151
|
Wang K, Xiao H, Qian L, Han M, Wu X, Guo Z, Zhan H. Diversified AIE and mechanochromic luminescence based on carbazole derivative decorated dicyanovinyl groups: effects of substitution sites and molecular packing. CrystEngComm 2020. [DOI: 10.1039/c9ce01958h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two positional isomers exhibited noticeable different luminescence properties, which were mainly attributed to their different molecular packing modes.
Collapse
Affiliation(s)
- Kai Wang
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Hui Xiao
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Li Qian
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Mingxi Han
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Xianfeng Wu
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| | - Zhiyong Guo
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
- Key Laboratory of Eco-materials Advanced Technology
| | - Hongbing Zhan
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou 350108
- PR China
| |
Collapse
|
152
|
Roger M, Amro K, Rault-Berthelot J, Quiot M, Van der Lee A, Poriel C, Richeter S, Clément S, Gerbier P. Synthesis, photophysical and electropolymerization properties of thiophene-substituted 2,3-diphenylbuta-1,3-dienes. NEW J CHEM 2020. [DOI: 10.1039/d0nj02382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electropolymerizable diphenylbuta-1,3-diene derivatives with AIE or AEE properties were synthesized allowing low bandgap polymers to be obtained through electropolymerization processes.
Collapse
Affiliation(s)
| | | | | | | | - Arie Van der Lee
- Institut Européen des Membranes
- IEM – UMR 5635
- ENSCM
- CNRS
- Université de Montpellier
| | - Cyril Poriel
- Univ. Rennes
- CNRS
- ISCR-UMR CNRS 6226
- F-35000 Rennes
- France
| | | | | | | |
Collapse
|
153
|
Kathirvelan D, Mayakrishnan S, Uma Maheswari N, Biswas C, Raavi SSK, Panda TK. A simple D–π–A system of phenanthroimidazole-π-fluorenone for highly efficient non-doped bipolar AIE luminogens: synthesis, and molecular optical, thermal and electrochemical properties. NEW J CHEM 2020. [DOI: 10.1039/c9nj05226g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report the synthesis of phenanthroimidazole based dyes incorporating fluorenone using Suzuki coupling and their aggregation induced emission characterisation.
Collapse
Affiliation(s)
| | - Sivakalai Mayakrishnan
- Organic & Bioorganic Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai
- India
| | - Narayanan Uma Maheswari
- Organic & Bioorganic Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai
- India
| | - Chinmoy Biswas
- Department of Physics
- Indian Institute of Technology Hyderabad
- India
| | | | - Tarun K. Panda
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- India
| |
Collapse
|
154
|
Wang B, Jiang K, Li J, Luo S, Wang Z, Jiang H. 1,1‐Diphenylvinylsulfide as a Functional AIEgen Derived from the Aggregation‐Caused‐Quenching Molecule 1,1‐Diphenylethene through Simple Thioetherification. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201914333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo‐Wen Wang
- School of ChemistrySouth China Normal UniversityKey Laboratory of Theoretical Chemistry of EnvironmentMinistry of Education Guangzhou 510006 P. R. China
| | - Kai Jiang
- School of ChemistrySouth China Normal UniversityKey Laboratory of Theoretical Chemistry of EnvironmentMinistry of Education Guangzhou 510006 P. R. China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Jian‐Xiao Li
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Shi‐He Luo
- School of ChemistrySouth China Normal UniversityKey Laboratory of Theoretical Chemistry of EnvironmentMinistry of Education Guangzhou 510006 P. R. China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Zhao‐Yang Wang
- School of ChemistrySouth China Normal UniversityKey Laboratory of Theoretical Chemistry of EnvironmentMinistry of Education Guangzhou 510006 P. R. China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Huan‐Feng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
155
|
Maity S, Bain D, Patra A. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. NANOSCALE 2019; 11:22685-22723. [PMID: 31774095 DOI: 10.1039/c9nr07963g] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photophysics of atomically precise metal nanoclusters (MNCs) is an emerging area of research due to their potential applications in optoelectronics, photovoltaics, sensing, bio-imaging and catalysis. An overview of the recent advances in the photophysical properties of MNCs is presented in this review. To begin with, we illustrate general synthesis methodologies of MNCs using direct reduction, chemical etching, ligand exchange, metal exchange and intercluster reaction. Due to strong quantum confinement, the NCs possess unique electronic properties such as discrete optical absorption, intense photoluminescence (PL), molecular-like electron dynamics and non-linear optical behavior. Discussions have also been carried out to unveil the influence of the core size, nature of ligands, heteroatom doping, and surrounding environments on the optical absorption and photophysical properties of metal clusters. Recent findings reveal that the excited-state dynamics, nonlinear optical properties and aggregation induced emission of metal clusters offer exciting opportunities for potential applications. We discuss briefly about their versatile applications in optoelectronics, sensing, catalysis and bio-imaging. Finally, the future perspective of this research field is given.
Collapse
Affiliation(s)
- Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Dipankar Bain
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| |
Collapse
|
156
|
Sun K, Zhang YL, Chen XL, Su HF, Peng QC, Yu B, Qu LB, Li K. A Type of Atypical AIEgen Used for One-Photon/Two-Photon Targeted Imaging in Live Cells. ACS APPLIED BIO MATERIALS 2019; 3:505-511. [DOI: 10.1021/acsabm.9b00946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yin-Li Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hui-Fang Su
- Department of Osteology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qiu-Chen Peng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Kai Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
157
|
Alam P, Climent C, Alemany P, Laskar IR. “Aggregation-induced emission” of transition metal compounds: Design, mechanistic insights, and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100317] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
158
|
Yokoyama S, Ito A, Asahara H, Nishiwaki N. Anion-Capture-Induced Fluorescence Enhancement of Bis(cyanostyryl)pyrrole Based on Restricted Access to a Conical Intersection. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Soichi Yokoyama
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Research Center for Material Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Research Center for Material Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Haruyasu Asahara
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Research Center for Material Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Research Center for Material Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| |
Collapse
|
159
|
Feng W, Su Q, Ma Y, Džolić Z, Huang F, Wang Z, Chen S, Tang BZ. Tetraphenylbenzosilole: An AIE Building Block for Deep-Blue Emitters with High Performance in Nondoped Spin-Coating OLEDs. J Org Chem 2019; 85:158-167. [DOI: 10.1021/acs.joc.9b02383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiqiang Feng
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qiang Su
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yao Ma
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zoran Džolić
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Fei Huang
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shuming Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ben Zhong Tang
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| |
Collapse
|
160
|
Yao H, Zhou Q, Wang J, Chen YY, Kan XT, Wei TB, Zhang YM, Lin Q. Highly selective Fe 3+ and F -/H 2PO 4- sensor based on a water-soluble cationic pillar[5]arene with aggregation-induced emission characteristic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117215. [PMID: 31158772 DOI: 10.1016/j.saa.2019.117215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/25/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
A water-soluble cationic pillar[5]arene (CWP5) without lager conjugated construction was first reported as a novel pillar[5]arene-based aggregation-induced emission luminogen (AIEgen), which showed a remarkable aggregation-induced emission (AIE) with the concentration increasing. The AIE effect of CWP5 has affected by different solvent, it had the lowest critical aggregation concentration (CAC) value and highest fluoresence emission intensity in DMSO solution. Simultaneously, CWP5 can serve as a chemosensor for the successively fluorescent detection of Fe3+ and F-/H2PO4- with high sensitivity and selectivity. A rewritable portable test kit made from CWP5 provides a possibility to on-site detection and manufacture of encryption and decryption materials.
Collapse
Affiliation(s)
- Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Qi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Jiao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Xiao-Tong Kan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
161
|
Liu JW, Xu YN, Qin CY, Wang ZN, Wu CJ, Li YH, Wang S, Zhang KY, Huang W. Simple fluorene oxadiazole-based Ir(iii) complexes with AIPE properties: synthesis, explosive detection and electroluminescence studies. Dalton Trans 2019; 48:13305-13314. [PMID: 31429837 DOI: 10.1039/c9dt02751c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two novel phosphorescent Ir(iii) complexes, Ir(fom)2(pic) and Ir(fof)2(pic), containing fluorene oxadiazole groups have been synthesized and characterized. The photophysical properties of the complexes have been investigated. Interestingly, both complexes exhibited aggregation-induced phosphorescent emission. The X-ray diffraction study showed that the AIPE properties resulted from weak π-π and C-HN hydrogen-bonding interactions in the aggregated state restricting the rotation of the phenyl groups in the cyclometalating ligands. Owing to the sensitive and selective luminescence quenching of the complexes using picric acid (PA), the complexes were used for PA detection in aqueous media. Additionally, electroluminescence devices have been fabricated using the complexes at 5%-30% doping concentrations. The devices based on Ir(fof)2(pic) obtained the highest luminance 11 877 cd m-2 and current efficiency 23.2 cd A-1, which implied that the incorporation of fluorine could improve the electron affinity and ameliorate the capability of electron injection or transporting.
Collapse
Affiliation(s)
- Jia-Wei Liu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Ya-Nan Xu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Chun-Yan Qin
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Zi-Ning Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Cong-Jin Wu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Yong-Hua Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Shi Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China. and Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710000, China
| |
Collapse
|
162
|
Cardoza S, Das P, Tandon V. Pd-Catalyzed Sequential Arylation of 7-Azaindoles: Aggregate-Induced Emission of Tetra-Aryl 7-Azaindoles. J Org Chem 2019; 84:14015-14029. [DOI: 10.1021/acs.joc.9b02187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Savio Cardoza
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
163
|
Gour N, Kshtriya V, Gupta S, Koshti B, Singh R, Patel D, Joshi KB. Synthesis and Aggregation Studies of a Pyridothiazole-Based AIEE Probe and Its Application in Sensing Amyloid Fibrillation. ACS APPLIED BIO MATERIALS 2019; 2:4442-4455. [DOI: 10.1021/acsabm.9b00627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nidhi Gour
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Vivekshinh Kshtriya
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Shradhey Gupta
- Department of Chemistry, School of Chemical Science and Technology, Central University, Sagar, Madhya Pradesh 470003, India
| | - Bharti Koshti
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Central University, Sagar, Madhya Pradesh 470003, India
| | - Dhaval Patel
- Department of Bioinformatics and Structural Biology, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Central University, Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
164
|
Ding W, Peng X, Cui G, Li Z, Blancafort L, Li Q. Potential‐Energy Surface and Dynamics Simulation of THBDBA: An Annulated Tetraphenylethene Derivative Combining Aggregation‐Induced Emission and Switch Behavior. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Lu Ding
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical Engineering,Beijing Institute of Technology 100081 Beijing China
- Beijing Key Laboratory of Ionic Liquids Clean Process Institute of Process EngineeringChinese Academy of Sciences 100190 Beijing China
| | - Xing‐Liang Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical Engineering,Beijing Institute of Technology 100081 Beijing China
| | - Gang‐Long Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry InstitutionBeijing Normal University 100875 Beijing China
| | - Ze‐Sheng Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical Engineering,Beijing Institute of Technology 100081 Beijing China
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de Girona 17003 Girona Spain
| | - Quan‐Song Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical Engineering,Beijing Institute of Technology 100081 Beijing China
| |
Collapse
|
165
|
Zhang Y, Xu H, Xu W, Zhang C, Shi J, Tong B, Cai Z, Dong Y. Conformational sensitivity of tetraphenyl-1,3-butadiene derivatives with aggregation-induced emission characteristics. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9576-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
166
|
Jiang S, Hu X, Qiu J, Guo H, Yang F. A fluorescent sensor for folic acid based on crown ether-bridged bis-tetraphenylethylene. Analyst 2019; 144:2662-2669. [PMID: 30843902 DOI: 10.1039/c9an00161a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregation-induced emission (AIE) provides a new strategy for preparing fluorescent sensors in aggregated state. In this paper, a series of crown ether-bridged bis-tetraphenylethylene compounds were synthesized in 78-84% yield by a simple procedure. The molecules exhibited excellent AIE properties in THF/H2O solutions and solid films. The investigation on sensing abilities for various biomolecules and metal ions suggested that Bis-TPE-1 possessed obvious response to folic acid, with fluorescence enhancement and blue shift of maximum emission wavelength from 380 nm to 365 nm. The detection limit for folic acid was 6.36 × 10-7 M, and the sensor's selectivity for folic acid was little interfered by the other species. The sensor mechanism was studied by FT-IR, 1H NMR, MS spectra and fluorescence Jobs' plot. The selective sensor for folic acid was applied in test paper and the analyses of real samples of mung bean and spinach. The superior bioimaging performance of Bis-TPE-1 for sensing folic acid was confirmed by the live cell imaging experiments, which indicated its good practical application potential for detecting folic acid.
Collapse
Affiliation(s)
- Shengjie Jiang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, P. R. China.
| | | | | | | | | |
Collapse
|
167
|
Wei X, Zhu MJ, Yan H, Lu C, Xu JJ. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chemistry 2019; 25:12671-12683. [PMID: 31283848 DOI: 10.1002/chem.201902465] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/31/2022]
Abstract
The emergence of the rising alliance between aggregation-induced emission (AIE) and electrochemiluminescence (ECL) is defined as aggregation-induced electrochemiluminescence (AIECL). The booming science of AIE has proved to be not only distinguished in luminescent materials but could also inject new possibility into ECL analysis. Especially in the aqueous phase and solid state for hydrophobic materials, AIE helps ECL circumvent the dilemma between substantial emission intensity and biocompatible media. The wide range of analytes makes ECL an overwhelmingly interesting analytical technique. Therefore, AIECL has gained potential in clinical diagnostics, environmental assays, and biomarker detections. This review will focus on introduction of the novel concept of AIECL, current applied luminophores, and related applications developed in recent years.
Collapse
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
168
|
Adeel M, Zhao B, Xu S, Zheng S. Fluorescence Enhancement Induced by Curing Reaction in Nanostructured Epoxy Thermosets Containing a Diblock Copolymer. J Phys Chem B 2019; 123:6282-6289. [PMID: 31313587 DOI: 10.1021/acs.jpcb.9b00925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, a novel curing-induced fluorescence (FL) enhancement phenomenon in the nanostructuring process of epoxy thermosets was investigated. Toward this end, a diblock copolymer composed of poly(ethylene oxide) and poly(((4-vinylphenyl)ethene-1,1,2-triyl)tribenzene) (PTPEE) blocks was introduced into epoxy thermosets. Before curing reaction, the mixtures of epoxy precursors with the diblock copolymer only emitted feeble FL under ultra-visible (UV) irradiation. However, photoluminescence was significantly enhanced after the curing reaction was carried out. It was found that the novel FL enhancement phenomenon resulted from the aggregation-induced emission behavior of PTPEE blocks, which was triggered by curing reaction. In the nanostructured thermosets, the fluorophore blocks (viz. PTPEE) of this diblock copolymer were segregated into aggregates, that is, a reaction-induced microphase separation occurred. Owing to the generation of PTPEE microdomains, the epoxy nanocomposites significantly displayed the enhanced dielectric constants due to the promoted contribution from electron polarizations via π-π conjugation in the materials.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Bingjie Zhao
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Sen Xu
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Sixun Zheng
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
169
|
Okawara T, Matsufuji Y, Mizuno K, Takehara K, Nagamura T, Iwasa S. Vinylpyrroles: solid-state structures and aggregation-induced emission properties. RSC Adv 2019; 9:22817-22822. [PMID: 35514514 PMCID: PMC9067133 DOI: 10.1039/c9ra04088a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 11/21/2022] Open
Abstract
An aggregation-induced emission chromophore, vinylpyrrole, was prepared from a formylpyrrole derivative, Meldrum's acid, and 1,3-dimethylbarbituric acid. The optical properties of the chromophore both in the solution and solid states were investigated by UV-vis and fluorescence spectroscopy. Single crystal X-ray diffraction measurements revealed that the dimethylbarbituric acid adduct formed a J-aggregate in the solid and resulted in higher fluorescence quantum yield compared to the Meldrum's acid adduct. Emission enhancement was found to occur by the restriction of molecular rotation in the solid state. A cyclic ester and a cyclic amide functionalized monopyrroles show aggregation-induced emission (AIE) by the restriction of intramolecular rotation (RIR) mechanism.![]()
Collapse
Affiliation(s)
- Toru Okawara
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College Shii 5-20-1, Kokuraminami-ku, Kitakyushu Fukuoka 802-0985 Japan
| | - Yurina Matsufuji
- Advanced School of Creative Engineering, National Institute of Technology, Kitakyushu College Shii 5-20-1, Kokuraminami-ku, Kitakyushu Fukuoka 802-0985 Japan
| | - Kouhei Mizuno
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College Shii 5-20-1, Kokuraminami-ku, Kitakyushu Fukuoka 802-0985 Japan
| | - Kenji Takehara
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College Shii 5-20-1, Kokuraminami-ku, Kitakyushu Fukuoka 802-0985 Japan
| | - Toshihiko Nagamura
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College Shii 5-20-1, Kokuraminami-ku, Kitakyushu Fukuoka 802-0985 Japan .,Advanced Manufacturing Research Institute Biochemical Process Research Group, National Institute of Advanced Industrial Science and Technology (AIST) 807-1 Shuku-machi, Tosu Saga 841-0052 Japan
| | - Seiji Iwasa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology 1-1 Tempaku-cho, Toyohashi Aichi 441-8580 Japan
| |
Collapse
|
170
|
Wang X, Zhang L, Zhuang S, Huang M, Gao Y. A novel fluorescent sensor for Sn
4+
detection: Dark resonance energy transfer from silole to rhodamine. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiuji Wang
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| | - Lijian Zhang
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| | - Shaoqin Zhuang
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| | - Meifei Huang
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| | - Yihua Gao
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| |
Collapse
|
171
|
Affiliation(s)
- Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi’an Shaanxi 710069 China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| | - Lingyan Gao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| |
Collapse
|
172
|
Conformation of D‐π‐A Molecular with Functional Imidazole Group: Achieving High Color Contrast Mechanochromic Behavior and Selectively Detection of Picric Acid in Aqueous Medium. ChemistrySelect 2019. [DOI: 10.1002/slct.201901978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
173
|
Wu G, Liu Y, Yang Z, Katakam N, Rouh H, Ahmed S, Unruh D, Surowiec K, Li G. Multilayer 3D Chirality and Its Synthetic Assembly. RESEARCH 2019; 2019:6717104. [PMID: 31549078 PMCID: PMC6750085 DOI: 10.34133/2019/6717104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/23/2019] [Indexed: 12/31/2022]
Abstract
3D chirality of sandwich type of organic molecules has been discovered. The key element of this chirality is characterized by three layers of structures that are arranged nearly in parallel fashion with one on top and one down from the center plane. Individual enantiomers of these molecules have been fully characterized by spectroscopies with their enantiomeric purity measured by chiral HPLC. The absolute configuration was unambiguously assigned by X-ray diffraction analysis. This is the first multilayer 3D chirality reported and is anticipated to lead to a new research area of asymmetric synthesis and catalysis and to have a broad impact on chemical, medicinal, and material sciences in future.
Collapse
Affiliation(s)
- Guanzhao Wu
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Yangxue Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Zhen Yang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Nandakumar Katakam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Hossein Rouh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sultan Ahmed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Daniel Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Kazimierz Surowiec
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
174
|
Han Z, Zhang Y, Wu Y, Li Z, Bai L, Huo S, Lu X. Substituent-Induced Aggregated State Electrochemiluminescence of Tetraphenylethene Derivatives. Anal Chem 2019; 91:8676-8682. [DOI: 10.1021/acs.analchem.9b02357] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Yinpan Zhang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Zhimin Li
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Lei Bai
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Shuhui Huo
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
175
|
Cho Y, Kim S, Lee J, Han W, Kim CH, Son H, Kang SO. Solid‐State Photochromism by Molecular Assembly of Bis‐
o
‐carboranyl Siloles. Chemistry 2019; 25:8149-8156. [DOI: 10.1002/chem.201901305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Yang‐Jin Cho
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - So‐Yoen Kim
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Jie‐Won Lee
- Department of ChemistrySeoul Women's University Seoul 01797 South Korea
| | - Won‐Sik Han
- Department of ChemistrySeoul Women's University Seoul 01797 South Korea
| | - Chul Hoon Kim
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Ho‐Jin Son
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Sang Ook Kang
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| |
Collapse
|
176
|
Hou RB, Su JY, Zhang LL, Li DF, Xia Y. Design, synthesis, and photoelectric properties of V-shaped organic fluorescent compounds with a 1,3,4-oxadiazole moiety. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819831881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of symmetric, silicon-linked organic fluorescent compounds with two electron-deficient 1,3,4-oxadiazole units were synthesized and characterized. The compounds possessed a V-shaped structure with a silicon atom, which weakened π–π stacking, promoting aggregation-induced emission. The compounds were fluorescent in both solution and solid-state thin films. The efficient fluorescent behavior of the materials was confirmed through optical and electrochemical measurements. The compounds displayed excellent thermal stability, with decomposition temperatures exceeding 400 °C. Amorphous films of the compounds possessed high morphological stability. These results indicate that the compounds may be promising emissive and electron-transporting materials.
Collapse
Affiliation(s)
- Rui-Bin Hou
- Key Laboratory School of Chemistry and Life Science, Changchun University of Technology, Changchun, P.R. China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P.R. China
| | - Ji-Ying Su
- Key Laboratory School of Chemistry and Life Science, Changchun University of Technology, Changchun, P.R. China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P.R. China
| | - Ling-Ling Zhang
- Key Laboratory School of Chemistry and Life Science, Changchun University of Technology, Changchun, P.R. China
| | - Dong-Feng Li
- Key Laboratory School of Chemistry and Life Science, Changchun University of Technology, Changchun, P.R. China
| | - Yan Xia
- Key Laboratory School of Chemistry and Life Science, Changchun University of Technology, Changchun, P.R. China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P.R. China
| |
Collapse
|
177
|
Hou J, Wu X, Sun W, Duan Y, Liu Y, Han T, Li Z. Toward a simple way for a mechanochromic luminescent material with high contrast ratio and fatigue resistance: Implication for information storage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:348-354. [PMID: 30798217 DOI: 10.1016/j.saa.2019.02.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
In this work, we present the synthesis and photoluminescence (PL) behaviour of a new compound, DHNC. The molecular design includes twisted conformation and the incorporation of electron donor (D) and acceptor (A) pairs, which endows the compound with both twisted intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) properties. Importantly, the compound exhibits mechanochromic luminescence (MCL): The emission of the crystalline powder shows strong green emission but turns into orange-red with an obvious quenching effect after grinding, demonstrating a high contrast ratio. The emission of the ground sample can be rejuvenated though recrystallization by either immersion or fumigation in common organic solvents. The emission can be reversibly switched between two states for more than 10 cycles, showing fatigue resistance. In a quantitative mechanical experiment, the DHNC-loaded film has a remarkable emission loss with the external force up to 67.9 Mpa, showing high sensitivity. An archetype of information storage is developed based on this MCL material, which uses mechanical force to write information and organic vapour to erase. Letters and cartoon pictures can be written and erased repeatedly on the DHNC-loaded film, indicating high contrast ratio and fatigue resistance.
Collapse
Affiliation(s)
- Jingdan Hou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xiuyuan Wu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenting Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuai Duan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yang Liu
- Beijing Key Laboratory of Radiation Advanced Materials, Beijing Research Center for Radiation Application, 100015 Beijing, China
| | - Tianyu Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
178
|
Suleymanov AA, Ruggi A, Planes OM, Chauvin A, Scopelliti R, Fadaei Tirani F, Sienkiewicz A, Fabrizio A, Corminboeuf C, Severin K. Highly Substituted Δ
3
‐1,2,3‐Triazolines: Solid‐State Emitters with Electrofluorochromic Behavior. Chemistry 2019; 25:6718-6721. [DOI: 10.1002/chem.201901345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de ChimieUniversité de Fribourg 1700 Fribourg Switzerland
| | - Ophélie Marie Planes
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Anne‐Sophie Chauvin
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei Tirani
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Andrzej Sienkiewicz
- Institute of PhysicsÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Alberto Fabrizio
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Clémence Corminboeuf
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
179
|
Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, Chen J, Huo S, Zhang Z, Du P, Lu X. Electrochemiluminescence Platforms Based on Small Water‐Insoluble Organic Molecules for Ultrasensitive Aqueous‐Phase Detection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814507] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Heshui Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Yali Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaofang Ma
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Shuhui Huo
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
180
|
Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, Chen J, Huo S, Zhang Z, Du P, Lu X. Electrochemiluminescence Platforms Based on Small Water‐Insoluble Organic Molecules for Ultrasensitive Aqueous‐Phase Detection. Angew Chem Int Ed Engl 2019; 58:5915-5919. [DOI: 10.1002/anie.201814507] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Heshui Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Yali Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaofang Ma
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Shuhui Huo
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
181
|
Zhang GG, Xu SL, Xiong YH, Duan H, Chen WY, Li XM, Yuan MF, Lai WH. Ultrabright fluorescent microsphere and its novel application for improving the sensitivity of immunochromatographic assay. Biosens Bioelectron 2019; 135:173-180. [PMID: 31022594 DOI: 10.1016/j.bios.2019.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 02/08/2023]
Abstract
Fluorescent microsphere (FM) is widely used as probe in immunochromatographic assay (ICA). However, the performance of conventional FM is limited because of the aggregation-caused quenching effect. Herein, we compared a kind of conventional FM (DMFFM, loading DMF) with novel aggregation-induced emission FM (AIEFM, loading TCBPE). The fluorescence intensity of DMFFM initially increased and then decreased as the concentrations of the loading DMF increased. The fluorescence intensity of AIEFM increased as the concentrations of the loading TCBPE increased and retained a high value. AIEFM was compared with two commercial FMs purchased from Ocean (OFM) and Merk (MFM). The maximum fluorescence intensity and relative quantum yield of AIEFM was approximately 5 and 4.5 times higher than those of two commercial FMs. We used the novel AIEFM as a probe to improve the sensitivity of ICA. When Escherichia coli O157:H7 was detected as the target, the limit of detection of ICA based on AIEFM, OFM and MFM were 3.98 × 103 CFU/mL, 4.48 × 104 and 2.78 × 104 CFU/mL, respectively. The ICA of AIEFM had 11 and 7 times improvement in sensitivity compared with that of OFM and MFM. Our results could be used as a basis for novel probes in practical ICA applications.
Collapse
Affiliation(s)
- Gang-Gang Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Shao-Lan Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yong-Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wen-Yao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiang-Min Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mei-Fang Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wei-Hua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
182
|
Qiu J, Chen Y, Jiang S, Guo H, Yang F. A fluorescent sensor based on aggregation-induced emission: highly sensitive detection of hydrazine and its application in living cell imaging. Analyst 2019; 143:4298-4305. [PMID: 30095834 DOI: 10.1039/c8an00863a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aggregation-induced emission (AIE) molecules eliminate the aggregation-caused quenching (ACQ) phenomenon effectively and exhibit excellent properties of a fluorescent sensor in the aggregated state. In this paper, an allochroic fluorescent sensor based on AIE molecules with a diphenylacrylonitrile structure was prepared in high yield by a simple procedure. This molecule possessed good AIE properties and exhibited a sensitive sensor ability for aliphatic amines with an obvious color change from orange to blue-green. The detailed investigation on the detection of hydrazine suggested that the detection limit for hydrazine was 3.67 × 10-6 M, and the highly sensitive sensor for hydrazine was not influenced by other species. The sensor mechanism was confirmed by using 1H NMR and MS spectra. The sensor for hydrazine was successfully applied in a test paper, exhibiting good practical application potential for detecting hydrazine. The experiment of living cell imaging suggested that this sensor showed superior bioimaging performance and presented sensitive detection for hydrazine with an obvious color change from orange to blue-green.
Collapse
Affiliation(s)
- Jiabin Qiu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, P. R. China.
| | | | | | | | | |
Collapse
|
183
|
|
184
|
|
185
|
Arribat M, Rémond E, Richeter S, Gerbier P, Clément S, Cavelier F. Silole Amino Acids with Aggregation-Induced Emission Features Synthesized by Hydrosilylation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mathieu Arribat
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS; Université de Montpellier; ENSCM, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS; Université de Montpellier; ENSCM, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Sébastien Richeter
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS; Université de Montpellier, ENSCM, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| | - Philippe Gerbier
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS; Université de Montpellier, ENSCM, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| | - Sébastien Clément
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS; Université de Montpellier, ENSCM, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS; Université de Montpellier; ENSCM, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| |
Collapse
|
186
|
Maity S, Aich K, Prodhan C, Chaudhuri K, Pramanik AK, Das S, Ganguly J. Solvent‐Dependent Nanostructures Based on Active π‐Aggregation Induced Emission Enhancement of New Carbazole Derivatives of Triphenylacrylonitrile. Chemistry 2019; 25:4856-4863. [DOI: 10.1002/chem.201900312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Santu Maity
- Department of ChemistryIndian Institute of Engineering Science and Technology Howrah- 711103 India
| | - Krishnendu Aich
- Department of ChemistryIndian Institute of Engineering Science and Technology Howrah- 711103 India
- Department of ChemistryJadavpur University Kolkata 700032 India
| | - Chandraday Prodhan
- Molecular Genetics DepartmentCSIR-Indian Institute of Chemical Biology Kolkata 700032 India
| | - Keya Chaudhuri
- Molecular Genetics DepartmentCSIR-Indian Institute of Chemical Biology Kolkata 700032 India
| | - Ajoy Kumar Pramanik
- Department of Chemistry, New Alipore CollegeUniversity of Calcutta Kolkata 700053 India
| | - Siddhartha Das
- Department of Metallurgical and Materials EngineeringIndian Institute of Technology Kharagpur 721302 India
| | - Jhuma Ganguly
- Department of ChemistryIndian Institute of Engineering Science and Technology Howrah- 711103 India
| |
Collapse
|
187
|
|
188
|
Tu YW, Wang CC, Godana AS, Yu CY. Synthesis, characterization, aggregation-induced emission and nanoaggregates of the copolymers containing different ratios of carbazoles and tetraphenylethylenes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
189
|
AIEgens-lightened Functional Polymers: Synthesis, Properties and Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2217-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
190
|
Wei Z, Wu XH, Luo P, Wang JY, Li K, Zang SQ. Matrix Coordination Induced Emission in a Three-Dimensional Silver Cluster-Assembled Material. Chemistry 2019; 25:2750-2756. [PMID: 30536452 DOI: 10.1002/chem.201805381] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/24/2018] [Indexed: 01/18/2023]
Abstract
Developing highly luminescent and extensively stable silver cluster-assembled materials (SCAMs) from the inferior luminogens and unstable silver cluster is an important and challenging issue. Herein, a new luminescent three-dimensional SCAM (Ag12 CPPP, [Ag12 (StBu)6 (CF3 COO)6 (CPPP)2 (DMAc)12 ]n ; CPPP=2,5-bis(4-cyanophenyl)-1,4-bis(4-(pyridine-4-yl)-phenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole, DMAc=dimethylacetamide) was designed and synthesized with a quadridentate rigid emission ligand (CPPP) and a silver-chalcogenolate cluster (SCC) containing 12 AgI atoms. The luminescence study indicates that CPPP is an aggregation-caused quenching (ACQ) molecule with twisted intramolecular charge transfer (TICT) character. Benefiting from the strong immobilization effect in the robust framework, the quantum yield of CPPP is greatly enhanced in Ag12 CPPP compared with that of CPPP in solution or in the solid state. As a result, Ag12 CPPP exhibits typical matrix coordination induced emission (MCIE) effect. Such efficient rigidifying methodology provides a promising approach for enhancing luminescence of ACQ molecules in an aggregated state and strengthening the silver cluster in an unstable state.
Collapse
Affiliation(s)
- Zhong Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiao-Hui Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Peng Luo
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jia-Yin Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kai Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
191
|
Li H, Li BS, Tang BZ. Molecular Design, Circularly Polarized Luminescence, and Helical Self‐Assembly of Chiral Aggregation‐Induced Emission Molecules. Chem Asian J 2019; 14:674-688. [DOI: 10.1002/asia.201801469] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hongkun Li
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University Shenzhen 518060 P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction (CNERC-HK Branch)The Hong Kong University of Science & Technology Clear Water Bay Kowloon, Hong Kong P. R. China
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Bing Shi Li
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction (CNERC-HK Branch)The Hong Kong University of Science & Technology Clear Water Bay Kowloon, Hong Kong P. R. China
| |
Collapse
|
192
|
Tian Y, Wang ZY, Zang SQ, Li D, Mak TCW. Luminescent cyclic trinuclear coinage metal complexes with aggregation-induced emission (AIE) performance. Dalton Trans 2019; 48:2275-2279. [DOI: 10.1039/c8dt04898c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of TPE-incorporated cyclic trinuclear coinage metal complexes have been prepared, and they show remarkable aggregation-induced emission performance.
Collapse
Affiliation(s)
- Yuan Tian
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Zhao-Yang Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Dan Li
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Thomas C. W. Mak
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- Department of Chemistry
| |
Collapse
|
193
|
Tran T, Prlj A, Lin KH, Hollas D, Corminboeuf C. Mechanisms of fluorescence quenching in prototypical aggregation-induced emission systems: excited state dynamics with TD-DFTB. Phys Chem Chem Phys 2019; 21:9026-9035. [DOI: 10.1039/c9cp00691e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A recent implementation of time-dependent tight-binding density functional theory is employed in excited state molecular dynamics for the investigation of the fluorescence quenching mechanism in 3 prototypical aggregation-induced emission systems.
Collapse
Affiliation(s)
- Thierry Tran
- Laboratory for Computational Molecular Design
- Institute of Chemical Sciences and Engineering
- Ecole Polytechnique Federale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Antonio Prlj
- Laboratory for Computational Molecular Design
- Institute of Chemical Sciences and Engineering
- Ecole Polytechnique Federale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Kun-Han Lin
- Laboratory for Computational Molecular Design
- Institute of Chemical Sciences and Engineering
- Ecole Polytechnique Federale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Daniel Hollas
- Laboratory for Computational Molecular Design
- Institute of Chemical Sciences and Engineering
- Ecole Polytechnique Federale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design
- Institute of Chemical Sciences and Engineering
- Ecole Polytechnique Federale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
194
|
Kandel S, Sathish V, Mathivathanan L, Morozov AN, Mebel AM, Raptis RG. Aggregation induced emission enhancement (AIEE) of tripodal pyrazole derivatives for sensing of nitroaromatics and vapor phase detection of picric acid. NEW J CHEM 2019. [DOI: 10.1039/c9nj00166b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organosoluble tris-pyrazole compounds aggregate in organic/aqueous solvent mixtures, showing aggregation-induced emission enhancement (AIEE), the latter being quenched by picric acid.
Collapse
Affiliation(s)
- Shambhu Kandel
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Veerasamy Sathish
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
- Department of Chemistry
| | - Logesh Mathivathanan
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Alexander N. Morozov
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Alexander M. Mebel
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Raphael G. Raptis
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| |
Collapse
|
195
|
Xing Y, Li D, Dong B, Wang X, Wu C, Ding L, Zhou S, Fan J, Song B. Water-soluble and highly emissive near-infrared nano-probes by co-assembly of ionic amphiphiles: towards application in cell imaging. NEW J CHEM 2019. [DOI: 10.1039/c9nj01184f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly emissive near-infrared nano-emitters formed by co-assembly of ionic amphiphiles were applicable in cell imaging.
Collapse
Affiliation(s)
- Yuzhi Xing
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Dahua Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Xiaocheng Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Chengfeng Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lan Ding
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Shixin Zhou
- Department of Cell Biology
- School of Basic Medical Science
- Peking University Health Science Center
- Beijing 100191
- China
| | - Jian Fan
- Jiangsu Key Laboratory For Carbon-Based Functional Materials & Devices Science
- Soochow University
- Suzhou 215123
- China
| | - Bo Song
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
196
|
Zhang T, Wen L, Liu G, Yan J, Liu X, Zheng K, Zhang N. A stable AIEgen cis-diarylethene-based ‘ESIPT’ benchmark. Chem Commun (Camb) 2019; 55:13713-13716. [DOI: 10.1039/c9cc07434a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A stable AIEgen locked by the seven-membered ring hydrogen bond and steric hindrance which made ‘ESIPT’ take place. It features a highly fluorescence in aggregate and solid states and large Stokes shift in solution.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Liu Wen
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Genjiang Liu
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Jiaying Yan
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Xiang Liu
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| |
Collapse
|
197
|
Kang Q, Xiao Y, Wang Y. From inorganic precipitation to organic aggregation: solubility product constant-mediated specific metal-ion lighting-up using a triazolium iodide organic fluorescence tag. Analyst 2019; 144:1654-1659. [DOI: 10.1039/c8an01785a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Innovation in sensing strategies is a continual goal pursued by analytical chemists.
Collapse
Affiliation(s)
- Qing Kang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Yin Xiao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| |
Collapse
|
198
|
Luo D, Xiao P, Liu B. Doping-Free White Organic Light-Emitting Diodes. CHEM REC 2018; 19:1596-1610. [PMID: 30548958 DOI: 10.1002/tcr.201800147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/28/2018] [Indexed: 11/11/2022]
Abstract
Doping-free white organic light-emitting diodes (WOLEDs) have great potential to the next-generation solid-state lighting and displays due to the excellent properties, such as high efficiency, bright luminance, low power consumption, simplified structure and low cost. In this account, our recent developments on doping-free WOLEDs have been summarized. Firstly, fundamental concepts of doping-free WOLEDs have been described. Then, the effective strategies to develop doping-free WOLEDs have been presented. Particularly, the manipulation of charges and excitons distribution in different kinds of doping-free WOLEDs have been highlighted, including doping-free fluorescent/phosphorescent hybrid WOLEDs, doping-free thermally activated delayed fluorescent WOLEDs and doping-free phosphorescent WOLEDs. In the end, an outlook for the future development of doping-free WOLEDs have been clarified.
Collapse
Affiliation(s)
- Dongxiang Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Peng Xiao
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, 528000, China
| | - Baiquan Liu
- LUMINOUS!, Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore.,Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
199
|
Guan J, Xu F, Tian C, Pu L, Yuan MS, Wang J. Tricolor Luminescence Switching by Thermal and Mechanical Stimuli in the Crystal Polymorphs of Pyridyl-substituted Fluorene. Chem Asian J 2018; 14:216-222. [DOI: 10.1002/asia.201801476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jianping Guan
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Fan Xu
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Chang Tian
- College of Veterinary; Northwest A&F University Yangling; Shaanxi 712100 China
| | - Liang Pu
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Jinyi Wang
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
200
|
Li F, Du Y, Pi G, Lei B. Long-term real-time tracking live stem cells/cancer cells in vitro/in vivo through highly biocompatible photoluminescent poly(citrate-siloxane) nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:380-389. [PMID: 30274070 DOI: 10.1016/j.msec.2018.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/05/2018] [Accepted: 08/05/2018] [Indexed: 01/27/2023]
|