151
|
Peng X, Qin F, Xu M, Zhu S, Pan Y, Tang H, Meng X, Wang H. Synthesis of imidazo[1,2-c]thiazoles through Pd-catalyzed bicyclization of tert-butyl isonitrile with thioamides. Org Biomol Chem 2019; 17:8403-8407. [PMID: 31482915 DOI: 10.1039/c9ob01664c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Building new biological molecules is challenging. Herein, imidazo[1,2-c]thiazoles were synthesized as a new class of heterobicyclic analogs through Pd-catalyzed cascade bicyclization from isonitriles with thioamides. The bicyclic scaffolds were constructed by inserting three molecules of isonitrile into two molecules of thioamide and then cyclizing them in a one-pot procedure. In vitro antitumor studies of these new compounds were conducted by using the MTT assay, and compound 3c showed excellent inhibitory effects against HepG2 at 7.06 ± 0.68 μM.
Collapse
Affiliation(s)
- Xiangjun Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China and School of Pharmaceutical Science, Gannan Medical University, Ganzhou, Jiangxi 341000, P. R. China.
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mengyue Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shaojie Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yingming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Haitao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xiujin Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
152
|
Chen J, Jin L, Zhou J, Jiang X, Yu C. Cobalt-catalyzed electrochemical C H/N H functionalization of N-(quinolin-8-yl)benzamide with isocyanides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
153
|
Liu JQ, Chen X, Shatskiy A, Kärkäs MD, Wang XS. Silver-Mediated Synthesis of Substituted Benzofuran- and Indole-Pyrroles via Sequential Reaction of ortho-Alkynylaromatics with Methylene Isocyanides. J Org Chem 2019; 84:8998-9006. [PMID: 31117557 DOI: 10.1021/acs.joc.9b00528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A silver-mediated reaction between 2-ethynyl-3-(1-hydroxyprop-2-yn-1-yl)phenols or 2-ethynyl-3-(1-hydroxyprop-2-yn-1-yl)anilines and methylene isocyanides has been developed. A sequential 5-endo-dig cyclization and [3 + 2] cycloaddition process is proposed. This synthetic strategy is atom- and step-efficient and applicable to a broad scope of substrates, allowing the synthesis of valuable substituted benzofuran- and indole-pyrroles in moderate to high yields.
Collapse
Affiliation(s)
- Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China.,Department of Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Xinyi Chen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China
| | - Andrey Shatskiy
- Department of Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Markus D Kärkäs
- Department of Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China
| |
Collapse
|
154
|
Liu J, Shen X, Shatskiy A, Zhou E, Kärkäs MD, Wang X. Silver‐Induced [3+2] Cycloaddition of Isocyanides with Acyl Chlorides: Regioselective Synthesis of 2,5‐Disubstituted Oxazoles. ChemCatChem 2019. [DOI: 10.1002/cctc.201900965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jian‐Quan Liu
- School of Chemistry and Chemical Engineering Jiangsu Key Laboratory of Green Synthesis for Functional MaterialsJiangsu Normal University Xuzhou Jiangsu 221116 P. R China
- Department of Chemistry Organic ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Xuanyu Shen
- School of Chemistry and Chemical Engineering Jiangsu Key Laboratory of Green Synthesis for Functional MaterialsJiangsu Normal University Xuzhou Jiangsu 221116 P. R China
| | - Andrey Shatskiy
- Department of Chemistry Organic ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Enlong Zhou
- College of Chemistry and Material Science Shandong Agricultural University Taian Shandong 271000 P. R. China
| | - Markus D. Kärkäs
- Department of Chemistry Organic ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Xiang‐Shan Wang
- School of Chemistry and Chemical Engineering Jiangsu Key Laboratory of Green Synthesis for Functional MaterialsJiangsu Normal University Xuzhou Jiangsu 221116 P. R China
| |
Collapse
|
155
|
Liu R, Wei Y, Shi M. A rhodium(iii)-catalyzed tunable coupling reaction of indole derivatives with alkylidenecyclopropanes via C-H activation. Chem Commun (Camb) 2019; 55:7558-7561. [PMID: 31190032 DOI: 10.1039/c9cc03134k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We herein report a rhodium(iii)-catalyzed cross coupling of indole derivatives with alkylidenecyclopropanes (ACPs) in the presence of KCl, affording the alkene products exclusively with E-selectivity via C-H bond activation. The beta-H elimination to afford the conjugated diene derivatives has been suppressed by the addition of KCl. A plausible reaction mechanism has been proposed along with derivatization of the obtained product to demonstrate the practical usefulness of this synthetic protocol.
Collapse
Affiliation(s)
- Ruixing Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| |
Collapse
|
156
|
Tao SW, Zhou JY, Liu RQ, Zhu YM. One-Pot Synthesis of N-Imidoyl-(1 H)-indoles via Palladium-Catalyzed Oxidative Insertion Domino Reaction with Isocyanide and Arylboronic Acid. J Org Chem 2019; 84:8121-8130. [PMID: 31132259 DOI: 10.1021/acs.joc.9b00990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient one-pot synthesis of N-imidoyl-(1 H)-indoles has been described, which is achieved by the palladium-catalyzed oxidative insertion of 2-(phenylethynyl)aniline, arylboronic acid, and isonitrile. This method provides a new way to synthesize N-imidoyl-(1 H)-indoles, which has a wide substrate scope, good functional group tolerance, and mild reaction condition.
Collapse
Affiliation(s)
- Shou-Wei Tao
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215123 , China
| | - Jing-Ya Zhou
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215123 , China
| | - Rui-Qing Liu
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215123 , China
| | - Yong-Ming Zhu
- College of Pharmaceutical Sciences , Soochow University , Suzhou 215123 , China
| |
Collapse
|
157
|
Silver-promoted regio- and stereoselective aminocyanation of alkynes for the synthesis of β-aminoacrylonitriles using N-isocyanoiminotriphenylphosphorane. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
158
|
Wang MR, Deng L, Liu GC, Wen L, Wang JG, Huang KB, Tang HT, Pan YM. Porous Organic Polymer-Derived Nanopalladium Catalysts for Chemoselective Synthesis of Antitumor Benzofuro[2,3- b]pyrazine from 2-Bromophenol and Isonitriles. Org Lett 2019; 21:4929-4932. [PMID: 31082239 DOI: 10.1021/acs.orglett.9b01230] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient strategy for the synthesis of benzofuro[2,3- b]pyrazines was developed. These tricyclic scaffolds were formed through a multistep cascade sequence, which includes double insertion of isonitriles and chemoselective bicyclization. In this reaction, a nanopalladium was used as a recyclable catalyst. Product 3w exhibited excellent anticancer activity toward T-24 (IC50 = 12.5 ± 0.9 μM) and HeLa (IC50 = 14.7 ± 1.6 μM) cells. We also explored the action mechanism of 3w on T-24 cells.
Collapse
Affiliation(s)
- Mao-Rui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Li Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Guo-Chen Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ling Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Jin-Ge Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
159
|
Chen D, Shan Y, Li J, You J, Sun X, Qiu G. External Reductant-Free Palladium-Catalyzed Reductive Insertion of Isocyanide: Synthesis of Polysubstituted Pyrroles and Its Applications as a Cysteine Probe. Org Lett 2019; 21:4044-4048. [DOI: 10.1021/acs.orglett.9b01220] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinmao You
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xuejun Sun
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China
| |
Collapse
|
160
|
Hu W, Teng F, Hu H, Luo S, Zhu Q. Pd-Catalyzed C(sp 2)-H Imidoylative Annulation: A General Approach To Construct Dibenzoox(di)azepines. J Org Chem 2019; 84:6524-6535. [PMID: 31050283 DOI: 10.1021/acs.joc.9b00683] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A general method to construct the scaffolds of dibenzooxazepine and dibenzodiazepine, through Pd-catalyzed isocyanide insertion and intramolecular C(sp2)-H activation, has been developed. This is the first example of seven-membered heterocycle formation by C-H imidoylative annulation.
Collapse
Affiliation(s)
- Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| |
Collapse
|
161
|
Liu MG, Liu N, Xu WH, Wang L. Tandem reaction strategy of the Passerini/Wittig reaction based on the in situ capture of isocyanides: One-pot synthesis of heterocycles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
162
|
Yi F, Zhao W, Wang Z, Bi X. Silver-Mediated [3 + 2] Cycloaddition of Alkynes and N-Isocyanoiminotriphenylphosphorane: Access to Monosubstituted Pyrazoles. Org Lett 2019; 21:3158-3161. [PMID: 30990050 DOI: 10.1021/acs.orglett.9b00860] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A silver-mediated [3 + 2] cycloaddition of "CNN" and "C≡C" for constructing pyrazoles has been described. The "CNN" building block used is N-isocyanoiminotriphenylphosphorane, which is a stable, safe, easy-to-handle, and odorless solid isocyanide. The reaction is characterized by its mild conditions, broad substrate scope, and excellent functional group tolerance.
Collapse
Affiliation(s)
- Fanhua Yi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Wanjun Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry , Northeast Normal University , Changchun 130024 , China.,State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
163
|
Mahmudov KT, Kukushkin VY, Gurbanov AV, Kinzhalov MA, Boyarskiy VP, da Silva MFCG, Pombeiro AJ. RETRACTED: Isocyanide metal complexes in catalysis. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
164
|
Zhu M, Fu W, Guo W, Tian Y, Wang Z, Ji B. Visible-light-induced radical trifluoromethylthiolation of N-(o-cyanobiaryl)acrylamides. Org Biomol Chem 2019; 17:3374-3380. [PMID: 30860236 DOI: 10.1039/c9ob00342h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient and general visible-light-mediated trifluoromethylthiolation of N-(o-cyanobiaryl)acrylamides has been successfully accomplished using N-trifluoromethylthiosaccharin as an effective source of SCF3 radicals. The reaction was proposed to proceed via a domino radical trifluoromethylthiolation/cyano insertion/cyclization to afford the corresponding SCF3-containing ring-fused phenanthridine derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Mei Zhu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471022, P. R. China.
| | | | | | | | | | | |
Collapse
|
165
|
Yuan H, Liu Z, Shen Y, Zhao H, Li C, Jia X, Li J. Iron‐Catalyzed Oxidative Coupling Reaction of Isocyanides and Simple Alkanes towards Amide Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongdong Yuan
- Department of Chemistry, Center for Supramolecular Chemistry and CatalysisShanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Zhiqiang Liu
- Department of Chemistry, Center for Supramolecular Chemistry and CatalysisShanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Yushu Shen
- Department of Polymer MaterialsShanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Hongbin Zhao
- Department of Chemistry, Center for Supramolecular Chemistry and CatalysisShanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Chunju Li
- Department of Chemistry, Center for Supramolecular Chemistry and CatalysisShanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Xueshun Jia
- Department of Chemistry, Center for Supramolecular Chemistry and CatalysisShanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Jian Li
- Department of Chemistry, Center for Supramolecular Chemistry and CatalysisShanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| |
Collapse
|
166
|
Ren ZL, He P, Lu WT, Sun M, Ding MW. Synthesis of iminoisoindolinones via a cascade of the three-component Ugi reaction, palladium catalyzed isocyanide insertion, hydroxylation and an unexpected rearrangement reaction. Org Biomol Chem 2019; 16:6322-6331. [PMID: 30131989 DOI: 10.1039/c8ob01728j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A robust ligand-free palladium-catalyzed cascade reaction for the synthesis of diversely substituted iminoisoindolinones has been developed. The cascade reaction involves isocyanide insertion into Ugi-3CR adducts, accompanied by unexpected hydroxylation and rearrangement.
Collapse
Affiliation(s)
- Zhi-Lin Ren
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China.
| | | | | | | | | |
Collapse
|
167
|
Yang Z, Jiang K, Chen YC, Wei Y. Copper-Catalyzed Dihydroquinolinone Synthesis from Isocyanides and O-Benzoyl Hydroxylamines. J Org Chem 2019; 84:3725-3734. [DOI: 10.1021/acs.joc.9b00262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Yang
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Kun Jiang
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ying-Chun Chen
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ye Wei
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
168
|
Abstract
The versatility of isocyanides (CNR) in organic chemistry has been tremendously enhanced by continuous advancement in transition metal catalysis. On the other hand, the urgent need for new and more sustainable synthetic strategies based on abundant and environmental-friendly metals are shifting the focus towards iron-assisted or iron-catalyzed reactions. Diiron complexes, taking advantage of peculiar activation modes and reaction profiles associated with multisite coordination, have the potential to compensate the lower activity of Fe compared to other transition metals, in order to activate CNR ligands. A number of reactions reported in the literature shows that diiron organometallic complexes can effectively assist and promote most of the “classic” isocyanide transformations, including CNR conversion into carbyne and carbene ligands, CNR insertion, and coupling reactions with other active molecular fragments in a cascade sequence. The aim is to evidence the potential offered by diiron coordination of isocyanides for the development of new and more sustainable synthetic strategies for the construction of complex molecular architectures.
Collapse
|
169
|
Gao M, Zou M, Wang J, Tan Q, Liu B, Xu B. Palladium-Catalyzed Multicomponent Reaction of Alkynes, Carboxylic Acids, and Isocyanides: A Direct Approach to Captodative Olefins. Org Lett 2019; 21:1593-1597. [PMID: 30802075 DOI: 10.1021/acs.orglett.9b00137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A palladium-catalyzed multicomponent reaction of alkynes, carboxylic acids, and isocyanides has been developed with the assistance of silver salt under mild conditions. Highly functionalized captodative olefins are synthesized efficiently by this method, which can find many applications as versatile synthons in organic synthesis.
Collapse
Affiliation(s)
- Mingchun Gao
- Department of Chemistry, Innovative Drug Research Center, School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , China
| | - Minfen Zou
- Department of Chemistry, Innovative Drug Research Center, School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , China
| | - Jue Wang
- Department of Chemistry, Innovative Drug Research Center, School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center, School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
170
|
Sun H, Tang S, Li D, Zhou Y, Huang J, Zhu Q. Cascade double isocyanide insertion and C-N coupling of 2-iodo-2'-isocyano-1,1'-biphenyls. Org Biomol Chem 2019; 16:3893-3896. [PMID: 29766195 DOI: 10.1039/c8ob00956b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A palladium-catalyzed double isocyanide insertion using 2-iodo-2'-isocyano-1,1'-biphenyls followed by copper-catalyzed intramolecular C-N coupling, delivering a unique heterocyclic structure containing both phenanthridine and carbazole scaffolds, has been developed. In this cascade process, four chemical bonds, including two C-C, one C-O, and one C-N bonds are formed consecutively without isolating an intermediate. The strategy of using a functionalized isocyanide in double insertion provides a quick approach for constructing heterocyclic systems with high bond-forming efficiency.
Collapse
Affiliation(s)
- Hongwei Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. China.
| | | | | | | | | | | |
Collapse
|
171
|
Xu P, Zhu YM, Wang F, Wang SY, Ji SJ. Mn(III)-Mediated Cascade Cyclization of 3-Isocyano-[1,1'-biphenyl]-2-carbonitrile with Arylboronic Acid: Construction of Pyrrolopyridine Derivatives. Org Lett 2019; 21:683-686. [PMID: 30633536 DOI: 10.1021/acs.orglett.8b03868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Mn(III) mediated cascade cyclization of new designed multifunctionalized 3-isocyano-[1,1'-biphenyl]-2-carbonitrile with arylboronic acid to construct pyrrolopyridine derivatives is developed. A series of pyrroloporidine compounds have been constructed through the formation of two new C-C bonds and one C-N bond via a radical pathway.
Collapse
Affiliation(s)
- Pei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
172
|
Chen J, Lv S, Tian S. Electrochemical Transition-Metal-Catalyzed C-H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. CHEMSUSCHEM 2019; 12:115-132. [PMID: 30280508 DOI: 10.1002/cssc.201801946] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Transition-metal-catalyzed C-H activation has attracted much attention from the organic synthetic community because it obviates the need to prefunctionalize substrates. However, superstoichiometric chemical oxidants, such as copper- or silver-based metal oxidants, benzoquinones, organic peroxides, K2 S2 O8 , hypervalent iodine, and O2 , are required for most of the reactions. Thus, the development of environmentally benign and user-friendly C-H bond activation protocols, in the absence of chemical oxidants, are urgently desired. The inherent advantages and unique characteristics of organic electrosynthesis make fill this gap. Herein, recent progress in this area (until the end of September 2018) is summarized for different transition metals to highlight the potential sustainability of electro-organic chemistry.
Collapse
Affiliation(s)
- Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Siyu Tian
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| |
Collapse
|
173
|
Hu Z, Zhang L, Li J, Yang W, Wei Q, Xu X. Silver-Catalyzed Nucleophilic Addition of β-Dicarbonyls to Isocyano Group: Facile Access to Indolin-3-ol Derivatives. J Org Chem 2019; 84:1563-1569. [DOI: 10.1021/acs.joc.8b03058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Lingjuan Zhang
- School of Chemistry & Material Science, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Juanjuan Li
- School of Chemistry & Material Science, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Wenhui Yang
- School of Chemistry & Material Science, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Qianwen Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
174
|
Liang YX, Meng XH, Yang M, Mehfooz H, Zhao YL. Zn(OAc)2-catalyzed tandem cyclization of isocyanides, α-diazoketones, and anhydrides: a general route to polysubstituted maleimides. Chem Commun (Camb) 2019; 55:12519-12522. [DOI: 10.1039/c9cc05802h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A zinc-catalyzed three-component reaction of isocyanides, α-diazoketones, and anhydrides has been realized as a novel and efficient method for the synthesis of polysubstituted maleimides.
Collapse
Affiliation(s)
- Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Haroon Mehfooz
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
175
|
Xue B, Su S, Cui Y, Fei Y, Jia X, Li J, Fang J. Phosphine-mediated sequential annulations of allenyl ketone and isocyanide: a bicyclization strategy to access a furan-fused eight-membered ring and a spirocycle. Chem Commun (Camb) 2019; 55:12180-12183. [DOI: 10.1039/c9cc06267j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphine-mediated cascade annulations of allenyl ketone and isocyanide have been disclosed. This strategy enables the efficient synthesis of a furan-fused eight-membered ring and a spirocycle.
Collapse
Affiliation(s)
- Bingxiang Xue
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Shikuan Su
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Yongmei Cui
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Youwen Fei
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Xueshun Jia
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Jian Li
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Jianhui Fang
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| |
Collapse
|
176
|
Su S, Hu J, Cui Y, Tang C, Chen Y, Li J. A formal (5+1) annulation reaction from heterodimerization of two different isocyanides: stereoselective synthesis of 2H-benzo[b][1,4]oxazin-2-one. Chem Commun (Camb) 2019; 55:12243-12246. [DOI: 10.1039/c9cc06678k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel (5+1) annulation reaction of functionalized 2-isocyanophenyloxyacrylate and aromatic, aliphatic isocyanides has been disclosed. This strategy allows for a quick access to many 2H-benzo[b][1,4]oxazin-2-one derivatives.
Collapse
Affiliation(s)
- Shikuan Su
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
- Department of Chemistry
| | - Jie Hu
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yongmei Cui
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Chongrong Tang
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yali Chen
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
- Department of Chemistry
| | - Jian Li
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
- Department of Chemistry
| |
Collapse
|
177
|
From isonitrile to nitrile via ketenimine intermediate: Palladium-catalyzed 1,1-carbocyanation of allyl carbonate by α-isocyanoacetate. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
178
|
Xiang Y, Wang C, Ding Q, Peng Y. Diazo Compounds: Versatile Synthons for the Synthesis of Nitrogen Heterocycles via
Transition Metal-Catalyzed Cascade C-H Activation/Carbene Insertion/Annulation Reactions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800960] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yunyu Xiang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Cong Wang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Qiuping Ding
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| |
Collapse
|
179
|
Lu SC, Li HS, Gong YL, Zhang SP, Zhang JG, Xu S. Combination of PhI(OAc)2 and 2-Nitropropane as the Source of Methyl Radical in Room-Temperature Metal-Free Oxidative Decarboxylation/Cyclization: Construction of 6-Methyl Phenanthridines and 1-Methyl Isoquinolines. J Org Chem 2018; 83:15415-15425. [DOI: 10.1021/acs.joc.8b02701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shi-Chao Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng Distrct, Beijing 100050, PR China
| | - Hong-Shuang Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Taishan Medical University, 619 Changcheng Road, Taian 271016, PR China
| | - Ya-Ling Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng Distrct, Beijing 100050, PR China
| | - Shi-Peng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng Distrct, Beijing 100050, PR China
| | - Ji-Guo Zhang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Taishan Medical University, 619 Changcheng Road, Taian 271016, PR China
| | - Shu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng Distrct, Beijing 100050, PR China
| |
Collapse
|
180
|
Wang W, Guo Y, Sun K, Wang S, Zhang S, Liu C, Chen QY. Visible Light-Induced Radical Cyclization of Tertiary Bromides with Isonitriles To Construct Trifluoromethylated Quaternary Carbon Center. J Org Chem 2018; 83:14588-14599. [PMID: 30403488 DOI: 10.1021/acs.joc.8b02405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Wengui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Yong Guo
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ke Sun
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Ltd., Shenyang 110021, China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Shuxiang Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Chao Liu
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
181
|
Yuan WK, Liu YF, Lan Z, Wen LR, Li M. Nickle Catalysis Enables Access to Thiazolidines from Thioureas via Oxidative Double Isocyanide Insertion Reactions. Org Lett 2018; 20:7158-7162. [PMID: 30398058 DOI: 10.1021/acs.orglett.8b03098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient synthesis of thiazolidine-2,4,5-triimine derivatives was developed via Ni-catalyzed oxidative double isocyanide insertion to thioureas under air conditions, in which thioureas play three roles as a substrate, a ligand, and overcoming isocyanide polymerization. The reaction is featured by employing a low-cost and low loading Ni(acac)2 catalyst, without any additives, and high atom economy. This is the first example to directly apply a Ni(II) catalyst in oxidative double isocyanide insertion reactions.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yan Fang Liu
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , 266061 , China
| | - Zhenggang Lan
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , 266061 , China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|
182
|
Yi W, Li L, Chen H, Ma K, Zhong Y, Chen W, Gao H, Zhou Z. Rh(III)-Catalyzed Oxidative [5 + 2] Annulation Using Two Transient Assisting Groups: Stereospecific Assembly of 3-Alkenylated Benzoxepine Framework. Org Lett 2018; 20:6812-6816. [PMID: 30354168 DOI: 10.1021/acs.orglett.8b02940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Liping Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hongzhen Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Kuangshun Ma
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yuting Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
183
|
Liu JQ, Shen X, Wang Y, Wang XS, Bi X. [3 + 2] Cycloaddition of Isocyanides with Aryl Diazonium Salts: Catalyst-Dependent Regioselective Synthesis of 1,3- and 1,5-Disubstituted 1,2,4-Triazoles. Org Lett 2018; 20:6930-6933. [DOI: 10.1021/acs.orglett.8b03069] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xuanyu Shen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yihan Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
184
|
Gomes GDP, Loginova Y, Vatsadze SZ, Alabugin IV. Isonitriles as Stereoelectronic Chameleons: The Donor-Acceptor Dichotomy in Radical Additions. J Am Chem Soc 2018; 140:14272-14288. [PMID: 30270623 DOI: 10.1021/jacs.8b08513] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C-H/C-C bonds at the radical carbon eclipses the isonitrile N-C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals ("the tyranny of tin"). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by "chameleonic" supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.
Collapse
Affiliation(s)
- Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32309 , United States
| | - Yulia Loginova
- Department of Organic Chemistry, Faculty of Chemistry , Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia
| | - Sergey Z Vatsadze
- Department of Organic Chemistry, Faculty of Chemistry , Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32309 , United States
| |
Collapse
|
185
|
Tang K, Wang C, Gao T, Chen L, Fan L, Sun L. Transition Metal‐Catalyzed C−H Bond Functionalizations by Use of Sulfur‐Containing Directing Groups. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800484] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kai‐Xiang Tang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal ChemistryChina Pharmaceutical University #24 Tongjiaxiang Nanjing 210009 People's Republic of China
| | - Chun‐Meng Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal ChemistryChina Pharmaceutical University #24 Tongjiaxiang Nanjing 210009 People's Republic of China
| | - Tian‐Hong Gao
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal ChemistryChina Pharmaceutical University #24 Tongjiaxiang Nanjing 210009 People's Republic of China
| | - Lin Chen
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal ChemistryChina Pharmaceutical University #24 Tongjiaxiang Nanjing 210009 People's Republic of China
| | - Lian Fan
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal ChemistryChina Pharmaceutical University #24 Tongjiaxiang Nanjing 210009 People's Republic of China
| | - Li‐Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal ChemistryChina Pharmaceutical University #24 Tongjiaxiang Nanjing 210009 People's Republic of China
| |
Collapse
|
186
|
Liu Y, Chen XL, Zeng FL, Sun K, Qu C, Fan LL, An ZL, Li R, Jing CF, Wei SK, Qu LB, Yu B, Sun YQ, Zhao YF. Phosphorus Radical-Initiated Cascade Reaction To Access 2-Phosphoryl-Substituted Quinoxalines. J Org Chem 2018; 83:11727-11735. [DOI: 10.1021/acs.joc.8b01657] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang 464000, China
| | - Xiao-Lan Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Fan-Lin Zeng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Qu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lu-Lu Fan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Long An
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chun-Feng Jing
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Kai Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Qiang Sun
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Fen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| |
Collapse
|
187
|
Chen S, Feng DF, Li DY, Liu PN. Radical Cyanotrifluoromethylation of Isocyanides: Step-Economical Access to CF 3-Containing Nitriles, Amines, and Imines. Org Lett 2018; 20:5418-5422. [PMID: 30148642 DOI: 10.1021/acs.orglett.8b02328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel copper-catalyzed radical cyanotrifluoromethylation has been achieved through a multicomponent reaction of isocyanides, Togni's reagent, and trimethylsilyl cyanides, affording trifluoroacetimidoyl nitriles in good yields. This reaction demonstrates a unique feature of merging two valuable functional groups-trifluoromethyl (CF3) and cyan (CN)-onto the same C atom. The transformation proceeds by the initial addition of the CF3 radical to isocyanide and the subsequent intermolecular C-CN formation. The products can be successfully transformed to a series of CF3-containing amines and imines that may serve in the synthesis of valuable pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Shuang Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering , East China University of Science & Technology , Meilong Road 130 , Shanghai 200237 , China
| | - Da-Fu Feng
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering , East China University of Science & Technology , Meilong Road 130 , Shanghai 200237 , China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering , East China University of Science & Technology , Meilong Road 130 , Shanghai 200237 , China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering , East China University of Science & Technology , Meilong Road 130 , Shanghai 200237 , China
| |
Collapse
|
188
|
Kok GPY, Yang H, Wong MW, Zhao Y. Cu-Catalyzed [3 + 3] Cycloaddition of Isocyanoacetates with Aziridines and Stereoselective Access to α,γ-Diamino Acids. Org Lett 2018; 20:5112-5115. [PMID: 30141633 DOI: 10.1021/acs.orglett.8b01948] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein an efficient Cu-catalyzed formal [3 + 3] cycloaddition of isocyanoacetates with readily available aziridines of different substitution patterns, which provides a practical access to valuable 1,4,5,6-tetrahydropyrimidine derivatives. In particular, the use of enantiopure aziridines delivers disubstituted tetrahydropyrimidines bearing a 1,3-diamino unit in good yields as a single stereoisomer (>20:1 dr, > 99% ee). The heterocyclic products can also be easily converted to synthetically useful amino alcohol derivatives or α,γ-diamino acids.
Collapse
Affiliation(s)
- Germaine Pui Yann Kok
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Republic of Singapore 117543
| | - Hui Yang
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Republic of Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Republic of Singapore 117543
| | - Yu Zhao
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Republic of Singapore 117543
| |
Collapse
|
189
|
Cai J, Hu Z, Li Y, Liu J, Xu X. Synthesis and Reactivity of o
-Enoyl Arylisocyanides: Access to Phenanthridine-8-Carboxylate Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinxiong Cai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Jun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
| |
Collapse
|
190
|
Synthesis of 3H-naphtho[2.1-b]pyran-2-carboxamides from cyclocoupling of β-naphthol, propargyl alcohols and isocyanide in the presence of Lewis acids. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
191
|
Liu J, Li L, Yu L, Tang L, Chen Q, Shi M. Visible-Light-Induced Trifluoromethylation of Isonitrile-Substituted Indole Derivatives: Access to 1-(Trifluoromethyl)-4,9-dihydro-3H-pyrido[3,4-b]indole andβ-Carboline Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Longhai Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Liuzhu Yu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Lisha Tang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry; Fudan University; 220 Handan Lu Shanghai 200433 People's Republic of China
| | - Qin Chen
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry; Fudan University; 220 Handan Lu Shanghai 200433 People's Republic of China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
192
|
Hu W, Li M, Jiang G, Wu W, Jiang H. Synthesis of 2,3-Difunctionalized Benzofuran Derivatives through Palladium-Catalyzed Double Isocyanide Insertion Reaction. Org Lett 2018; 20:3500-3503. [PMID: 29870267 DOI: 10.1021/acs.orglett.8b01277] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel palladium-catalyzed tandem cyclization of 1-(allyloxy)-2-ethynylbenzene derivatives with isocyanides in the presence of water has been developed. The key intermediates, benzofuran-3-α-carbonyl aldehydes, were obtained through a simple acid hydrolysis process and could serve as precursors for structurally diverse 2,3-difunctionalized benzofuran derivatives such as important 2-benzofurylquinoxalines, benzofuran-3-α-ketoesters and benzofuryl ynediones. This transformation features convenient operation, simple and commercially available starting materials, broad functional-group compatibility, and moderate to good reaction yields.
Collapse
Affiliation(s)
- Weigao Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Guangbin Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
193
|
Yang WC, Wei K, Sun X, Zhu J, Wu L. Cascade C(sp3)–S Bond Cleavage and Imidoyl C–S Formation: Radical Cyclization of 2-Isocyanoaryl Thioethers toward 2-Substituted Benzothiazoles. Org Lett 2018; 20:3144-3147. [DOI: 10.1021/acs.orglett.8b01278] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wen-Chao Yang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kai Wei
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xue Sun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
194
|
Fang G, Wang H, Liu Q, Cong X, Bi X. Silver-Promoted [3+1+1] Annulation of Isocyanoacetates with Nitrosoarenes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Guichun Fang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Department of Chemistry; Northeast Normal University; Renmin Str. 5268 Changchun 130024 China
| | - Hongwei Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Department of Chemistry; Northeast Normal University; Renmin Str. 5268 Changchun 130024 China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Department of Chemistry; Northeast Normal University; Renmin Str. 5268 Changchun 130024 China
| | - Xuefeng Cong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Department of Chemistry; Northeast Normal University; Renmin Str. 5268 Changchun 130024 China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Department of Chemistry; Northeast Normal University; Renmin Str. 5268 Changchun 130024 China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
195
|
Otsuka S, Nogi K, Yorimitsu H. Palladium-Catalyzed Insertion of Isocyanides into the C-S Bonds of Heteroaryl Sulfides. Angew Chem Int Ed Engl 2018; 57:6653-6657. [PMID: 29660856 DOI: 10.1002/anie.201802369] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/17/2018] [Indexed: 01/02/2023]
Abstract
Insertion of tert-butyl isocyanide into the C(sp2 )-S bonds of heteroaryl sulfides is catalyzed by a palladium diphosphine complex. Thioimidates generated through this reaction could be readily hydrolyzed under acidic conditions to yield the corresponding thioesters, which are of synthetic use. This insertion is useful because starting heteroaryl sulfides were readily prepared by either conventional ways or through sulfur-specific extended Pummerer reactions.
Collapse
Affiliation(s)
- Shinya Otsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
196
|
Otsuka S, Nogi K, Yorimitsu H. Palladium‐Catalyzed Insertion of Isocyanides into the C−S Bonds of Heteroaryl Sulfides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shinya Otsuka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Keisuke Nogi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
197
|
Katsuma Y, Tsukahara N, Wu L, Lin Z, Yamashita M. Reaction of B
2
(
o
‐tol)
4
with CO and Isocyanides: Cleavage of the C≡O Triple Bond and Direct C−H Borylations. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800878] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuhei Katsuma
- Department of Applied Chemistry Faculty of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku 112-8551 Tokyo Japan
| | - Nana Tsukahara
- Department of Applied Chemistry Faculty of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku 112-8551 Tokyo Japan
| | - Linlin Wu
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Zhenyang Lin
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Aichi Japan
| |
Collapse
|
198
|
Katsuma Y, Tsukahara N, Wu L, Lin Z, Yamashita M. Reaction of B 2 (o-tol) 4 with CO and Isocyanides: Cleavage of the C≡O Triple Bond and Direct C-H Borylations. Angew Chem Int Ed Engl 2018; 57:6109-6114. [PMID: 29573087 DOI: 10.1002/anie.201800878] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/14/2018] [Indexed: 01/12/2023]
Abstract
The reaction of highly Lewis acidic tetra(o-tolyl)diborane(4) with CO afforded a mixture of boraindane and boroxine by the cleavage of the C≡O triple bond. 13 C labeling experiments confirmed that the carbon atom in the boraindane stems from CO. Simultaneously, formation of boroxine 3 could be considered as borylene transfer to capture the oxygen atom from CO. The reaction of diborane(4) with t Bu-NC afforded an azaallene, while the reaction with Xyl-NC furnished cyclic compounds by direct C-H borylations.
Collapse
Affiliation(s)
- Yuhei Katsuma
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Tokyo, Japan
| | - Nana Tsukahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Tokyo, Japan
| | - Linlin Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 Aichi, Japan
| |
Collapse
|
199
|
Xu B, Zhang ZM, Zhou L, Zhang J. Direct Asymmetric Formal [3 + 2] Cycloaddition Reaction of Isocyanoesters with β-Trifluoromethyl β,β-Disubstituted Enones Leading to Optically Active Dihydropyrroles. Org Lett 2018; 20:2716-2719. [DOI: 10.1021/acs.orglett.8b00925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bing Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Zhan-Ming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Lujia Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
200
|
Liang HW, Yang Z, Jiang K, Ye Y, Wei Y. Atom-Economic Silver-Catalyzed Difunctionalization of the Isocyano Group with Cyclic Oximes: Towards Pyrimidinediones. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hong-Wen Liang
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| | - Zhen Yang
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| | - Ying Ye
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy; Third Military Medical University; Chongqing 400038 China
| |
Collapse
|