | |
Collapse
|
161
|
Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS -40). Blood 2009; 114:4253-60. [PMID: 19696202 DOI: 10.1182/blood-2009-03-213439] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies in the mouse have shown that high levels of alpha-globin gene expression in late erythropoiesis depend on long-range, physical interactions between remote upstream regulatory elements and the globin promoters. Using quantitative chromosome conformation capture (q3C), we have now analyzed all interactions between 4 such elements lying 10 to 50 kb upstream of the human alpha cluster and their interactions with the alpha-globin promoter. All of these elements interact with the alpha-globin gene in an erythroid-specific manner. These results were confirmed in a mouse model of human alpha globin expression in which the human cluster replaces the mouse cluster in situ (humanized mouse). We have also shown that expression and all of the long-range interactions depend largely on just one of these elements; removal of the previously characterized major regulatory element (called HS -40) results in loss of all the interactions and alpha-globin expression. Reinsertion of this element at an ectopic location restores both expression and the intralocus interactions. In contrast to other more complex systems involving multiple upstream elements and promoters, analysis of the human alpha-globin cluster during erythropoiesis provides a simple and tractable model to understand the mechanisms underlying long-range gene regulation.
Collapse
|
162
|
Chromatin architecture and transcription factor binding regulate expression of erythrocyte membrane protein genes. Mol Cell Biol 2009; 29:5399-412. [PMID: 19687298 DOI: 10.1128/mcb.00777-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Erythrocyte membrane protein genes serve as excellent models of complex gene locus structure and function, but their study has been complicated by both their large size and their complexity. To begin to understand the intricate interplay of transcription, dynamic chromatin architecture, transcription factor binding, and genomic organization in regulation of erythrocyte membrane protein genes, we performed chromatin immunoprecipitation (ChIP) coupled with microarray analysis and ChIP coupled with massively parallel DNA sequencing in both erythroid and nonerythroid cells. Unexpectedly, most regions of GATA-1 and NF-E2 binding were remote from gene promoters and transcriptional start sites, located primarily in introns. Cooccupancy with FOG-1, SCL, and MTA-2 was found at all regions of GATA-1 binding, with cooccupancy of SCL and MTA-2 also found at regions of NF-E2 binding. Cooccupancy of GATA-1 and NF-E2 was found frequently. A common signature of histone H3 trimethylation at lysine 4, GATA-1, NF-E2, FOG-1, SCL, and MTA-2 binding and consensus GATA-1-E-box binding motifs located 34 to 90 bp away from NF-E2 binding motifs was found frequently in erythroid cell-expressed genes. These results provide insights into our understanding of membrane protein gene regulation in erythropoiesis and the regulation of complex genetic loci in erythroid and nonerythroid cells and identify numerous candidate regions for mutations associated with membrane-linked hemolytic anemia.
Collapse
|
163
|
Ribeiro D, Zaccariotto T, Santos M, Costa F, Sonati M. Influence of the polymorphisms of the α-major regulatory element HS-40 on in vitro gene expression. Braz J Med Biol Res 2009; 42:783-6. [DOI: 10.1590/s0100-879x2009005000014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/07/2009] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - F.F. Costa
- Universidade Estadual de Campinas, Brasil
| | | |
Collapse
|
164
|
Jang SW, Svaren J. Induction of myelin protein zero by early growth response 2 through upstream and intragenic elements. J Biol Chem 2009; 284:20111-20. [PMID: 19487693 PMCID: PMC2740437 DOI: 10.1074/jbc.m109.022426] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/18/2009] [Indexed: 12/18/2022] Open
Abstract
The Mpz (myelin protein zero) gene codes for the principal component of myelin in the peripheral nervous system, and mutations in this gene cause human peripheral myelinopathies. Expression of the Mpz gene is controlled by two major transactivators that coordinate Schwann cell development: Egr2/Krox20 and Sox10. Our in vivo ChIP-chip analysis in myelinating peripheral nerve identified major sites of Egr2 interaction within the first intron of the Mpz gene and approximately 5 kb upstream of the transcription start site. In addition, the sites of Egr2 binding display many of the hallmarks associated with enhancer elements. Interestingly, the upstream Egr2 binding sites lie proximal to the divergently transcribed succinate dehydrogenase C gene, but Sdhc expression was not affected by the massive induction of Mpz mediated by Egr2. Mpz induction was greatly enhanced in the presence of the Egr2 binding sites, and removal of them markedly diminished transgenic expression of a construct derived from the Mpz locus. Sox10 was also found to be associated with the upstream region, and its binding was required for Egr2-mediated activation in this distal regulatory region. Our findings highlight that peripheral nerve-specific expression of Mpz is primarily regulated by both upstream and intron-associated regulatory elements. Overall, these results provide a locus-wide analysis of the role and activity of Egr2 in regulation of the Mpz gene within its native chromosomal context.
Collapse
Affiliation(s)
- Sung-Wook Jang
- From the Graduate Program in Cellular and Molecular Biology
| | - John Svaren
- From the Graduate Program in Cellular and Molecular Biology
- the Department of Comparative Biosciences, and
- the Waisman Center, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
165
|
Mahajan MC, Karmakar S, Newburger PE, Krause DS, Weissman SM. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture. Exp Hematol 2009; 37:1143-1156.e3. [PMID: 19607874 DOI: 10.1016/j.exphem.2009.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/05/2009] [Accepted: 07/07/2009] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The aim of the present study has been to establish serum-free culture conditions for ex vivo expansion and differentiation of human CD34(+) cells into erythroid lineage and to study the chromatin structure, gene expression, and transcription factor recruitment at the alpha-globin locus in the developing erythron. MATERIALS AND METHODS A basal Iscove's modified Dulbecco's medium cell culture medium with 1% bovine serum albumin as a serum replacement and a combination of cytokines and growth factors was used for expansion and differentiation of the CD34(+) cells. Expression patterns of the alpha- and beta-like genes at various stages of erythropoiesis was studied by reverse transcriptase quantitative polymerase chain reaction analysis, profile of key erythroid transcription factors was investigated by Western blotting, and the chromatin structure and transcription factor recruitment at the alpha-globin locus was investigated by chromatin immunoprecipitation quantitative polymerase chain reaction analysis. RESULTS Human CD34(+) cells in the serum-free medium undergo near synchronous erythroid differentiation to yield large amount of cells at different differentiation stages. We observe distinct patterns of the histone modifications and transcription factor binding at the alpha-globin locus during erythroid differentiation of CD34(+) cells. Nuclear factor erythroid-derived 2 (NF-E2) was present at upstream activator sites even before addition of erythropoietin (EPO), while bound GATA-1 was only detectable after EPO treatment. After 7 days of EPO treatment, H3K4Me2 modification uniformly increases throughout the alpha-globin locus. Acetylation at H3K9 and binding of Pol II, NF-E2, and GATA-1 were restricted to certain hypersensitive sites of the enhancer and theta gene, and were conspicuously low at the alpha-like globin promoters. Rearrangement of the insulator binding factor CTCF took place at and around the alpha-globin locus as CD34(+) cells differentiated into erythroid pathway. CONCLUSION Our results indicate that remodeling of the upstream elements may be the primary event in activation of alpha-globin gene expression. Activation of alpha-globin genes upon EPO treatment involves initial binding of Pol II, downregulation of pre-existing factors like NF-E2, removal of CTCF from the locus, then rebinding of CTCF in an altered pattern, and concurrent or subsequent binding of transcription factors like GATA-1.
Collapse
Affiliation(s)
- Milind C Mahajan
- Department of Genetics, The Anlyan Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
166
|
Ott CJ, Suszko M, Blackledge NP, Wright JE, Crawford GE, Harris A. A complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter. J Cell Mol Med 2009; 13:680-92. [PMID: 19449463 PMCID: PMC3822875 DOI: 10.1111/j.1582-4934.2008.00621.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genes can maintain spatiotemporal expression patterns by long-range interactions between cis-acting elements. The cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed primarily in epithelial cells. An element located within a DNase I-hyper-sensitive site (DHS) 10 kb into the first intron was previously shown to augment CFTR promoter activity in a tissue-specific manner. Here, we reveal the mechanism by which this element influences CFTR transcription. We employed a high-resolution method of mapping DHS using tiled microarrays to accurately locate the intron 1 DHS. Transfection of promoter-reporter constructs demonstrated that the element displays classical tissue-specific enhancer properties and can independently recruit factors necessary for transcription initiation. In vitro DNase I footprinting analysis identified a protected region that corresponds to a conserved, predicted binding site for hepatocyte nuclear factor 1 (HNF1). We demonstrate by electromobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) that HNF1 binds to this element both in vitro and in vivo. Moreover, using chromosome conformation capture (3C) analysis, we show that this element interacts with the CFTR promoter in CFTR-expressing cells. These data provide the first insight into the three- dimensional (3D) structure of the CFTR locus and confirm the contribution of intronic cis-acting elements to the regulation of CFTR gene expression.
Collapse
Affiliation(s)
- Christopher J Ott
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
167
|
Palstra RJTS. Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:297-309. [PMID: 19535505 DOI: 10.1093/bfgp/elp016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcriptional output of genes in higher eukaryotes is frequently modulated by cis-regulatory DNA elements like enhancers. On the linear chromatin template these elements can be located hundreds of kilobases away from their target gene and for a long time it was a mystery how these elements communicate. For example, in the beta-globin locus the main regulatory element, the Locus Control Region (LCR), is located up to 40-60 kb away from the beta-globin genes. Recently it was demonstrated that the LCR resides in close proximity to the active beta-globin genes while the intervening inactive chromatin loops out. Thus the chromatin fibre of the beta-globin locus adopts an erythroid-specific spatial organization referred to as the Active Chromatin Hub (ACH). This observation for the first time demonstrated a role for chromatin folding in transcriptional regulation. Since this first observation in the beta-globin locus, similar chromatin interactions between regulatory elements in several other gene loci have been observed. Chromatin loops also appear to be formed between promoters and 3'UTRs of genes and even trans-interactions between loci on different chromosomes have been reported. Although the occurrence of long-range chromatin contacts between regulatory elements is now firmly established it is still not clear how these long-range contacts are set up and how the transcriptional output of genes is modified by the proximity of cis-regulatory DNA elements. In this review I will discuss the relevance of interactions between cis-regulatory DNA elements in relation to transcription while using the beta-globin locus as a guideline.
Collapse
|
168
|
Zhao J, Ding J, Li Y, Ren K, Sha J, Zhu M, Gao X. HnRNP U mediates the long-range regulation of Shh expression during limb development. Hum Mol Genet 2009; 18:3090-7. [DOI: 10.1093/hmg/ddp250] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
169
|
Studitsky VM. Mechanisms of distant enhancer action on DNA and in chromatin. Mol Biol 2009. [DOI: 10.1134/s0026893309020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
170
|
Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M. Tissue- and expression level-specific chromatin looping at maize b1 epialleles. THE PLANT CELL 2009; 21:832-42. [PMID: 19336692 PMCID: PMC2671708 DOI: 10.1105/tpc.108.064329] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work examines the involvement of chromatin looping in the transcriptional regulation of two epialleles of the maize (Zea mays) b1 gene, B-I and B'. These two epialleles are tissue-specifically regulated and are involved in paramutation. B-I and B' are expressed at high and low levels, respectively. A hepta-repeat approximately 100 kb upstream of the transcription start site (TSS) is required for both paramutation and high b1 expression. Using chromosome conformation capture, we show that the hepta-repeat physically interacts with the TSS region in a tissue- and expression level-specific manner. Multiple repeats are required to stabilize this interaction. High b1 expression is mediated by a multiloop structure; besides the hepta-repeat, other sequence regions physically interact with the TSS as well, and these interactions are epiallele- and expression level-specific. Formaldehyde-assisted isolation of regulatory elements uncovered multiple interacting regions as potentially regulatory.
Collapse
Affiliation(s)
- Marieke Louwers
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
171
|
Wang L, Di LJ, Lv X, Zheng W, Xue Z, Guo ZC, Liu DP, Liang CC. Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster. PLoS One 2009; 4:e4629. [PMID: 19247486 PMCID: PMC2645683 DOI: 10.1371/journal.pone.0004629] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/14/2009] [Indexed: 12/12/2022] Open
Abstract
Matrix attachment regions (MARs) are important in chromatin organization and gene regulation. Although it is known that there are a number of MAR elements in the β-globin gene cluster, it is unclear that how these MAR elements are involved in regulating β-globin genes expression. Here, we report the identification of a new MAR element at the LCR(locus control region) of human β-globin gene cluster and the detection of the inter-MAR association within the β-globin gene cluster. Also, we demonstrate that SATB1, a protein factor that has been implicated in the formation of network like higher order chromatin structures at some gene loci, takes part in β-globin specific inter-MAR association through binding the specific MARs. Knocking down of SATB1 obviously reduces the binding of SATB1 to the MARs and diminishes the frequency of the inter-MAR association. As a result, the ACH establishment and the α-like globin genes and β-like globin genes expressions are affected either. In summary, our results suggest that SATB1 is a regulatory factor of hemoglobin genes, especially the early differentiation genes at least through affecting the higher order chromatin structure.
Collapse
Affiliation(s)
- Li Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Li-Jun Di
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Xiang Lv
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Wei Zheng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Zheng Xue
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Zhi-Chen Guo
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - De-Pei Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, People's Republic of China
- * E-mail:
| | - Chi-Chuan Liang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, People's Republic of China
| |
Collapse
|
172
|
Kim SI, Bultman SJ, Kiefer CM, Dean A, Bresnick EH. BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci U S A 2009; 106:2259-2264. [PMID: 19171905 PMCID: PMC2650142 DOI: 10.1073/pnas.0806420106] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Indexed: 11/18/2022] Open
Abstract
The dynamic packaging of DNA into chromatin is a fundamental step in the control of diverse nuclear processes. Whereas certain transcription factors and chromosomal components promote the formation of higher-order chromatin loops, the co-regulator machinery mediating loop assembly and disassembly is unknown. Using mice bearing a hypomorphic allele of the BRG1 chromatin remodeler, we demonstrate that the Brg1 mutation abrogated a cell type-specific loop between the beta-globin locus control region and the downstream beta major promoter, despite trans-acting factor occupancy at both sites. By contrast, distinct loops were insensitive to the Brg1 mutation. Molecular analysis with a conditional allele of GATA-1, a key regulator of hematopoiesis, in a novel cell-based system provided additional evidence that BRG1 functions early in chromatin domain activation to mediate looping. Although the paradigm in which chromatin remodelers induce nucleosome structural transitions is well established, our results demonstrating an essential role of BRG1 in the genesis of specific chromatin loops expands the repertoire of their functions.
Collapse
Affiliation(s)
- Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599; and
| | - Christine M. Kiefer
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
173
|
Abstract
INTRODUCTIONChromosome conformation capture (3C) is a technique used to detect the spatial organization of chromosomal DNA in fixed cells. DNA sequences in spatial proximity in the nucleus or engaged in physical interactions (such as those between genes and regulatory elements) can be assessed quantitatively to provide a measure that potentially reflects their frequency of association and/or their proximity. 3C can be used to study long-range interactions between DNA sequences on the same chromosome (intrachromosomal) or between different chromosomes (interchromosomal). Briefly, chromatin fragments in proximity are fixed with formaldehyde, followed by digestion with restriction enzymes, nuclear lysis, dilution of the cross-linked complexes, and intramolecular ligation. The cross-links are subsequently removed and the DNA is purified. Polymerase chain reaction (PCR) is then used to amplify DNA fragments containing novel ligation junctions using primers specific for a pair of DNA sequences under investigation. Here we describe a detailed 3C protocol and experimental controls that can be applied to investigate the nuclear juxtaposition of any two genomic regions, in cis or trans.
Collapse
Affiliation(s)
- Nathan F Cope
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| | | |
Collapse
|
174
|
Abou El Hassan M, Bremner R. A rapid simple approach to quantify chromosome conformation capture. Nucleic Acids Res 2009; 37:e35. [PMID: 19181703 PMCID: PMC2655679 DOI: 10.1093/nar/gkp028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chromosome conformation capture (3C) is a powerful tool to study DNA looping. The procedure generates chimeric DNA templates after ligation of restriction enzyme fragments juxtaposed in vivo by looping. These unique ligation products (ULPs) are typically quantified by gel-based methods, which are practically inefficient. Taqman probes may be used, but are expensive. Cycle threshold (Ct) determined using SYBR Green, an inexpensive alternative, is hampered by non-specific products and/or background fluorescence, both due to high template/ULP ratio. SYBR Green melting curve analysis (MCA) is a well-known qualitative tool for assessing PCR specificity. Here we present for the first time MCA as a quantitative tool (qMCA) to compare template concentrations across different samples and apply it to 3C to assess looping among remote elements identified by STAT1 and IRF1 ChIP-chip at the interferon-γ responsive CIITA and SOCS1 loci. This rapid, inexpensive approach provided highly reproducible identification and quantification of ULPs over a significant linear range. Therefore, qMCA is a robust method to assess chromatin looping in vivo, and overcomes several drawbacks associated with other approaches. Our data suggest that basal and induced looping is a involving remote enhancers is a common mechanism at IFNγ-regulated targets.
Collapse
Affiliation(s)
- M Abou El Hassan
- Genetics and Development Division, University Health Network, Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | | |
Collapse
|
175
|
Gavrilov A, Eivazova E, Priozhkova I, Lipinski M, Razin S, Vassetzky Y. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol Biol 2009; 567:171-88. [PMID: 19588093 DOI: 10.1007/978-1-60327-414-2_12] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromosome conformation capture (3C) methodology was developed to study spatial organization of long genomic regions in living cells. Briefly, chromatin is fixed with formaldehyde in vivo to cross-link interacting sites, digested with a restriction enzyme and ligated at a low DNA concentration so that ligation between cross-linked fragments is favored over ligation between random fragments. Ligation products are then analyzed and quantified by PCR. So far, semi-quantitative PCR methods were widely used to estimate the ligation frequencies. However, it is often important to estimate the ligation frequencies more precisely which is only possible by using the real-time PCR. At the same time, it is equally necessary to monitor the specificity of PCR amplification. That is why the real-time PCR with TaqMan probes is becoming more and more popular in 3C studies. In this chapter, we describe the general protocol for 3C analysis with the subsequent estimation of ligation frequencies by using the real-time PCR technology with TaqMan probes. We discuss in details all steps of the experimental procedure paying special attention to weak points and possible ways to solve the problems. A special attention is also paid to the problems in interpretation of the results and necessary control experiments. Besides, in theory, we consider other approaches to analysis of the ligation products used in frames of the so-called 4C and 5C methods. The recently developed chromatin immunoprecipitation (ChIP)-loop assay representing a combination of 3C and ChIP is also discussed.
Collapse
Affiliation(s)
- Alexey Gavrilov
- CNRS UMR-8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, 39, rue Camille-Desmoulins, 94805, Villejuif, France
| | | | | | | | | | | |
Collapse
|
176
|
Dean A, Fiering S. Epigenetic Gene Regulation—Lessons from Globin. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
177
|
Switching Genes On and Off During Hematopoiesis. Blood 2008. [DOI: 10.1182/blood.v112.11.sci-17.sci-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied how transcriptional and epigenetic programs are played out on chromatin spanning the terminal 500kb of human chromosome 16 (16p13.3) as hematopoietic cells undergo lineage fate decisions and differentiation. This region includes the alpha globin cluster and its regulatory elements, which are silenced in early progenitors, poised for expression in later progenitors, and fully expressed during terminal erythroid differentiation. Other genes in this region are also upregulated in an erythroid specific manner. Using a variety of approaches, we have established the order in which silencing factors are removed, activating transcription factors bind and epigenetic modifications occur. In addition, we have shown how chromosomal conformation and nuclear sublocalization change during hematopoiesis. Natural cis- and trans-acting mutations that cause alpha thalassaemia provide additional insight into how the long-range regulatory elements may interact with the promoters of the globin genes and other flanking genes to activate their expression. Together, these observations establish some of the general principles by which genes within their natural chromosomal environment are switched on and off during hematopoiesis.
Collapse
|
178
|
Miele A, Dekker J. Long-range chromosomal interactions and gene regulation. MOLECULAR BIOSYSTEMS 2008; 4:1046-57. [PMID: 18931780 PMCID: PMC2653627 DOI: 10.1039/b803580f] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last few years important new insights into the process of long-range gene regulation have been obtained. Gene regulatory elements are found to engage in direct physical interactions with distant target genes and with loci on other chromosomes to modulate transcription. An overview of recently discovered long-range chromosomal interactions is presented, and a network approach is proposed to unravel gene-element relationships. Gene expression is controlled by regulatory elements that can be located far away along the chromosome or in some cases even on other chromosomes. Genes and regulatory elements physically associate with each other resulting in complex genome-wide networks of chromosomal interactions. Here we describe several well-characterized cases of long-range interactions involved in the activation and repression of transcription. We speculate on how these interactions may affect gene expression and outline possible mechanisms that may facilitate encounters between distant elements. Finally, we propose that a genome-wide network analysis may provide new insights into the logic of long-range gene regulation.
Collapse
Affiliation(s)
- Adriana Miele
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605-0103
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605-0103
| |
Collapse
|
179
|
Di LJ, Wang L, Zhou GL, Wu XS, Guo ZC, Ke XS, Liu DP, Liang CC. Identification of long range regulatory elements of mouse alpha-globin gene cluster by quantitative associated chromatin trap (QACT). J Cell Biochem 2008; 105:301-12. [PMID: 18655188 DOI: 10.1002/jcb.21826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chromatin from different regions of the genome frequently forms steady associations that play important roles in regulating gene expression. The widely used chromatin conformation capture (3C) assay allows determination of the in vivo structural organization of an active endogenous locus. However, unpredicted chromatin associations within a given genomic locus can not be identified by 3C. Here, we describe a new strategy, quantitative associated chromatin trap (QACT), which incorporates a modified 3C method and a quantitative assay tool, to capture and quantitatively analyzes all possible associated chromatin partners (ACPs) of a given chromatin fragment. Using QACT, we have analyzed the chromatin conformation of the mouse alpha-globin gene cluster and proved the extensive interaction between HS26 and alpha-globin genes. In addition, we have identified a candidate alpha1-globin gene specific silencer 475A8 which shows the differentiation-stage specific DNase I hypersensitivity. Functional analysis suggests that 475A8 may regulate the alpha1-globin gene during terminal differentiation of committed erythroid progenitor cells. ChIP (chromatin immunoprecipitation) and cotransfection assays demonstrate that GATA-1, a hemopoietic specific transcriptional factor, may increase alpha1-globin gene expression by suppressing the function of 475A8 in terminally differentiated erythroid cells.
Collapse
Affiliation(s)
- Li-Jun Di
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Liang S, Moghimi B, Yang TP, Strouboulis J, Bungert J. Locus control region mediated regulation of adult beta-globin gene expression. J Cell Biochem 2008; 105:9-16. [PMID: 18500726 DOI: 10.1002/jcb.21820] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many genes residing in gene clusters and expressed in a differentiation or developmental-stage specific manner are regulated by locus control regions (LCRs). These complex genetic regulatory elements are often composed of several DNAse I hypersensitive sites (HS sites) that function together to regulate the expression of several cis-linked genes. Particularly well characterized is the LCR associated with the beta-globin gene locus. The beta-globin LCR consists of five HS sites that are located upstream of the beta-like globin genes. Recent data demonstrate that the LCR is required for the association of the beta-globin gene locus with transcription foci or factories. The observation that RNA polymerase II associates with the LCR in erythroid progenitor or hematopoietic stem cells which do not express the globin genes suggests that the LCR is always in an accessible chromatin configuration during differentiation of erythroid cells. We propose that erythroid specific factors together with ubiquitous proteins mediate a change in chromatin configuration that juxtaposes the globin genes and the LCR. The proximity then facilitates the transfer of activities from the LCR to the globin genes. In this article we will discuss recent observations regarding beta-globin locus activation with a particular emphasis on LCR mediated activation of adult beta-globin gene expression.
Collapse
Affiliation(s)
- Shermi Liang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Center for Mammalian Genetics, Genetics Institute, Shands Cancer Center, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
181
|
Simonis M, de Laat W. FISH-eyed and genome-wide views on the spatial organisation of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2052-60. [PMID: 18721832 DOI: 10.1016/j.bbamcr.2008.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/18/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
Eukaryotic cells store their genome inside a nucleus, a dedicated organelle shielded by a double lipid membrane. Pores in these membranes allow the exchange of molecules between the nucleus and cytoplasm. Inside the mammalian cell nucleus, roughly 2 m of DNA, divided over several tens of chromosomes is packed. In addition, protein and RNA molecules functioning in DNA-metabolic processes such as transcription, replication, repair and the processing of RNA fill the nuclear space. While many of the nuclear proteins freely diffuse and display a more or less homogeneous distribution across the nuclear interior, some appear to preferentially cluster and form foci or bodies. A non-random structure is also observed for DNA: increasing evidence shows that selected parts of the genome preferentially contact each other, sometimes even at specific sites in the nucleus. Currently a lot of research is dedicated to understanding the functional significance of nuclear architecture, in particular with respect to the regulation of gene expression. Here we will evaluate evidence implying that the folding of DNA is important for transcriptional control in mammals and we will discuss novel high-throughput techniques expected to further boost our knowledge on nuclear organisation.
Collapse
Affiliation(s)
- Marieke Simonis
- Department of Cell Biology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | |
Collapse
|
182
|
Abstract
At present, the molecular mechanisms by which stem cells commit to and differentiate towards specific lineages are poorly characterized, and will need to be better understood before stem cells can be exploited fully in experimental and clinical settings. Transcriptional regulation, the ability to turn genes on and off, lies at the heart of these processes of lineage commitment and specification. We have focused on fully understanding how these decisions are made at a single mammalian gene locus, the α-globin genes, which become up-regulated in a tissue- and developmental-stage specific manner during haemopoiesis. The studies summarized in the present article have revealed that complete regulation of this gene cluster involves not only activating mechanisms in expressing erythroid cells, but also repressing mechanisms, involving the Polycomb complex and histone deacetylases which are present in non-erythroid tissues. Taken together, these observations provide a well-characterized model of how gene expression is fully regulated during the transition from stem cells through lineage commitment and terminal differentiation.
Collapse
|
183
|
Rugless MJ, Fisher CA, Old JM, Sloane-Stanley J, Ayyub H, Higgs DR, Garrick D. A large deletion in the human alpha-globin cluster caused by a replication error is associated with an unexpectedly mild phenotype. Hum Mol Genet 2008; 17:3084-93. [PMID: 18632685 DOI: 10.1093/hmg/ddn205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have characterized a newly identified 16.6 kb deletion which removes a significant proportion of the human alpha-globin cluster including the psizeta1, alpha(D), psialpha1 and alpha2-globin genes but leaves the duplicated alpha1 gene intact. This complicated rearrangement results from a combination of slippage and strand switching at sites of microhomology during replication. Functional analysis shows that expression of the remaining alpha1 gene is increased, rather than down-regulated by this deletion. This could be related to its proximity to the remote upstream alpha-globin regulatory elements or reduced competition for these elements in the absence of the dominant alpha2-globin gene. The finding of a very mild phenotype associated with such an extensive deletion in the alpha-globin cluster implies that much of the DNA removed by the deletion is likely to be functionally unimportant. These findings suggest that other than the upstream regulatory elements and promoter proximal elements there are unlikely to be additional positive cis-acting sequences in the alpha-globin cluster.
Collapse
Affiliation(s)
- Michelle J Rugless
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | | | | | | | | | |
Collapse
|
184
|
Chromatin loops in gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:17-25. [PMID: 18675948 DOI: 10.1016/j.bbagrm.2008.07.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/02/2008] [Accepted: 07/06/2008] [Indexed: 12/26/2022]
Abstract
The control of gene expression involves regulatory elements that can be very far from the genes they control. Several recent technological advances have allowed the direct detection of chromatin loops that juxtapose distant genomic sites in the nucleus. Here we review recent studies from various model organisms that have provided new insights into the functions of chromatin loops and the mechanisms that form them. We discuss the widespread impact of chromatin loops on gene activation, repression, genomic imprinting and the function of enhancers and insulators.
Collapse
|
185
|
Gavrilov AA, Razin SV. Spatial configuration of the chicken alpha-globin gene domain: immature and active chromatin hubs. Nucleic Acids Res 2008; 36:4629-40. [PMID: 18621783 PMCID: PMC2504291 DOI: 10.1093/nar/gkn429] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The spatial configuration of the chicken α-globin gene domain in erythroid and lymphoid cells was studied by using the Chromosome Conformation Capture (3C) approach. Real-time PCR with TaqMan probes was employed to estimate the frequencies of cross-linking of different restriction fragments within the domain. In differentiated cultured erythroblasts and in 10-day chick embryo erythrocytes expressing ‘adult’ αA and αD globin genes the following elements of the domain were found to form an ‘active’ chromatin hub: upstream Major Regulatory Element (MRE), −9 kb upstream DNase I hypersensitive site (DHS), −4 kb upstream CpG island, αD gene promoter and the downstream enhancer. The αA gene promoter was not present in the ‘active’ chromatin hub although the level of αA gene transcription exceeded that of the αD gene. Formation of the ‘active’ chromatin hub was preceded by the assembly of multiple incomplete hubs containing MRE in combination with either −9 kb DHS or other regulatory elements of the domain. These incomplete chromatin hubs were present in proliferating cultured erythroblasts which did not express globin genes. In lymphoid cells only the interaction between the αD promoter and the CpG island was detected.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | | |
Collapse
|
186
|
Koch F, Jourquin F, Ferrier P, Andrau JC. Genome-wide RNA polymerase II: not genes only! Trends Biochem Sci 2008; 33:265-73. [PMID: 18467100 DOI: 10.1016/j.tibs.2008.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 12/31/2022]
Abstract
RNA polymerase (Pol) II transcriptional regulation is an essential process for guiding eukaryotic gene expression. Early in vitro studies deciphered the essential steps for transcription, including recruitment, initiation, elongation and termination. Based on these findings, the idea emerged that Pol II should essentially be located on promoters or genic regions of transcribed genes. The development of in vivo localization protocols has enabled the investigation of genome-wide Pol II occupancy. Recent studies from yeast to human show that Pol II can be poised at the transcription start site or can be located outside of gene-coding regions, sometimes dependent on the growth or differentiation stage. These recent results regarding Pol II genomic location and transcription challenge our classical views of transcriptional regulation.
Collapse
Affiliation(s)
- Frederic Koch
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, CNRS UMR6102, Inserm U631, Marseille, France
| | | | | | | |
Collapse
|
187
|
Higgs DR, Wood WG. Long-range regulation of ?? globin gene expression during erythropoiesis. Curr Opin Hematol 2008; 15:176-83. [DOI: 10.1097/moh.0b013e3282f734c4] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
188
|
Abstract
Analysis of the spatial organization of chromosomes reveals complex three-dimensional networks of chromosomal interactions. These interactions affect gene expression at multiple levels, including long-range control by distant enhancers and repressors, coordinated expression of genes, and modification of epigenetic states. Major challenges now include deciphering the mechanisms by which loci come together and understanding the functional consequences of these often transient associations.
Collapse
Affiliation(s)
- Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA.
| |
Collapse
|
189
|
Jing H, Vakoc CR, Ying L, Mandat S, Wang H, Zheng X, Blobel GA. Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol Cell 2008; 29:232-42. [PMID: 18243117 DOI: 10.1016/j.molcel.2007.11.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/21/2007] [Accepted: 11/09/2007] [Indexed: 12/18/2022]
Abstract
Enhancers can regulate designate promoters over long distances by forming chromatin loops. Whether chromatin loops are lost or reconfigured during gene repression is largely unexplored. We examined the chromosome conformation of the Kit gene that is expressed during early erythropoiesis but is downregulated upon cell maturation. Kit expression is controlled by sequential occupancy of two GATA family transcription factors. In immature cells, a distal enhancer bound by GATA-2 is in physical proximity with the active Kit promoter. Upon cell maturation, GATA-1 displaces GATA-2 and triggers a loss of the enhancer/promoter interaction. Moreover, GATA-1 reciprocally increases the proximity in nuclear space among distinct downstream GATA elements. GATA-1-induced transitions in chromatin conformation are not simply the consequence of transcription inhibition and require the cofactor FOG-1. This work shows that a GATA factor exchange reconfigures higher-order chromatin organization, and suggests that de novo chromatin loop formation is employed by nuclear factors to specify repressive outcomes.
Collapse
Affiliation(s)
- Huie Jing
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Identification of ZBP-89 as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development. Mol Cell Biol 2008; 28:2675-89. [PMID: 18250154 DOI: 10.1128/mcb.01945-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A complete understanding of the transcriptional regulation of developmental lineages requires that all relevant factors be identified. Here, we have taken a proteomic approach to identify novel proteins associated with GATA-1, a lineage-restricted zinc finger transcription factor required for terminal erythroid and megakaryocytic maturation. We identify the Krüppel-type zinc finger transcription factor ZBP-89 as being a component of multiprotein complexes involving GATA-1 and its essential cofactor Friend of GATA-1 (FOG-1). Using chromatin immunoprecipitation assays, we show that GATA-1 and ZBP-89 cooccupy cis-regulatory elements of certain erythroid and megakaryocyte-specific genes, including an enhancer of the GATA-1 gene itself. Loss-of-function studies in zebrafish and mice demonstrate an in vivo requirement for ZBP-89 in megakaryopoiesis and definitive erythropoiesis but not primitive erythropoiesis, phenocopying aspects of FOG-1- and GATA-1-deficient animals. These findings identify ZBP-89 as being a novel transcription factor involved in erythroid and megakaryocytic development and suggest that it serves a cooperative function with GATA-1 and/or FOG-1 in a developmental stage-specific manner.
Collapse
|
191
|
Abstract
Over the past 20 years, there has been an increasing awareness that gene expression can be regulated by multiple cis-acting sequences located at considerable distances (10-1000 kb) from the genes they control. Detailed investigation of a few specialized mammalian genes, including the genes controlling the synthesis of hemoglobin, provide important models to understand how such long-range regulatory elements act. In general, these elements contain a high density of evolutionarily conserved, transcription factor-binding sites and in many ways resemble the upstream regulatory elements found adjacent to the promoters of genes in simpler organisms, differing only in the distance over which they act. We have investigated in detail how the remote regulatory elements of the alpha-globin cluster become activated as hematopoietic stem cells (HSCs) undergo commitment, lineage specification, and differentiation to form red blood cells. In turn, we have addressed how, during this process, the upstream elements control the correct spatial and temporal expression from the alpha-gene promoter which lies approximately 60 kb downstream of these elements. At present too few loci have been studied to determine whether there are general principles underlying long-range regulation but some common themes are emerging.
Collapse
|
192
|
De Gobbi M, Anguita E, Hughes J, Sloane-Stanley JA, Sharpe JA, Koch CM, Dunham I, Gibbons RJ, Wood WG, Higgs DR. Tissue-specific histone modification and transcription factor binding in α globin gene expression. Blood 2007; 110:4503-10. [PMID: 17715390 DOI: 10.1182/blood-2007-06-097964] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To address the mechanism by which the human globin genes are activated during erythropoiesis, we have used a tiled microarray to analyze the pattern of transcription factor binding and associated histone modifications across the telomeric region of human chromosome 16 in primary erythroid and nonerythroid cells. This 220-kb region includes the α globin genes and 9 widely expressed genes flanking the α globin locus. This un-biased, comprehensive analysis of transcription factor binding and histone modifications (acetylation and methylation) described here not only identified all known cis-acting regulatory elements in the human α globin cluster but also demonstrated that there are no additional erythroid-specific regulatory elements in the 220-kb region tested. In addition, the pattern of histone modification distinguished promoter elements from potential enhancer elements across this region. Finally, comparison of the human and mouse orthologous regions in a unique mouse model, with both regions coexpressed in the same animal, showed significant differences that may explain how these 2 clusters are regulated differently in vivo.
Collapse
Affiliation(s)
- Marco De Gobbi
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
GATA-1 modulates the chromatin structure and activity of the chicken alpha-globin 3' enhancer. Mol Cell Biol 2007; 28:575-86. [PMID: 17984219 DOI: 10.1128/mcb.00943-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-distance regulatory elements and local chromatin structure are critical for proper regulation of gene expression. Here we characterize the chromatin conformation of the chicken alpha-globin silencer-enhancer elements located 3' of the domain. We found a characteristic and erythrocyte-specific structure between the previously defined silencer and the enhancer, defined by two nuclease hypersensitive sites, which appear when the enhancer is active during erythroid differentiation. Fine mapping of these sites demonstrates the absence of a positioned nucleosome and the association of GATA-1. Functional analyses of episomal vectors, as well as stably integrated constructs, revealed that GATA-1 plays a major role in defining both the chromatin structure and the enhancer activity. We detected a progressive enrichment of histone acetylation on critical enhancer nuclear factor binding sites, in correlation with the formation of an apparent nucleosome-free region. On the basis of these results, we propose that the local chromatin structure of the chicken alpha-globin enhancer plays a central role in its capacity to differentially regulate alpha-globin gene expression during erythroid differentiation and development.
Collapse
|
194
|
Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forné T. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2007; 2:1722-33. [PMID: 17641637 DOI: 10.1038/nprot.2007.243] [Citation(s) in RCA: 555] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chromosome conformation capture (3C) technology is a pioneering methodology that allows in vivo genomic organization to be explored at a scale encompassing a few tens to a few hundred kilobase-pairs. Understanding the folding of the genome at this scale is particularly important in mammals where dispersed regulatory elements, like enhancers or insulators, are involved in gene regulation. 3C technology involves formaldehyde fixation of cells, followed by a polymerase chain reaction (PCR)-based analysis of the frequency with which pairs of selected DNA fragments are crosslinked in the population of cells. Accurate measurements of crosslinking frequencies require the best quantification techniques. We recently adapted the real-time TaqMan PCR technology to the analysis of 3C assays, resulting in a method that more accurately determines crosslinking frequencies than current semiquantitative 3C strategies that rely on measuring the intensity of ethidium bromide-stained PCR products separated by gel electrophoresis. Here, we provide a detailed protocol for this method, which we have named 3C-qPCR. Once preliminary controls and optimizations have been performed, the whole procedure (3C assays and quantitative analyses) can be completed in 7-9 days.
Collapse
Affiliation(s)
- Hélène Hagège
- UMR5535 CNRS-UMII, IFR122, Institut de Génétique Moléculaire de Montpellier, IGMM, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Grange S, Boyes J. Chromatin opening is tightly linked to enhancer activation at the kappa light chain locus. Biochem Biophys Res Commun 2007; 363:223-8. [PMID: 17868643 DOI: 10.1016/j.bbrc.2007.08.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 12/27/2022]
Abstract
Enhancers play an important role in chromatin opening but the temporal relationship between enhancer activation and the generation of an accessible chromatin structure is poorly defined. Recombination enhancers are essential for chromatin opening and subsequent V(D)J recombination at immunoglobulin loci. In mice, the kappa light chain locus displays an open chromatin structure before the lambda locus yet the same proteins, PU.1/PIP, trigger full enhancer activation of both loci. Using primary B cells isolated from distinct developmental stages and an improved method to quantitatively determine hypersensitive site formation, we find the kappa and lambda recombination enhancers become fully hypersensitive soon after transition to large and small pre-B-II cells, respectively. This correlates strictly with the stages at which these loci are activated. Since these cells are short-lived, these data imply that there is a close temporal relationship between full enhancer hypersensitive site formation and locus chromatin opening.
Collapse
Affiliation(s)
- Sarah Grange
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|