151
|
Matter MT, Probst S, Läuchli S, Herrmann IK. Uniting Drug and Delivery: Metal Oxide Hybrid Nanotherapeutics for Skin Wound Care. Pharmaceutics 2020; 12:E780. [PMID: 32824470 PMCID: PMC7465174 DOI: 10.3390/pharmaceutics12080780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Wound care and soft tissue repair have been a major human concern for millennia. Despite considerable advancements in standards of living and medical abilities, difficult-to-heal wounds remain a major burden for patients, clinicians and the healthcare system alike. Due to an aging population, the rise in chronic diseases such as vascular disease and diabetes, and the increased incidence of antibiotic resistance, the problem is set to worsen. The global wound care market is constantly evolving and expanding, and has yielded a plethora of potential solutions to treat poorly healing wounds. In ancient times, before such a market existed, metals and their ions were frequently used in wound care. In combination with plant extracts, they were used to accelerate the healing of burns, cuts and combat wounds. With the rise of organic chemistry and small molecule drugs and ointments, researchers lost their interest in inorganic materials. Only recently, the advent of nano-engineering has given us a toolbox to develop inorganic materials on a length-scale that is relevant to wound healing processes. The robustness of synthesis, as well as the stability and versatility of inorganic nanotherapeutics gives them potential advantages over small molecule drugs. Both bottom-up and top-down approaches have yielded functional inorganic nanomaterials, some of which unite the wound healing properties of two or more materials. Furthermore, these nanomaterials do not only serve as the active agent, but also as the delivery vehicle, and sometimes as a scaffold. This review article provides an overview of inorganic hybrid nanotherapeutics with promising properties for the wound care field. These therapeutics include combinations of different metals, metal oxides and metal ions. Their production, mechanism of action and applicability will be discussed in comparison to conventional wound healing products.
Collapse
Affiliation(s)
- Martin T. Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Sebastian Probst
- School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland;
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
152
|
Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A. Nanoparticle-Based Wound Dressing: Recent Progress in the Detection and Therapy of Bacterial Infections. Bioconjug Chem 2020; 31:1708-1723. [PMID: 32538089 DOI: 10.1021/acs.bioconjchem.0c00297] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial infections in wounds often delay the healing process, and may seriously threaten human life. It is urgent to develop wound dressings to effectively detect and treat bacterial infections. Nanoparticles have been extensively used in wound dressings because of their specific properties. This review highlights the recent progress on nanoparticle-based wound dressings for bacterial detection and therapy. Specifically, nanoparticles have been applied as intrinsic antibacterial agents or drug delivery vehicles to treat bacteria in wounds. Moreover, nanoparticles with photothermal or photodynamic property have also been explored to endow wound dressings with significant optical properties to further enhance their bactericidal effect. More interestingly, nanoparticle-based smart dressings have been recently explored for bacteria detection and treatment, which enables an accurate assessment of bacterial infection and a more precise control of on-demand therapy.
Collapse
Affiliation(s)
- Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China.,Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, the People's Republic of China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| |
Collapse
|
153
|
Li Z, Mu Y, Peng C, Lavin MF, Shao H, Du Z. Understanding the mechanisms of silica nanoparticles for nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1658. [PMID: 32602269 PMCID: PMC7757183 DOI: 10.1002/wnan.1658] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
As a consequence of recent progression in biomedicine and nanotechnology, nanomedicine has emerged rapidly as a new discipline with extensive application of nanomaterials in biology, medicine, and pharmacology. Among the various nanomaterials, silica nanoparticles (SNPs) are particularly promising in nanomedicine applications due to their large specific surface area, adjustable pore size, facile surface modification, and excellent biocompatibility. This paper reviews the synthesis of SNPs and their recent usage in drug delivery, biomedical imaging, photodynamic and photothermal therapy, and other applications. In addition, the possible adverse effects of SNPs in nanomedicine applications are reviewed from reported in vitro and in vivo studies. Finally, the potential opportunities and challenges for the future use of SNPs are discussed. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Ziyuan Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingwen Mu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Peng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Hua Shao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongjun Du
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
154
|
Alavi M, Rai M. Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert Rev Anti Infect Ther 2020; 18:1021-1032. [PMID: 32536223 DOI: 10.1080/14787210.2020.1782740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Infected chronic wounds particularly diabetic foot ulcers (DFUs) can result from stable colonization of antibiotic-resistant bacteria and fungi at the wound sites. In this context, the rapid healing of infected wounds has been the main goal in recent investigations. This issue can be solved by improving wound-healing phases including hemostasis, inflammatory, proliferative, and remodeling/maturation, and removal of bacteria and fungi. The applications of growth factors (GFs) and metal/metal oxide nanoparticles (MNPs/MONPs) are two choices for these targets. However, the lack of sustainable release of these agents is an important problem for appropriate wound healing. AREA COVERED The present review is focused on recent advances in delivery systems composed of growth factor and MNPs/MONPs for rapid wound healing. EXPERT OPINION Synthetic and natural polymeric micro- and nanocarriers including polyvinylpyrrolidone (PVP) and chitosan play a vital role in the healing of infected chronic wounds. Using various derivatives of chitosan as pH-responsive polymer with basic and acidic groups can be the best option to prepare controllable and sequential GF release. However, it warrants further extensive research to solve wound-healing problems.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Department of Biology, Faculty of Science, Razi University , Kermanshah, Iran
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University , Amravati, India.,Department of Chemistry, Federal University of Piaui , Teresina, Brazil
| |
Collapse
|
155
|
Quantum-Sized Zinc Oxide Nanoparticles Synthesised within Mesoporous Silica (SBA-11) by Humid Thermal Decomposition of Zinc Acetate. CRYSTALS 2020. [DOI: 10.3390/cryst10060549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A modified facile method is presented to synthesise quantum-sized zinc oxide nanoparticles within the pores of a mesoporous silica host (SBA-11). This method eliminates the 3 h alcohol reflux and the basic solution reaction steps of zinc acetate. The mesoporous structure and the ZnO nanoparticles were analysed by X-ray diffractometry, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, nitrogen sorption analysis and UV–VIS spectroscopy. These tests confirm the synthesis of ~1 nm sized ZnO within the pores of SBA-11 and that the porous structure remained intact after ZnO synthesis.
Collapse
|
156
|
Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1234. [PMID: 32630377 PMCID: PMC7353122 DOI: 10.3390/nano10061234] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a common endocrine disease characterized by a state of hyperglycemia (higher level of glucose in the blood than usual). DM and its complications can lead to diabetic foot ulcer (DFU). DFU is associated with impaired wound healing, due to inappropriate cellular and cytokines response, infection, poor vascularization, and neuropathy. Effective therapeutic strategies for the management of impaired wound could be attained through a better insight of molecular mechanism and pathophysiology of diabetic wound healing. Nanotherapeutics-based agents engineered within 1-100 nm levels, which include nanoparticles and nanoscaffolds, are recent promising treatment strategies for accelerating diabetic wound healing. Nanoparticles are smaller in size and have high surface area to volume ratio that increases the likelihood of biological interaction and penetration at wound site. They are ideal for topical delivery of drugs in a sustained manner, eliciting cell-to-cell interactions, cell proliferation, vascularization, cell signaling, and elaboration of biomolecules necessary for effective wound healing. Furthermore, nanoparticles have the ability to deliver one or more therapeutic drug molecules, such as growth factors, nucleic acids, antibiotics, and antioxidants, which can be released in a sustained manner within the target tissue. This review focuses on recent approaches in the development of nanoparticle-based therapeutics for enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Hariharan Ezhilarasu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Vishalli
- Faculty of Medical Sciences, Krishna Institute of Medical Sciences “Deemed to be University”, Karad, Maharashtra 415539, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| |
Collapse
|
157
|
Saddik MS, Alsharif FM, El-Mokhtar MA, Al-Hakkani MF, El-Mahdy MM, Farghaly HS, Abou-Taleb HA. Biosynthesis, Characterization, and Wound-Healing Activity of Phenytoin-Loaded Copper Nanoparticles. AAPS PharmSciTech 2020; 21:175. [PMID: 32556636 DOI: 10.1208/s12249-020-01700-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Wound-healing is a very complex and evolutionary process that involves a great variety of dynamic steps. Although different pharmaceutical agents have been developed to hasten the wound-healing process, the existing agents are still far from optimal. The present work aimed to prepare and evaluate the wound-healing efficacy of phenytoin-loaded copper nanoparticles (PHT-loaded CuNPs). CuNPs were biosynthesized using licorice aqueous extract. The prepared CuNPs were loaded with PHT by adsorption, characterized, and evaluated for wound-healing efficiency. Results showed that both plain and PHT-loaded CuNPs were monodisperse and exhibited a cubic and hexagonal morphology. The mechanism by which PHT was adsorbed on the surface of CuNPs was best fit by the Langmuir model with a maximum loaded monolayer capacity of 181 mg/g. The kinetic study revealed that the adsorption reaction followed the pseudo-second order while the thermodynamic parameters indicated that the adsorption process was physical in nature and endothermic, and occurred spontaneously. Moreover, the in vivo wound-healing activity of PHT-loaded CuNP impregnated hydroxypropylmethyl cellulose (HPMC) gel was carried out using an excisional wound model in rats. Data showed that PHT-loaded CuNPs accelerated epidermal regeneration and stimulated granulation and tissue formation in treated rats compared to controls. Additionally, quantitative real-time polymerase chain reaction (RT-PCR) analysis showed that lesions treated with PHT-loaded CuNPs were associated with a marked increase in the expression of dermal procollagen type I and a decrease in the expression of the inflammatory JAK3 compared to control samples. In conclusion, PHT-loaded CuNPs are a promising platform for effective and rapid wound-healing.
Collapse
|
158
|
Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109777] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
159
|
Shahriyari F, Yaarali D, Ahmadi R, Hassan S, Wei W. Synthesis and characterization of Cu-Sn oxides nanoparticles via wire explosion method with surfactants, evaluation of in-vitro cytotoxic and antibacterial properties. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
160
|
Silina EV, Manturova NE, Vasin VI, Artyushkova EB, Khokhlov NV, Ivanov AV, Stupin VA. Efficacy of A Novel Smart Polymeric Nanodrug in the Treatment of Experimental Wounds in Rats. Polymers (Basel) 2020; 12:E1126. [PMID: 32423071 PMCID: PMC7285345 DOI: 10.3390/polym12051126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
High-quality and aesthetic wound healing, as well as effective medical support of this process, continue to be relevant. This study aims to evaluate the medical efficacy of a novel smart polymeric nanodrug (SPN) on the rate and mechanism of wound healing in experimental animals. The study was carried out in male Wistar rats (aged 8-9 months). In these animals, identical square wounds down to the fascia were made in non-sterile conditions on the back on both sides of the vertebra. SPN was used for the treatment of one wound, and the other wound was left without treatment (control group). Biocompatible citrate-stabilized cerium oxide nanoparticles integrated into a polysaccharide hydrogel matrix containing natural and synthetic polysaccharide polymers (pectin, alginate, chitosan, agar-agar, water-soluble cellulose derivatives) were used as the therapeutic agent. Changes in the wound sizes (area, volume) over time and wound temperature were assessed on Days 0, 1, 3, 5, 7, and 14. Histological examination of the wounds was performed on Days 3, 7, and 14. The study showed that the use of SPN accelerated wound healing in comparison with control wounds by inhibiting the inflammatory response, which was measured by a decreased number of white blood cells in SPN-treated wounds. It also accelerated the development of fibroblasts, with an early onset of new collagen synthesis, which eventually led to the formation of more tender postoperative scars. Thus, the study demonstrated that the use of SPN for the treatment of wounds was effective and promising.
Collapse
Affiliation(s)
- Ekaterina V. Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str, 8, 119991 Moscow, Russia
| | - Natalia E. Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova St., 1, 117997 Moscow, Russia;
| | - Vitaliy I. Vasin
- Department of Hospital Surgery №1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova St., 1, 117997 Moscow, Russia; (V.I.V.); (V.A.S.)
| | - Elena B. Artyushkova
- Research Institute of Experimental Medicine, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (E.B.A.); (N.V.K.)
| | - Nikolay V. Khokhlov
- Research Institute of Experimental Medicine, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (E.B.A.); (N.V.K.)
| | - Alexander V. Ivanov
- Department of Histology, Embryology, Cytology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia;
| | - Victor A. Stupin
- Department of Hospital Surgery №1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova St., 1, 117997 Moscow, Russia; (V.I.V.); (V.A.S.)
| |
Collapse
|
161
|
Organic nanocomposite Band-Aid for chronic wound healing: a novel honey-based nanofibrous scaffold. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
162
|
Soubhagya AS, Moorthi A, Prabaharan M. Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. Int J Biol Macromol 2020; 157:135-145. [PMID: 32339591 DOI: 10.1016/j.ijbiomac.2020.04.156] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 01/29/2023]
Abstract
Three-dimensional (3D) porous films based on chitosan/pectin/ZnO nanoparticles (NPs) were prepared for wound healing by the freeze-drying method. The chemical nature, composition and morphology of these films were revealed by FTIR, XRD, EDX, SEM and BET analysis. SEM micrographs showed a decrease in the pore size and porosity of chitosan/pectin/ZnO films when increasing the content of ZnO NPs. The developed films presented the swelling degree and water retention ability in the range of 189-465 and 230-390%, respectively. Moreover, they showed an improved compression strength and controlled degradation in the lysozyme-containing medium in comparison with control. MTT assay demonstrated the biocompatibility of chitosan/pectin/ZnO films against the primary human dermal fibroblast cells (HFCs). Among the developed chitosan/pectin/ZnO films, CPZnO-2 films presented the increased rate of cell proliferation and migration. Also, they exhibited antimicrobial activity against the gram-positive and gram-negative bacteria and fungi. These results suggested that chitosan/pectin/ZnO films could be safe, convenient and effective for wound healing.
Collapse
Affiliation(s)
- A S Soubhagya
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India
| | - A Moorthi
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603 103, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India.
| |
Collapse
|
163
|
Do M, Stinson K, George R. Reflectance structured illumination imaging of internalized cerium oxide nanoparticles modulating dose-dependent reactive oxygen species in breast cancer cells. Biochem Biophys Rep 2020; 22:100745. [PMID: 32099911 PMCID: PMC7031132 DOI: 10.1016/j.bbrep.2020.100745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Cerium oxide nanoparticles have been shown to sensitize cancer cells to radiation damage. Their unique redox properties confer excellent therapeutic potential by augmenting radiation dose with reactive oxygen species mediating bystander effects. Owing to its metallic properties, cerium oxide nanoparticles can be visualized inside cells using reflected light and optical sectioning. This can be advantageous in settings requiring none or minimal sample preparation and modification. We investigated the use of reflectance imaging for the detection of unmodified nanoceria in MDA MB231 breast cancer cells along with differential interference contrast imaging and fluorescent nuclear labeling. We also performed studies to evaluate the uptake capability, cellular toxicity and redox properties of nanocaria in these cells. Our results demonstrate that reflectance structured illumination imaging can effectively localize cerium oxide nanoparticles in breast cancer cells, and when combining with differential interference contrast and fluorescent cell label imaging, effective compartmental localization of the nanoparticles can be achieved. The total number of cells taking up the nanoparticles and the amount of nanoparticle uptake increased significantly in proportion to the dose, with no adverse effects on cell survival. Moreover, significant reduction in reactive oxygen species was also observed in proportion to increasing nanoceria concentrations attesting to its ability to modulate oxidative stress. In conclusion, this work serves as a pre-clinical scientific evaluation of the effective use of reflectance structured illumination imaging of cerium oxide nanoparticles in breast cancer cells and the safe use of these nanoparticles in MDA MB231 cells for further therapeutic applications. Internalized cerium oxide nanoparticles are imaged with reflected light in breast cancer cells for the first time. Cerium oxide nanoparticles demonstrated no toxicity in MDA MB231 breast cancer cells Cerium oxide nanoparticles modulated free radicals in MBA MB231 cells in a dose dependent manner
Collapse
Affiliation(s)
- Melissa Do
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kayla Stinson
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Remo George
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
164
|
Latest developments on topical therapies in chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2020; 28:25-30. [DOI: 10.1097/moo.0000000000000598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
165
|
Wang C, Li J, Liu X, Cui Z, Chen DF, Li Z, Liang Y, Zhu S, Wu S. The rapid photoresponsive bacteria-killing of Cu-doped MoS2. Biomater Sci 2020; 8:4216-4224. [DOI: 10.1039/d0bm00872a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This material of Cu doped MoS2 can produce reactive oxygen species and photothermal under 660 nm light, thus achieving a rapid bacterial effect. Which is a kind of good photothermal and photodynamic material.
Collapse
Affiliation(s)
- Chaofeng Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei Key Laboratory of Polymer Materials
- School of Materials Science & Engineering
- Hubei University
| | - Jun Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei Key Laboratory of Polymer Materials
- School of Materials Science & Engineering
- Hubei University
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Da-Fu Chen
- Beijing JiShuiTan Hospital
- Beijing Research Institute Orthopaedics & Traumatology
- Lab Bone Tissue Engineering
- Beijing 100035
- Peoples R China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
166
|
Mohammadi Aria M, Erten A, Yalcin O. Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Front Bioeng Biotechnol 2019; 7:395. [PMID: 31921804 PMCID: PMC6917661 DOI: 10.3389/fbioe.2019.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, blood coagulation monitoring has become crucial to diagnosing causes of hemorrhages, developing anticoagulant drugs, assessing bleeding risk in extensive surgery procedures and dialysis, and investigating the efficacy of hemostatic therapies. In this regard, advanced technologies such as microfluidics, fluorescent microscopy, electrochemical sensing, photoacoustic detection, and micro/nano electromechanical systems (MEMS/NEMS) have been employed to develop highly accurate, robust, and cost-effective point of care (POC) devices. These devices measure electrochemical, optical, and mechanical parameters of clotting blood. Which can be correlated to light transmission/scattering, electrical impedance, and viscoelastic properties. In this regard, this paper discusses the working principles of blood coagulation monitoring, physical and sensing parameters in different technologies. In addition, we discussed the recent progress in developing nanomaterials for blood coagulation detection and treatments which opens up new area of controlling and monitoring of coagulation at the same time in the future. Moreover, commercial products, future trends/challenges in blood coagulation monitoring including novel anticoagulant therapies, multiplexed sensing platforms, and the application of artificial intelligence in diagnosis and monitoring have been included.
Collapse
Affiliation(s)
| | - Ahmet Erten
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozlem Yalcin
- Graduate School of Biomedical Sciences and Engineering, Koc University, Sariyer, Turkey
- Department of Physiology, Koc University School of Medicine, Koc University, Sariyer, Turkey
| |
Collapse
|
167
|
Jin SE, Jin HE. Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics 2019; 11:E575. [PMID: 31689932 PMCID: PMC6921052 DOI: 10.3390/pharmaceutics11110575] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023] Open
Abstract
Zinc oxide (ZnO) nanoparticles have been studied as metal-based drugs that may be used for biomedical applications due to the fact of their biocompatibility. Their physicochemical properties, which depend on synthesis techniques involving physical, chemical, biological, and microfluidic reactor methods affect biological activity in vitro and in vivo. Advanced tool-based physicochemical characterization is required to identify the biological and toxicological effects of ZnO nanoparticles. These nanoparticles have variable morphologies and can be molded into three-dimensional structures to enhance their performance. Zinc oxide nanoparticles have shown therapeutic activity against cancer, diabetes, microbial infection, and inflammation. They have also shown the potential to aid in wound healing and can be used for imaging tools and sensors. In this review, we discuss the synthesis techniques, physicochemical characteristics, evaluation tools, techniques used to generate three-dimensional structures, and the various biomedical applications of ZnO nanoparticles.
Collapse
Affiliation(s)
- Su-Eon Jin
- College of Pharmacy, Yonsei University, Incheon 21983, Korea.
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
168
|
Shahbazi MA, Ferreira MPA, Santos HA. Landing a lethal blow on bacterial infections: an emerging advance of nanodots for wound healing acceleration. Nanomedicine (Lond) 2019; 14:2269-2272. [DOI: 10.2217/nnm-2019-0236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 56184-45139 Zanjan, Iran
| | - Mónica PA Ferreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|