151
|
Ibáñez de Opakua A, Merino N, Villate M, Cordeiro TN, Ormaza G, Sánchez-Carbayo M, Diercks T, Bernadó P, Blanco FJ. The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil. PLoS One 2017; 12:e0172507. [PMID: 28207895 PMCID: PMC5313212 DOI: 10.1371/journal.pone.0172507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022] Open
Abstract
The metastasis suppressor KISS1 is reported to be involved in the progression of several solid neoplasias, making it a promising molecular target for controlling their metastasis. The KISS1 sequence contains an N-terminal secretion signal and several dibasic sequences that are proposed to be the proteolytic cleavage sites. We present the first structural characterization of KISS1 by circular dichroism, multi-angle light scattering, small angle X-Ray scattering and NMR spectroscopy. An analysis of the KISS1 backbone NMR chemical shifts does not reveal any preferential conformation and deviation from a random coil ensemble. The backbone 15N transverse relaxation times indicate a mildly reduced mobility for two regions that are rich in bulky residues. The small angle X-ray scattering curve of KISS1 is likewise consistent with a predominantly random coil ensemble, although an ensemble optimization analysis indicates some preference for more extended conformations possibly due to positive charge repulsion between the abundant basic residues. Our results support the hypothesis that KISS1 mostly samples a random coil conformational space, which is consistent with its high susceptibility to proteolysis and the generation of Kisspeptin fragments.
Collapse
Affiliation(s)
| | | | | | - Tiago N. Cordeiro
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | | | - Marta Sánchez-Carbayo
- Lucio Lascaray Research Center, Universidad del País Vasco, Vitoria, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Francisco J. Blanco
- CIC bioGUNE, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
152
|
Villarreal-Ramirez E, Eliezer D, Garduño-Juarez R, Gericke A, Perez-Aguilar JM, Boskey A. Phosphorylation regulates the secondary structure and function of dentin phosphoprotein peptides. Bone 2017; 95:65-75. [PMID: 27810285 PMCID: PMC5234040 DOI: 10.1016/j.bone.2016.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/19/2016] [Accepted: 10/30/2016] [Indexed: 12/30/2022]
Abstract
Dentin phosphoprotein (DPP) is the most acidic protein in vertebrates and structurally is classified as an intrinsically disordered protein. Functionally, DPP is related to dentin and bone formation, however the specifics of such association remain unknown. Here, we used atomistic molecular dynamics simulations to screen selected binding domains of DPP onto hydroxyapatite (HA), which is one of its important interacting partners. From these results, we selected a functionally relevant peptide, Ace-SSDSSDSSDSSDSSD-NH2 (named P5) and its phosphorylated form (named P5P), for experimental characterization. SAXS experiments indicated that in solution P5 was disordered, possibly in an extended conformation while P5P displayed more compact globular conformations. Circular dichroism and FTIR confirmed that, either in the presence or absence of Ca2+/HA, P5 adopts a random coil structure, whereas its phosphorylated counterpart, P5P, has a more compact arrangement associated with conformations that display β-sheet and α-helix motifs when bound to HA. In solution, P5 inhibited HA crystal growth, whereas at similar concentrations, P5P stimulated it. These findings suggest that phosphorylation controls the transient formation of secondary and tertiary structure of DPP peptides, and, most likely of DPP itself, which in turn controls HA growth in solution and possibly HA growth in mineralized tissues.
Collapse
Affiliation(s)
- Eduardo Villarreal-Ramirez
- Mineralized Tissue Research Laboratory, Hospital for Special Surgery, New York, NY, USA; Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | | | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Adele Boskey
- Mineralized Tissue Research Laboratory, Hospital for Special Surgery, New York, NY, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
153
|
Chakraborty A, Lyonnais S, Battistini F, Hospital A, Medici G, Prohens R, Orozco M, Vilardell J, Solà M. DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p. Nucleic Acids Res 2017; 45:951-967. [PMID: 27899643 PMCID: PMC5314765 DOI: 10.1093/nar/gkw1147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/16/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022] Open
Abstract
The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.
Collapse
Affiliation(s)
- Arka Chakraborty
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Sébastien Lyonnais
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Giorgio Medici
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, University of Barcelona, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Josep Vilardell
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain
- Molecular Genomics Department, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, 08028, Spain
| | - Maria Solà
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
154
|
Antonov LD, Olsson S, Boomsma W, Hamelryck T. Bayesian inference of protein ensembles from SAXS data. Phys Chem Chem Phys 2017; 18:5832-8. [PMID: 26548662 DOI: 10.1039/c5cp04886a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inherent flexibility of intrinsically disordered proteins (IDPs) and multi-domain proteins with intrinsically disordered regions (IDRs) presents challenges to structural analysis. These macromolecules need to be represented by an ensemble of conformations, rather than a single structure. Small-angle X-ray scattering (SAXS) experiments capture ensemble-averaged data for the set of conformations. We present a Bayesian approach to ensemble inference from SAXS data, called Bayesian ensemble SAXS (BE-SAXS). We address two issues with existing methods: the use of a finite ensemble of structures to represent the underlying distribution, and the selection of that ensemble as a subset of an initial pool of structures. This is achieved through the formulation of a Bayesian posterior of the conformational space. BE-SAXS modifies a structural prior distribution in accordance with the experimental data. It uses multi-step expectation maximization, with alternating rounds of Markov-chain Monte Carlo simulation and empirical Bayes optimization. We demonstrate the method by employing it to obtain a conformational ensemble of the antitoxin PaaA2 and comparing the results to a published ensemble.
Collapse
Affiliation(s)
- L D Antonov
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - S Olsson
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland and Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - W Boomsma
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - T Hamelryck
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
155
|
Nucleoplasmin-like domain of FKBP39 from Drosophila melanogaster forms a tetramer with partly disordered tentacle-like C-terminal segments. Sci Rep 2017; 7:40405. [PMID: 28074868 PMCID: PMC5225439 DOI: 10.1038/srep40405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
Nucleoplasmins are a nuclear chaperone family defined by the presence of a highly conserved N-terminal core domain. X-ray crystallographic studies of isolated nucleoplasmin core domains revealed a β-propeller structure consisting of a set of five monomers that together form a stable pentamer. Recent studies on isolated N-terminal domains from Drosophila 39-kDa FK506-binding protein (FKBP39) and from other chromatin-associated proteins showed analogous, nucleoplasmin-like (NPL) pentameric structures. Here, we report that the NPL domain of the full-length FKBP39 does not form pentameric complexes. Multi-angle light scattering (MALS) and sedimentation equilibrium ultracentrifugation (SE AUC) analyses of the molecular mass of the full-length protein indicated that FKBP39 forms homotetrameric complexes. Molecular models reconstructed from small-angle X-ray scattering (SAXS) revealed that the NPL domain forms a stable, tetrameric core and that FK506-binding domains are linked to it by intrinsically disordered, flexible chains that form tentacle-like segments. Analyses of full-length FKBP39 and its isolated NPL domain suggested that the distal regions of the polypeptide chain influence and determine the quaternary conformation of the nucleoplasmin-like protein. These results provide new insights regarding the conserved structure of nucleoplasmin core domains and provide a potential explanation for the importance of the tetrameric structural organization of full-length nucleoplasmins.
Collapse
|
156
|
How to Analyze and Present SAS Data for Publication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:47-64. [PMID: 29218553 DOI: 10.1007/978-981-10-6038-0_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SAS is a powerful technique to investigate oligomeric state and domain organization of macromolecules, e.g. proteins and nucleic acids, under physiological, functional and even time resolved conditions. However, reconstructing three dimensional structures from SAS data is inherently ambiguous, as no information about orientation and phase is available. In addition experimental artifacts such as radiation damage, concentration effects and incorrect background subtraction can hinder the interpretation of even lead to wrong results. In this chapter, explanations on how to analyze data and how to assess and minimize the influence of experimental artifacts on the data. Furthermore, guidelines on how to present the resulting data and models to demonstrate the data supports the conclusion being made and that it is not biased by artifacts, will be given.
Collapse
|
157
|
Salladini E, Delauzun V, Longhi S. The Henipavirus V protein is a prevalently unfolded protein with a zinc-finger domain involved in binding to DDB1. ACTA ACUST UNITED AC 2017; 13:2254-2267. [DOI: 10.1039/c7mb00488e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PNT remains disordered also within the V protein. V binds to DDB1, with the ZnFD playing an important role.
Collapse
Affiliation(s)
- Edoardo Salladini
- Aix-Marseille Univ
- CNRS
- Architecture et Fonction des Macromolécules Biologiques (AFMB)
- UMR 7257
- 13288 Marseille Cedex 09
| | - Vincent Delauzun
- Aix-Marseille Univ
- CNRS
- Architecture et Fonction des Macromolécules Biologiques (AFMB)
- UMR 7257
- 13288 Marseille Cedex 09
| | - Sonia Longhi
- Aix-Marseille Univ
- CNRS
- Architecture et Fonction des Macromolécules Biologiques (AFMB)
- UMR 7257
- 13288 Marseille Cedex 09
| |
Collapse
|
158
|
Structural Analysis of Multi-component Amyloid Systems by Chemometric SAXS Data Decomposition. Structure 2017; 25:5-15. [DOI: 10.1016/j.str.2016.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/23/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022]
|
159
|
Abstract
Over the past decade, it has become evident that a large proportion of proteins contain intrinsically disordered regions, which play important roles in pivotal cellular functions. Many computational tools have been developed with the aim of identifying the level and location of disorder within a protein. In this chapter, we describe a neural network based technique called SPINE-D that employs a unique three-state design and can accurately capture disordered residues in both short and long disordered regions. SPINE-D was trained on a large database of 4229 non-redundant proteins, and yielded an AUC of 0.86 on a cross-validation test and 0.89 on an independent test. SPINE-D can also detect a semi-disordered state that is associated with induced folders and aggregation-prone regions in disordered proteins and weakly stable or locally unfolded regions in structured proteins. We implement an online web service and an offline stand-alone program for SPINE-D, they are freely available at http://sparks-lab.org/SPINE-D/ . We then walk you through how to use the online and offline SPINE-D in making disorder predictions, and examine the disorder and semi-disorder prediction in a case study on the p53 protein.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eshel Faraggi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46032, USA
- Research and Information Systems, LLC, Indianapolis, IN, USA
| | - Zhixiu Li
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast Campus, Science 1 (G24) 2.10, Parklands Drive, Southport, QLD, 4222, Australia.
| |
Collapse
|
160
|
Cordeiro TN, Herranz-Trillo F, Urbanek A, Estaña A, Cortés J, Sibille N, Bernadó P. Structural Characterization of Highly Flexible Proteins by Small-Angle Scattering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:107-129. [DOI: 10.1007/978-981-10-6038-0_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
161
|
Keppel TR, Sarpong K, Murray EM, Monsey J, Zhu J, Bose R. Biophysical Evidence for Intrinsic Disorder in the C-terminal Tails of the Epidermal Growth Factor Receptor (EGFR) and HER3 Receptor Tyrosine Kinases. J Biol Chem 2016; 292:597-610. [PMID: 27872189 DOI: 10.1074/jbc.m116.747485] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/15/2016] [Indexed: 12/21/2022] Open
Abstract
The epidermal growth factor receptor (EGFR)/ErbB family of receptor tyrosine kinases includes oncogenes important in the progression of breast and other cancers, and they are targets for many drug development strategies. Each member of the ErbB family possesses a unique, structurally uncharacterized C-terminal tail that plays an important role in autophosphorylation and signal propagation. To determine whether these C-terminal tails are intrinsically disordered regions, we conducted a battery of biophysical experiments on the EGFR and HER3 tails. Using hydrogen/deuterium exchange mass spectrometry, we measured the conformational dynamics of intracellular half constructs and compared the tails with the ordered kinase domains. The C-terminal tails demonstrate more rapid deuterium exchange behavior when compared with the kinase domains. Next, we expressed and purified EGFR and HER3 tail-only constructs. Results from circular dichroism spectroscopy, size exclusion chromatography with multiangle light scattering, dynamic light scattering, analytical ultracentrifugation, and small angle X-ray scattering each provide evidence that the EGFR and HER3 C-terminal tails are intrinsically disordered with extended, non-globular structure in solution. The intrinsic disorder and extended conformation of these tails may be important for their function by increasing the capture radius and reducing the thermodynamic barriers for binding of downstream signaling proteins.
Collapse
Affiliation(s)
| | | | | | | | - Jian Zhu
- Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ron Bose
- From the Divisions of Oncology and
| |
Collapse
|
162
|
Arbe A, Pomposo J, Moreno A, LoVerso F, González-Burgos M, Asenjo-Sanz I, Iturrospe A, Radulescu A, Ivanova O, Colmenero J. Structure and dynamics of single-chain nano-particles in solution. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
163
|
Cordeiro TN, Herranz-Trillo F, Urbanek A, Estaña A, Cortés J, Sibille N, Bernadó P. Small-angle scattering studies of intrinsically disordered proteins and their complexes. Curr Opin Struct Biol 2016; 42:15-23. [PMID: 27794210 DOI: 10.1016/j.sbi.2016.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/01/2022]
Abstract
Intrinsically Disordered Proteins (IDPs) perform a broad range of biological functions. Their relevance has motivated intense research activity seeking to characterize their sequence/structure/function relationships. However, the conformational plasticity of these molecules hampers the application of traditional structural approaches, and new tools and concepts are being developed to address the challenges they pose. Small-Angle Scattering (SAS) is a structural biology technique that probes the size and shape of disordered proteins and their complexes with other biomolecules. The low-resolution nature of SAS can be compensated with specially designed computational tools and its combined interpretation with complementary structural information. In this review, we describe recent advances in the application of SAS to disordered proteins and highly flexible complexes and discuss current challenges.
Collapse
Affiliation(s)
- Tiago N Cordeiro
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Fátima Herranz-Trillo
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annika Urbanek
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France; LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
164
|
Kolonko M, Ożga K, Hołubowicz R, Taube M, Kozak M, Ożyhar A, Greb-Markiewicz B. Intrinsic Disorder of the C-Terminal Domain of Drosophila Methoprene-Tolerant Protein. PLoS One 2016; 11:e0162950. [PMID: 27657508 PMCID: PMC5033490 DOI: 10.1371/journal.pone.0162950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Methoprene tolerant protein (Met) has recently been confirmed as the long-sought juvenile hormone (JH) receptor. This protein plays a significant role in the cross-talk of the 20-hydroxyecdysone (20E) and JH signalling pathways, which are important for control of insect development and maturation. Met belongs to the basic helix-loop-helix/Per-Arnt-Sim (bHLH-PAS) family of transcription factors. In these proteins, bHLH domains are typically responsible for DNA binding and dimerization, whereas the PAS domains are crucial for the choice of dimerization partner and the specificity of target gene activation. The C-terminal region is usually responsible for the regulation of protein complex activity. The sequence of the Met C-terminal region (MetC) is not homologous to any sequence deposited in the Protein Data Bank (PDB) and has not been structurally characterized to date. In this study, we show that the MetC exhibits properties typical for an intrinsically disordered protein (IDP). The final averaged structure obtained with small angle X-ray scattering (SAXS) experiments indicates that intrinsically disordered MetC exists in an extended conformation. This extended shape and the long unfolded regions characterise proteins with high flexibility and dynamics. Therefore, we suggest that the multiplicity of conformations adopted by the disordered MetC is crucial for its activity as a biological switch modulating the cross-talk of different signalling pathways in insects.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
| | - Katarzyna Ożga
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
| | - Michał Taube
- Joint Laboratory for SAXS studies, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614, Poznań, Poland
| | - Maciej Kozak
- Joint Laboratory for SAXS studies, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614, Poznań, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614, Poznań, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
- * E-mail:
| |
Collapse
|
165
|
Kukharenko O, Sawade K, Steuer J, Peter C. Using Dimensionality Reduction to Systematically Expand Conformational Sampling of Intrinsically Disordered Peptides. J Chem Theory Comput 2016; 12:4726-4734. [DOI: 10.1021/acs.jctc.6b00503] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Kevin Sawade
- Theoretical
Chemistry, University of Konstanz, 78547 Konstanz, Germany
| | - Jakob Steuer
- Theoretical
Chemistry, University of Konstanz, 78547 Konstanz, Germany
| | - Christine Peter
- Theoretical
Chemistry, University of Konstanz, 78547 Konstanz, Germany
| |
Collapse
|
166
|
Aznauryan M, Delgado L, Soranno A, Nettels D, Huang JR, Labhardt AM, Grzesiek S, Schuler B. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc Natl Acad Sci U S A 2016; 113:E5389-98. [PMID: 27566405 PMCID: PMC5027429 DOI: 10.1073/pnas.1607193113] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The properties of unfolded proteins are essential both for the mechanisms of protein folding and for the function of the large group of intrinsically disordered proteins. However, the detailed structural and dynamical characterization of these highly dynamic and conformationally heterogeneous ensembles has remained challenging. Here we combine and compare three of the leading techniques for the investigation of unfolded proteins, NMR spectroscopy (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET), with the goal of quantitatively testing their consistency and complementarity and for obtaining a comprehensive view of the unfolded-state ensemble. Using unfolded ubiquitin as a test case, we find that its average dimensions derived from FRET and from structural ensembles calculated using the program X-PLOR-NIH based on NMR and SAXS restraints agree remarkably well; even the shapes of the underlying intramolecular distance distributions are in good agreement, attesting to the reliability of the approaches. The NMR-based results provide a highly sensitive way of quantifying residual structure in the unfolded state. FRET-based nanosecond fluorescence correlation spectroscopy allows long-range distances and chain dynamics to be probed in a time range inaccessible by NMR. The combined techniques thus provide a way of optimally using the complementarity of the available methods for a quantitative structural and dynamical description of unfolded proteins both at the global and the local level.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | - Andrea Soranno
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei City 112, Taiwan
| | | | | | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
167
|
Di Carlo MG, Vetri V, Buscarino G, Leone M, Vestergaard B, Foderà V. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution. Biophys Chem 2016; 216:23-30. [DOI: 10.1016/j.bpc.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 01/05/2023]
|
168
|
Gibbs EB, Showalter SA. Quantification of Compactness and Local Order in the Ensemble of the Intrinsically Disordered Protein FCP1. J Phys Chem B 2016; 120:8960-9. [DOI: 10.1021/acs.jpcb.6b06934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eric B. Gibbs
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A. Showalter
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
169
|
Bhowmick A, Brookes DH, Yost SR, Dyson HJ, Forman-Kay JD, Gunter D, Head-Gordon M, Hura GL, Pande VS, Wemmer DE, Wright PE, Head-Gordon T. Finding Our Way in the Dark Proteome. J Am Chem Soc 2016; 138:9730-42. [PMID: 27387657 PMCID: PMC5051545 DOI: 10.1021/jacs.6b06543] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The traditional structure-function paradigm has provided significant insights for well-folded proteins in which structures can be easily and rapidly revealed by X-ray crystallography beamlines. However, approximately one-third of the human proteome is comprised of intrinsically disordered proteins and regions (IDPs/IDRs) that do not adopt a dominant well-folded structure, and therefore remain "unseen" by traditional structural biology methods. This Perspective considers the challenges raised by the "Dark Proteome", in which determining the diverse conformational substates of IDPs in their free states, in encounter complexes of bound states, and in complexes retaining significant disorder requires an unprecedented level of integration of multiple and complementary solution-based experiments that are analyzed with state-of-the art molecular simulation, Bayesian probabilistic models, and high-throughput computation. We envision how these diverse experimental and computational tools can work together through formation of a "computational beamline" that will allow key functional features to be identified in IDP structural ensembles.
Collapse
Affiliation(s)
- Asmit Bhowmick
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - David H. Brookes
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Shane R. Yost
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037
| | - Julie D. Forman-Kay
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Gunter
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720
| | | | - Gregory L. Hura
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Peter E. Wright
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Teresa Head-Gordon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720
| |
Collapse
|
170
|
López A, Vilaseca M, Madurga S, Varese M, Tarragó T, Giralt E. Analyzing slowly exchanging protein conformations by ion mobility mass spectrometry: study of the dynamic equilibrium of prolyl oligopeptidase. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:504-511. [PMID: 27434808 DOI: 10.1002/jms.3777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 06/06/2023]
Abstract
Ion mobility mass spectrometry (IMMS) is a biophysical technique that allows the separation of isobaric species on the basis of their size and shape. The high separation capacity, sensitivity and relatively fast time scale measurements confer IMMS great potential for the study of proteins in slow (µs-ms) conformational equilibrium in solution. However, the use of this technique for examining dynamic proteins is still not generalized. One of the major limitations is the instability of protein ions in the gas phase, which raises the question as to what extent the structures detected reflect those in solution. Here, we addressed this issue by analyzing the conformational landscape of prolyl oligopeptidase (POP) - a model of a large dynamic enzyme in the µs-ms range - by native IMMS and compared the results obtained in the gas phase with those obtained in solution. In order to interpret the experimental results, we used theoretical simulations. In addition, the stability of POP gaseous ions was explored by charge reduction and collision-induced unfolding experiments. Our experiments disclosed two species of POP in the gas phase, which correlated well with the open and closed conformations in equilibrium in solution; moreover, a gas-phase collapsed form of POP was also detected. Therefore, our findings not only support the potential of IMMS for the study of multiple co-existing conformations of large proteins in slow dynamic equilibrium in solution but also stress the need for careful data analysis to avoid artifacts. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Abraham López
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Sergio Madurga
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Teresa Tarragó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Iproteos, S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
171
|
A Structure-free Method for Quantifying Conformational Flexibility in proteins. Sci Rep 2016; 6:29040. [PMID: 27358108 PMCID: PMC4928179 DOI: 10.1038/srep29040] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022] Open
Abstract
All proteins sample a range of conformations at physiologic temperatures and this inherent flexibility enables them to carry out their prescribed functions. A comprehensive understanding of protein function therefore entails a characterization of protein flexibility. Here we describe a novel approach for quantifying a protein’s flexibility in solution using small-angle X-ray scattering (SAXS) data. The method calculates an effective entropy that quantifies the diversity of radii of gyration that a protein can adopt in solution and does not require the explicit generation of structural ensembles to garner insights into protein flexibility. Application of this structure-free approach to over 200 experimental datasets demonstrates that the methodology can quantify a protein’s disorder as well as the effects of ligand binding on protein flexibility. Such quantitative descriptions of protein flexibility form the basis of a rigorous taxonomy for the description and classification of protein structure.
Collapse
|
172
|
Bhagawati M, Rubashkin MG, Lee JP, Ananthanarayanan B, Weaver VM, Kumar S. Site-Specific Modulation of Charge Controls the Structure and Stimulus Responsiveness of Intrinsically Disordered Peptide Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5990-5996. [PMID: 27203736 PMCID: PMC5343758 DOI: 10.1021/acs.langmuir.6b01099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) are an important and emerging class of materials for tailoring biointerfaces. While the importance of chain charge and resultant electrostatic interactions in controlling conformational properties of IDPs is beginning to be explored through in silico approaches, there is a dearth of experimental studies motivated toward a systematic study of these effects. In an effort to explore this relationship, we measured the conformations of two peptides derived from the intrinsically disordered neurofilament (NF) side arm domain: one depicting the wild-type sequence with four lysine-serine-proline repeats (KSP peptide) and another in which the serine residues were replaced with aspartates (KDP peptide), a strategy sometimes used to mimic phosphorylation. Using a variety of biophysical measurements including a novel application of scanning angle interference microscopy, we demonstrate that the KDP peptide assumes comparatively more expanded conformations in solution and forms significantly thicker brushes when immobilized on planar surfaces at high densities. In both settings, the peptides respond to changes in ambient ionic strength, with each peptide showing distinct stimulus-responsive characteristics. While the KDP peptide undergoes compaction with increasing ionic strength as would be expected for a polyampholyte, the KSP peptide shows biphasic behavior, with an initial compaction followed by an expanded state at a higher ionic strength. Together these results support the notion that modulation of charge on IDPs can regulate conformational and interfacial properties.
Collapse
Affiliation(s)
- Maniraj Bhagawati
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Matt G. Rubashkin
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, California 94143, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jessica P. Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, California 94143, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
173
|
Tokuda JM, Pabit SA, Pollack L. Protein-DNA and ion-DNA interactions revealed through contrast variation SAXS. Biophys Rev 2016; 8:139-149. [PMID: 27551324 PMCID: PMC4991782 DOI: 10.1007/s12551-016-0196-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Understanding how DNA carries out its biological roles requires knowledge of its interactions with biological partners. Since DNA is a polyanionic polymer, electrostatic interactions contribute significantly. These interactions are mediated by positively charged protein residues or charge compensating cations. Direct detection of these partners and/or their effect on DNA conformation poses challenges, especially for monitoring conformational dynamics in real time. Small-angle x-ray scattering (SAXS) is uniquely sensitive to both the conformation and local environment (i.e. protein partner and associated ions) of the DNA. The primary challenge of studying multi-component systems with SAXS lies in resolving how each component contributes to the measured scattering. Here, we review two contrast variation (CV) strategies that enable targeted studies of the structures of DNA or its associated partners. First, solution contrast variation enables measurement of DNA conformation within a protein-DNA complex by masking out the protein contribution to the scattering profile. We review a specific example, in which the real-time unwrapping of DNA from a nucleosome core particle is measured during salt-induced disassembly. The second method, heavy atom isomorphous replacement, reports the spatial distribution of the cation cloud around duplex DNA by exploiting changes in the scattering strength of cations with varying atomic numbers. We demonstrate the application of this approach to provide the spatial distribution of monovalent cations (Na+, K+, Rb+, Cs+) around a standard 25-base pair DNA. The CV strategies presented here are valuable tools for understanding DNA interactions with its biological partners.
Collapse
Affiliation(s)
- Joshua M. Tokuda
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
174
|
Carter L, Kim SJ, Schneidman-Duhovny D, Stöhr J, Poncet-Montange G, Weiss TM, Tsuruta H, Prusiner SB, Sali A. Prion Protein-Antibody Complexes Characterized by Chromatography-Coupled Small-Angle X-Ray Scattering. Biophys J 2016; 109:793-805. [PMID: 26287631 DOI: 10.1016/j.bpj.2015.06.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022] Open
Abstract
Aberrant self-assembly, induced by structural misfolding of the prion proteins, leads to a number of neurodegenerative disorders. In particular, misfolding of the mostly α-helical cellular prion protein (PrP(C)) into a β-sheet-rich disease-causing isoform (PrP(Sc)) is the key molecular event in the formation of PrP(Sc) aggregates. The molecular mechanisms underlying the PrP(C)-to-PrP(Sc) conversion and subsequent aggregation remain to be elucidated. However, in persistently prion-infected cell-culture models, it was shown that treatment with monoclonal antibodies against defined regions of the prion protein (PrP) led to the clearing of PrP(Sc) in cultured cells. To gain more insight into this process, we characterized PrP-antibody complexes in solution using a fast protein liquid chromatography coupled with small-angle x-ray scattering (FPLC-SAXS) procedure. High-quality SAXS data were collected for full-length recombinant mouse PrP [denoted recPrP(23-230)] and N-terminally truncated recPrP(89-230), as well as their complexes with each of two Fab fragments (HuM-P and HuM-R1), which recognize N- and C-terminal epitopes of PrP, respectively. In-line measurements by fast protein liquid chromatography coupled with SAXS minimized data artifacts caused by a non-monodispersed sample, allowing structural analysis of PrP alone and in complex with Fab antibodies. The resulting structural models suggest two mechanisms for how these Fabs may prevent the conversion of PrP(C) into PrP(Sc).
Collapse
Affiliation(s)
- Lester Carter
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry and California Institute for Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California
| | - Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry and California Institute for Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California
| | - Jan Stöhr
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California; Department of Neurology, University of California San Francisco, San Francisco, California
| | - Guillaume Poncet-Montange
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Hiro Tsuruta
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California; Department of Neurology, University of California San Francisco, San Francisco, California.
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry and California Institute for Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California.
| |
Collapse
|
175
|
Application of advanced X-ray methods in life sciences. Biochim Biophys Acta Gen Subj 2016; 1861:3671-3685. [PMID: 27156488 DOI: 10.1016/j.bbagen.2016.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Synchrotron radiation (SR) sources provide diverse X-ray methods for the investigation of structure-function relationships in biological macromolecules. SCOPE OF REVIEW Recent developments in SR sources and in the X-ray tools they offer for life sciences are reviewed. Specifically, advances in macromolecular crystallography, small angle X-ray solution scattering, X-ray absorption and fluorescence spectroscopy, and imaging are discussed with examples. MAJOR CONCLUSIONS SR sources offer a range of X-ray techniques that can be used in a complementary fashion in studies of biological systems at a wide range of resolutions from atomic to cellular scale. Emerging applications of X-ray techniques include the characterization of disordered proteins, noncrystalline and nonequilibrium systems, elemental imaging of tissues, cells and organs, and detection of time-resolved changes in molecular structures. GENERAL SIGNIFICANCE X-ray techniques are in the center of hybrid approaches that are used to gain insight into complex problems relating to biomolecular mechanisms, disease and possible therapeutic solutions. This article is part of a Special Issue entitled "Science for Life". Guest Editors: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
|
176
|
Schuler B, Soranno A, Hofmann H, Nettels D. Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins. Annu Rev Biophys 2016; 45:207-31. [PMID: 27145874 DOI: 10.1146/annurev-biophys-062215-010915] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of unfolded proteins have long been of interest because of their importance to the protein folding process. Recently, the surprising prevalence of unstructured regions or entirely disordered proteins under physiological conditions has led to the realization that such intrinsically disordered proteins can be functional even in the absence of a folded structure. However, owing to their broad conformational distributions, many of the properties of unstructured proteins are difficult to describe with the established concepts of structural biology. We have thus seen a reemergence of polymer physics as a versatile framework for understanding their structure and dynamics. An important driving force for these developments has been single-molecule spectroscopy, as it allows structural heterogeneity, intramolecular distance distributions, and dynamics to be quantified over a wide range of timescales and solution conditions. Polymer concepts provide an important basis for relating the physical properties of unstructured proteins to folding and function.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Andrea Soranno
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Hagen Hofmann
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
177
|
Urbanowicz A, Lewandowski D, Szpotkowski K, Figlerowicz M. Tick receptor for outer surface protein A from Ixodes ricinus - the first intrinsically disordered protein involved in vector-microbe recognition. Sci Rep 2016; 6:25205. [PMID: 27112540 PMCID: PMC4844993 DOI: 10.1038/srep25205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/12/2016] [Indexed: 01/02/2023] Open
Abstract
The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.
Collapse
Affiliation(s)
- Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Dominik Lewandowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Kamil Szpotkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland.,Institute of Computing Science, University of Technology, Poznan, 60-965, Poland
| |
Collapse
|
178
|
Espinoza-Fonseca LM, Kelekar A. High-resolution structural characterization of Noxa, an intrinsically disordered protein, by microsecond molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2016; 11:1850-6. [PMID: 25855872 DOI: 10.1039/c5mb00170f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
High-resolution characterization of the structure and dynamics of intrinsically disordered proteins (IDPs) remains a challenging task. Consequently, a detailed understanding of the structural and functional features of IDPs remains limited, as very few full-length disordered proteins have been structurally characterized. We have performed microsecond-long molecular dynamics (MD) simulations of Noxa, the smallest member of the large Bcl-2 family of apoptosis regulating proteins, to characterize in atomic-level detail the structural features of a disordered protein. A 2.5 μs MD simulation starting from an unfolded state of the protein revealed the formation of a central antiparallel β-sheet structure flanked by two disordered segments at the N- and C-terminal ends. This topology is in reasonable agreement with protein disorder predictions and available experimental data. We show that this fold plays an essential role in the intracellular function and regulation of Noxa. We demonstrate that unbiased MD simulations in combination with a modern force field reveal structural and functional features of disordered proteins at atomic-level resolution.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
179
|
Moreno AJ, Lo Verso F, Arbe A, Pomposo JA, Colmenero J. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions. J Phys Chem Lett 2016; 7:838-844. [PMID: 26894933 DOI: 10.1021/acs.jpclett.6b00144] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.
Collapse
Affiliation(s)
- Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Federica Lo Verso
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU) , Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE - Basque Foundation for Science, Alameda Urquijo 36, E-48011 Bilbao, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU) , Apartado 1072, E-20800 San Sebastián, Spain
| |
Collapse
|
180
|
Habenstein B, Loquet A. Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophys Chem 2016; 210:14-26. [DOI: 10.1016/j.bpc.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022]
|
181
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
182
|
Latorre-Sánchez A, Pomposo JA. Recent bioinspired applications of single-chain nanoparticles. POLYM INT 2016. [DOI: 10.1002/pi.5078] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alejandro Latorre-Sánchez
- Centro de Física de Materiales (CSIC, UPV/EHU) − Materials Physics Centre; Paseo Manuel de Lardizabal 5 E-20018 San Sebastián Spain
- Departamento de Física de Materiales; Universidad del País Vasco (UPV/EHU); Apartado 1072 E-20800 San Sebastián Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) − Materials Physics Centre; Paseo Manuel de Lardizabal 5 E-20018 San Sebastián Spain
- Departamento de Física de Materiales; Universidad del País Vasco (UPV/EHU); Apartado 1072 E-20800 San Sebastián Spain
- IKERBASQUE − Basque Foundation for Science; María Díaz de Haro 3 E48013 Bilbao Spain
| |
Collapse
|
183
|
Felicori L, Jameson KH, Roblin P, Fogg MJ, Garcia-Garcia T, Ventroux M, Cherrier MV, Bazin A, Noirot P, Wilkinson AJ, Molina F, Terradot L, Noirot-Gros MF. Tetramerization and interdomain flexibility of the replication initiation controller YabA enables simultaneous binding to multiple partners. Nucleic Acids Res 2016; 44:449-63. [PMID: 26615189 PMCID: PMC4705661 DOI: 10.1093/nar/gkv1318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/12/2022] Open
Abstract
YabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function. The crystal structure of the N-terminal domain (NTD) of YabA solved at 2.7 Å resolution reveals an extended α-helix that contributes to an intermolecular four-helix bundle. Homology modeling and biochemical analysis indicates that the C-terminal domain (CTD) of YabA is a small Zn-binding domain. Multi-angle light scattering and SAXS demonstrate that YabA is a tetramer in which the CTDs are independent and connected to the N-terminal four-helix bundle via flexible linkers. While YabA can simultaneously interact with both DnaA and DnaN, we found that an isolated CTD can bind to either DnaA or DnaN, individually. Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites on the YabA CTD that partially overlap and point to a mutually exclusive mode of interaction. Our study defines YabA as a novel structural hub and explains how the protein tetramer uses independent CTDs to bind multiple partners to orchestrate replication initiation in the bacterial cell.
Collapse
Affiliation(s)
- Liza Felicori
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil Sys2Diag FRE3690-CNRS/ALCEDIAG, Montpellier, France
| | - Katie H Jameson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Pierre Roblin
- Synchrotron SOLEIL-L'Orme des Merisiers Saint-Aubin- BP 48 91192 GIF-sur-YVETTE CEDEX, France
| | - Mark J Fogg
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Transito Garcia-Garcia
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - Magali Ventroux
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - Mickaël V Cherrier
- CNRS, UMR 5086 Bases Moléculaires et Structurales de Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367 Lyon, France Université de Lyon, F-69622 Lyon, France Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Alexandre Bazin
- CNRS, UMR 5086 Bases Moléculaires et Structurales de Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367 Lyon, France Université de Lyon, F-69622 Lyon, France Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Philippe Noirot
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | | | - Laurent Terradot
- CNRS, UMR 5086 Bases Moléculaires et Structurales de Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367 Lyon, France Université de Lyon, F-69622 Lyon, France Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Marie-Françoise Noirot-Gros
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| |
Collapse
|
184
|
Fetics S, Thureau A, Campanacci V, Aumont-Nicaise M, Dang I, Gautreau A, Pérez J, Cherfils J. Hybrid Structural Analysis of the Arp2/3 Regulator Arpin Identifies Its Acidic Tail as a Primary Binding Epitope. Structure 2016; 24:252-60. [PMID: 26774128 DOI: 10.1016/j.str.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/25/2023]
Abstract
Arpin is a newly discovered regulator of actin polymerization at the cell leading edge, which steers cell migration by exerting a negative control on the Arp2/3 complex. Arpin proteins have an acidic tail homologous to the acidic motif of the VCA domain of nucleation-promoting factors (NPFs). This tail is predicted to compete with the VCA of NPFs for binding to the Arp2/3 complex, thereby mitigating activation and/or tethering of the complex to sites of actin branching. Here, we investigated the structure of full-length Arpin using synchrotron small-angle X-ray scattering, and of its acidic tail in complex with an ankyrin repeats domain using X-ray crystallography. The data were combined in a hybrid model in which the acidic tail extends from the globular core as a linear peptide and forms a primary epitope that is readily accessible in unbound Arpin and suffices to tether Arpin to interacting proteins with high affinity.
Collapse
Affiliation(s)
- Susan Fetics
- Laboratoire de Pharmacologie et Biologie Appliquée, UMR 8113, CNRS-Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France; Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France
| | | | - Valérie Campanacci
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS-Université Paris-Sud UMR 8619, 91400 Orsay, France
| | - Irène Dang
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France; Ecole Polytechnique-CNRS UMR7654, 91120 Palaiseau, France
| | - Alexis Gautreau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France; Ecole Polytechnique-CNRS UMR7654, 91120 Palaiseau, France
| | - Javier Pérez
- Synchrotron SOLEIL, 91190 Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Laboratoire de Pharmacologie et Biologie Appliquée, UMR 8113, CNRS-Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France; Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
185
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
186
|
Ambadipudi S, Zweckstetter M. Targeting intrinsically disordered proteins in rational drug discovery. Expert Opin Drug Discov 2015; 11:65-77. [DOI: 10.1517/17460441.2016.1107041] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Susmitha Ambadipudi
- German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
187
|
van Maarschalkerweerd A, Pedersen MN, Peterson H, Nilsson M, Nguyen T, Skamris T, Rand K, Vetri V, Langkilde AE, Vestergaard B. Formation of covalent di-tyrosine dimers in recombinant α-synuclein. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1071302. [PMID: 28232892 PMCID: PMC5314896 DOI: 10.1080/21690707.2015.1071302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 11/02/2022]
Abstract
Parkinson's disease is associated with fibril deposition in the diseased brain. Misfolding events of the intrinsically disordered synaptic protein α-synuclein are suggested to lead to the formation of transient oligomeric and cytotoxic species. The etiology of Parkinson's disease is further associated with mitochondrial dysfunction and formation of reactive oxygen species. Oxidative stress causes chemical modification of native α-synuclein, plausibly further influencing misfolding events. Here, we present evidence for the spontaneous formation of covalent di-tyrosine α-synuclein dimers in standard recombinant protein preparations, induced without extrinsic oxidative or nitrative agents. The dimers exhibit no secondary structure but advanced SAXS studies reveal an increased structural definition, resulting in a more hydrophobic micro-environment than the highly disordered monomer. Accordingly, monomers and dimers follow distinct fibrillation pathways.
Collapse
Affiliation(s)
| | - M N Pedersen
- Department of Drug Design and Pharmacology; University of Copenhagen ; Copenhagen, Denmark
| | - H Peterson
- Department of Drug Design and Pharmacology; University of Copenhagen ; Copenhagen, Denmark
| | - M Nilsson
- Department of Drug Design and Pharmacology; University of Copenhagen ; Copenhagen, Denmark
| | - Ttt Nguyen
- Department of Pharmacy; University of Copenhagen ; Copenhagen, Denmark
| | - T Skamris
- Department of Drug Design and Pharmacology; University of Copenhagen ; Copenhagen, Denmark
| | - K Rand
- Department of Pharmacy; University of Copenhagen ; Copenhagen, Denmark
| | - V Vetri
- Dipartimento di Fisica e Chimica; Universitá di Palermo ; Palermo, Italy
| | - A E Langkilde
- Department of Drug Design and Pharmacology; University of Copenhagen ; Copenhagen, Denmark
| | - B Vestergaard
- Department of Drug Design and Pharmacology; University of Copenhagen ; Copenhagen, Denmark
| |
Collapse
|
188
|
Lenton S, Seydel T, Nylander T, Holt C, Härtlein M, Teixeira S, Zaccai G. Dynamic footprint of sequestration in the molecular fluctuations of osteopontin. J R Soc Interface 2015; 12:0506. [PMID: 26354827 PMCID: PMC4614460 DOI: 10.1098/rsif.2015.0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/19/2015] [Indexed: 11/12/2022] Open
Abstract
The sequestration of calcium phosphate by unfolded proteins is fundamental to the stabilization of biofluids supersaturated with respect to hydroxyapatite, such as milk, blood or urine. The unfolded state of osteopontin (OPN) is thought to be a prerequisite for this activity, which leads to the formation of core-shell calcium phosphate nanoclusters. We report on the structures and dynamics of a native OPN peptide from bovine milk, studied by neutron spectroscopy and small-angle X-ray and neutron scattering. The effects of sequestration are quantified on the nanosecond- ångström resolution by elastic incoherent neutron scattering. The molecular fluctuations of the free phosphopeptide are in agreement with a highly flexible protein. An increased resilience to diffusive motions of OPN is corroborated by molecular fluctuations similar to those observed for globular proteins, yet retaining conformational flexibilities. The results bring insight into the modulation of the activity of OPN and phosphopeptides with a role in the control of biomineralization. The quantification of such effects provides an important handle for the future design of new peptides based on the dynamics-activity relationship.
Collapse
Affiliation(s)
- S Lenton
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Staffordshire ST5 5BG, UK
| | - T Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - T Nylander
- Division of Physical Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - C Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - M Härtlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - S Teixeira
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Staffordshire ST5 5BG, UK
| | - G Zaccai
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France C.N.R.S., Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
189
|
Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 2015; 589:2570-7. [PMID: 26320411 DOI: 10.1016/j.febslet.2015.08.027] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 12/17/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.
Collapse
Affiliation(s)
- Alexey G Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany.
| |
Collapse
|
190
|
Chu TT, Li QQ, Qiu T, Sun ZY, Hu ZW, Chen YX, Zhao YF, Li YM. Clearance of the intracellular high level of the tau protein directed by an artificial synthetic hydrolase. MOLECULAR BIOSYSTEMS 2015; 10:3081-5. [PMID: 25308803 DOI: 10.1039/c4mb00508b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Promoting clearance of intracellular excessive tau is a potential therapeutic strategy for treating Alzheimer's disease. In this work, we designed and synthesized a cyclen-hybrid artificial 'hydrolase' I1-Cu(II) to cleave tau in vitro. Furthermore, a cell-permeable 'hydrolase' I2-Cu(II), derived from I1-Cu(II), was also synthesized to cleave intracellular tau proteins.
Collapse
Affiliation(s)
- Ting-Ting Chu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Varadi M, Vranken W, Guharoy M, Tompa P. Computational approaches for inferring the functions of intrinsically disordered proteins. Front Mol Biosci 2015; 2:45. [PMID: 26301226 PMCID: PMC4525029 DOI: 10.3389/fmolb.2015.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/21/2015] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are ubiquitously involved in cellular processes and often implicated in human pathological conditions. The critical biological roles of these proteins, despite not adopting a well-defined fold, encouraged structural biologists to revisit their views on the protein structure-function paradigm. Unfortunately, investigating the characteristics and describing the structural behavior of IDPs is far from trivial, and inferring the function(s) of a disordered protein region remains a major challenge. Computational methods have proven particularly relevant for studying IDPs: on the sequence level their dependence on distinct characteristics determined by the local amino acid context makes sequence-based prediction algorithms viable and reliable tools for large scale analyses, while on the structure level the in silico integration of fundamentally different experimental data types is essential to describe the behavior of a flexible protein chain. Here, we offer an overview of the latest developments and computational techniques that aim to uncover how protein function is connected to intrinsic disorder.
Collapse
Affiliation(s)
- Mihaly Varadi
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| | - Wim Vranken
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium ; ULB-VUB - Interuniversity Institute of Bioinformatics in Brussels (IB)2 Brussels, Belgium
| | - Mainak Guharoy
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| | - Peter Tompa
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| |
Collapse
|
192
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
193
|
Kacirova M, Kosek D, Kadek A, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein. J Biol Chem 2015; 290:16246-60. [PMID: 25971962 PMCID: PMC4481224 DOI: 10.1074/jbc.m115.636563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/21/2015] [Indexed: 11/06/2022] Open
Abstract
Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function.
Collapse
Affiliation(s)
- Miroslava Kacirova
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| | - Dalibor Kosek
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| | - Alan Kadek
- Microbiology,Czech Academy of Sciences, 14220 Prague, and Biochemistry Faculty of Science, Charles University in Prague, 12843 Prague
| | - Petr Man
- Microbiology,Czech Academy of Sciences, 14220 Prague, and Biochemistry Faculty of Science, Charles University in Prague, 12843 Prague
| | - Jaroslav Vecer
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | - Petr Herman
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | | | - Tomas Obsil
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| |
Collapse
|
194
|
Shtykova EV. Shape determination of polydisperse and polymorphic nanoobjects from small-angle X-ray scattering data (Computer simulation). ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1995078015030155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
195
|
Balu R, Knott R, Cowieson NP, Elvin CM, Hill AJ, Choudhury NR, Dutta NK. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin. Sci Rep 2015; 5:10896. [PMID: 26042819 PMCID: PMC4455251 DOI: 10.1038/srep10896] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/21/2015] [Indexed: 01/08/2023] Open
Abstract
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
Collapse
Affiliation(s)
- Rajkamal Balu
- Ian Wark Research Institute, University of South Australia, Mawson Lakes campus, Mawson lakes, South Australia 5095, Australia
| | - Robert Knott
- ANSTO, Private Mail Bag, Kirrawee, New South Wales 2232, Australia
| | - Nathan P. Cowieson
- Centre for Synchrotron Science, Monash University, Victoria 3800, Australia
| | - Christopher M. Elvin
- CSIRO Agriculture, Level 6, Queensland Bioscience Precinct, St Lucia, Queensland 4067, Australia
| | - Anita J. Hill
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Namita R. Choudhury
- Ian Wark Research Institute, University of South Australia, Mawson Lakes campus, Mawson lakes, South Australia 5095, Australia
| | - Naba K. Dutta
- Ian Wark Research Institute, University of South Australia, Mawson Lakes campus, Mawson lakes, South Australia 5095, Australia
| |
Collapse
|
196
|
Chebaro Y, Ballard AJ, Chakraborty D, Wales DJ. Intrinsically disordered energy landscapes. Sci Rep 2015; 5:10386. [PMID: 25999294 PMCID: PMC4441119 DOI: 10.1038/srep10386] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.
Collapse
Affiliation(s)
- Yassmine Chebaro
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Andrew J Ballard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| |
Collapse
|
197
|
Chen PC, Hub JS. Interpretation of solution x-ray scattering by explicit-solvent molecular dynamics. Biophys J 2015; 108:2573-2584. [PMID: 25992735 PMCID: PMC4457003 DOI: 10.1016/j.bpj.2015.03.062] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
Small- and wide-angle x-ray scattering (SWAXS) and molecular dynamics (MD) simulations are complementary approaches that probe conformational transitions of biomolecules in solution, even in a time-resolved manner. However, the structural interpretation of the scattering signals is challenging, while MD simulations frequently suffer from incomplete sampling or from a force-field bias. To combine the advantages of both techniques, we present a method that incorporates solution scattering data as a differentiable energetic restraint into explicit-solvent MD simulations, termed SWAXS-driven MD, with the aim to direct the simulation into conformations satisfying the experimental data. Because the calculations fully rely on explicit solvent, no fitting parameters associated with the solvation layer or excluded solvent are required, and the calculations remain valid at wide angles. The complementarity of SWAXS and MD is illustrated using three biological examples, namely a periplasmic binding protein, aspartate carbamoyltransferase, and a nuclear exportin. The examples suggest that SWAXS-driven MD is capable of refining structures against SWAXS data without foreknowledge of possible reaction paths. In turn, the SWAXS data accelerates conformational transitions in MD simulations and reduces the force-field bias.
Collapse
Affiliation(s)
- Po-Chia Chen
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
| | - Jochen S Hub
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
198
|
Stefanovic AND, Lindhoud S, Semerdzhiev SA, Claessens MMAE, Subramaniam V. Oligomers of Parkinson’s Disease-Related α-Synuclein Mutants Have Similar Structures but Distinctive Membrane Permeabilization Properties. Biochemistry 2015; 54:3142-50. [DOI: 10.1021/bi501369k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anja N. D. Stefanovic
- Nanobiophysics,
MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Saskia Lindhoud
- Nanobiophysics,
MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
- MIRA
Institute for Biomedical Technology and Technical Medicine, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Slav A. Semerdzhiev
- Nanobiophysics,
MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mireille M. A. E. Claessens
- Nanobiophysics,
MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
- MIRA
Institute for Biomedical Technology and Technical Medicine, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics,
MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
- MIRA
Institute for Biomedical Technology and Technical Medicine, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
- FOM Institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
199
|
Pronker MF, Bos TGAA, Sharp TH, Thies-Weesie DME, Janssen BJC. Olfactomedin-1 Has a V-shaped Disulfide-linked Tetrameric Structure. J Biol Chem 2015; 290:15092-101. [PMID: 25903135 PMCID: PMC4463452 DOI: 10.1074/jbc.m115.653485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Olfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture. The base of the “V” is formed by two disulfide-linked dimeric N-terminal domains. Each of the two V legs consists of a parallel dimeric disulfide-linked coiled coil with a C-terminal β-propeller dimer at the tips. This agrees with our crystal structure of a C-terminal coiled-coil segment and β-propeller combination (Olfm1coil-Olf) that reveals a disulfide-linked dimeric arrangement with the β-propeller top faces in an outward exposed orientation. Similar to its family member myocilin, Olfm1 is stabilized by calcium. The dimer-of-dimers architecture suggests a role for Olfm1 in clustering receptors to regulate signaling and sheds light on the conformation of several other olfactomedin domain family members.
Collapse
Affiliation(s)
- Matti F Pronker
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Trusanne G A A Bos
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Thomas H Sharp
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands and
| | - Bert J C Janssen
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| |
Collapse
|
200
|
Shih PM, Wang I, Lee YTC, Hsieh SJ, Chen SY, Wang LW, Huang CT, Chien CT, Chang CY, Hsu STD. Random-Coil Behavior of Chemically Denatured Topologically Knotted Proteins Revealed by Small-Angle X-ray Scattering. J Phys Chem B 2015; 119:5437-43. [DOI: 10.1021/acs.jpcb.5b01984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Po-Min Shih
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Iren Wang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | - Yun-Tzai Cloud Lee
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| | - Shu-Ju Hsieh
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Szu-Yu Chen
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | - Liang-Wei Wang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| | - Chih-Ting Huang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chih-Ta Chien
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chia-Yun Chang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| | - Shang-Te Danny Hsu
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|