151
|
Chang WT, Liu PY, Gao ZH, Lee SW, Lee WK, Wu SN. Evidence for the Effectiveness of Remdesivir (GS-5734), a Nucleoside-Analog Antiviral Drug in the Inhibition of I K(M) or I K(DR) and in the Stimulation of I MEP. Front Pharmacol 2020; 11:1091. [PMID: 32792942 PMCID: PMC7385287 DOI: 10.3389/fphar.2020.01091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Remdesivir (RDV, GS-5734), a broad-spectrum antiviral drug in the class of nucleotide analogs, has been particularly tailored for treatment of coronavirus infections. However, to which extent RDV is able to modify various types of membrane ion currents remains largely uncertain. In this study, we hence intended to explore the possible perturbations of RDV on ionic currents endogenous in pituitary GH3 cells and Jurkat T-lymphocytes. The whole-cell current recordings of ours disclosed that upon membrane depolarization in GH3 cells the exposure to RDV concentration-dependently depressed the peak or late components of I K(DR) elicitation with effective IC50 values of 10.1 or 2.8 μM, respectively; meanwhile, the value of dissociation constant of RDV-induced blockage of I K(DR) on the basis of the first-order reaction was yielded to be 3.04 μM. Upon the existence of RDV, the steady-state inactivation curve of I K(DR) was established in the RDV presence; moreover, the recovery became slowed. However, RDV-induced blockage of I K(DR) failed to be overcome by further addition of either α,β-methylene ATP or cyclopentyl-1,3-dipropylxanthine. The RDV addition also lessened the strength of M-type K+ current with the IC50 value of 2.5 μM. The magnitude of voltage hysteresis of I K(M) elicited by long-lasting triangular ramp pulse was diminished by adding RDV. Membrane electroporation-induced current in response to large hyperpolarization was enhanced, with an EC50 value of 5.8 μM. Likewise, in Jurkat T-lymphocytes, adding RDV declined I K(DR) amplitude concomitantly with the raised rate of current inactivation applied by step depolarization. Therefore, in terms of the RDV molecule, there appears to be an unintended activity of the prodrug on ion channels. Its inhibition of both I K(DR) and I K(M) occurring in a non-genomic fashion might provide additional but important mechanisms through which in vivo cellular functions are seriously perturbed.
Collapse
Affiliation(s)
- Wei-Ting Chang
- College of Medicine, Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ping-Yen Liu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Shih-Wei Lee
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Wen-Kai Lee
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
152
|
Garner AL, Torres AS, Klopman S, Neculaes B. Electrical stimulation of whole blood for growth factor release and potential clinical implications. Med Hypotheses 2020; 143:110105. [PMID: 32721802 DOI: 10.1016/j.mehy.2020.110105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022]
Abstract
Clinicians have increasingly applied platelet-rich plasma (PRP) for wound healing treatments. Topical treatments commonly require biochemical agents such as bovine thrombin to activate PRP ex vivo for clotting and growth factor release to facilitate healing upon application to the wound of interest. Recent studies have explored electrical stimulation as an alternative to bovine thrombin for PRP activation due to the former's cost, workflow complexity and potentially significant side effects; however, both approaches require separating the PRP from whole blood (WB) prior to activation. Eliminating the separation (typically centrifugation) step would reduce the cost and duration of the clinical procedure, which may be critical in trauma and surgical applications. We hypothesize that electric pulses (EPs) can release growth factors from WB, as they do from PRP, without requiring centrifugation of WB into PRP. A pilot study for two donors demonstrates the potential for EP stimulated growth factor release from WB. This motivates future experiments assessing EP parameter optimization for WB activation and in vivo studies to determine the clinical benefits for topical treatments and, especially, for injections in orthopedic applications that already utilize non-treated/non-activated WB.
Collapse
Affiliation(s)
- Allen L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, West Lafayette, IN, USA.
| | - Andrew S Torres
- GE Research, Niskayuna, NY, USA; Molecular Templates, Austin, TX, USA
| | | | | |
Collapse
|
153
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
154
|
Talkar SS, Patravale VB. Gene Therapy for Prostate Cancer: A Review. Endocr Metab Immune Disord Drug Targets 2020; 21:385-396. [PMID: 32473623 DOI: 10.2174/1871530320666200531141455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to the American Cancer Society, prostate cancer ranks second in terms of mortality and is a front-runner of newly detected cases. Conventional therapies neither eradicated cancer nor increased the life expectancy of patients obviating the need for less toxic as well as efficient therapies to treat cancer. Gene therapy alone, or in combination with conventional therapies, possesses a strong potential to combat cancer. METHODS This review encompasses a brief note on the etiology and conventional therapy of prostate cancer with an emphasis on gene therapy and its suitability for the treatment of prostate cancer. RESULTS A comprehensive range of gene therapy approaches have been successfully explored for prostate cancer treatment in animal models and this has been well translated into early clinical trials. We have also discussed in brief about specific therapeutic genes and suitable vector systems for gene therapy in prostate cancer. CONCLUSION Based on the results of these clinical trials, the application of gene therapy in prostate cancer therapeutics can be satisfactorily established.
Collapse
Affiliation(s)
- Swapnil S Talkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh, Marg, Matunga - 400 019, Mumbai, Maharashtra, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh, Marg, Matunga - 400 019, Mumbai, Maharashtra, India
| |
Collapse
|
155
|
Choromanska A, Saczko J, Kulbacka J. Caffeic Acid Phenethyl Ester Assisted by Reversible Electroporation-In Vitro Study on Human Melanoma Cells. Pharmaceutics 2020; 12:pharmaceutics12050478. [PMID: 32456290 PMCID: PMC7284363 DOI: 10.3390/pharmaceutics12050478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022] Open
Abstract
Melanoma is one of the most serious skin cancers. The incidence of this malignant skin lesion is continuing to increase worldwide. Melanoma is resistant to chemotherapeutic drugs and highly metastatic. Surgical resection can only be used to treat melanoma in the early stages, while chemotherapy is limited due to melanoma multi-drug resistance. The overexpression of glutathione S-transferase (GST) may have a critical role in this resistance. Caffeic acid phenethyl ester (CAPE) is a natural phenolic compound, which occurs in many plants. Previous studies demonstrated that CAPE suppresses the growth of melanoma cells and induces reactive oxygen species generation. It is also known that bioactivation of CAPE to its corresponding quinone metabolite by tyrosinase would lead to GST inhibition and selective melanoma cell death. We investigated the biochemical toxicity of CAPE in combination with microsecond electropermeabilization in two human melanoma cell lines. Our results indicate that electroporation of melanoma cells in the presence of CAPE induced high oxidative stress, which correlates with high cytotoxicity. Moreover, it can disrupt the metabolism of cancer cells by inducing apoptotic cell death. Electroporation of melanoma cells may be an efficient CAPE delivery system, enabling the application of this compound, while reducing its dose and exposure time.
Collapse
|
156
|
Ultrathin glass fiber microprobe for electroporation of arbitrary selected cell groups. Bioelectrochemistry 2020; 135:107545. [PMID: 32446151 DOI: 10.1016/j.bioelechem.2020.107545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
A new type of ultrathin fiber microprobe for selective electroporation is reported. The microprobe is 10 cm long and has a diameter of 350 µm. This microprobe is a low cost tool, which allows electroporation of an arbitrary selected single cell or groups of cells among population with use of a standard microscope and cell culture plates. The microprobe in its basic form contains two metal microelectrodes made of a silver-copper alloy, running along the fiber, each with a diameter of 23 µm. The probe was tested in vitro on a population of normal and cancer cells. Successful targeted electroporation was observed by means of accumulation of trypan blue (TB) dye marker in the cell. The electroporation phenomenon was also verified with propidium iodide and AnnexinV in fluorescent microscopy.
Collapse
|
157
|
Bradley CJ, Haines DE. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J Cardiovasc Electrophysiol 2020; 31:2136-2147. [DOI: 10.1111/jce.14414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher J. Bradley
- Department of Cardiovascular Medicine, Beaumont HospitalOakland University William Beaumont School of Medicine Royal Oak Michigan
| | - David E. Haines
- Department of Cardiovascular Medicine, Beaumont HospitalOakland University William Beaumont School of Medicine Royal Oak Michigan
| |
Collapse
|
158
|
Investigating the Impact of Delivery System Design on the Efficacy of Self-Amplifying RNA Vaccines. Vaccines (Basel) 2020; 8:vaccines8020212. [PMID: 32397231 PMCID: PMC7348957 DOI: 10.3390/vaccines8020212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
messenger RNA (mRNA)-based vaccines combine the positive attributes of both live-attenuated and subunit vaccines. In order for these to be applied for clinical use, they require to be formulated with delivery systems. However, there are limited in vivo studies which compare different delivery platforms. Therefore, we have compared four different cationic platforms: (1) liposomes, (2) solid lipid nanoparticles (SLNs), (3) polymeric nanoparticles (NPs) and (4) emulsions, to deliver a self-amplifying mRNA (SAM) vaccine. All formulations contained either the non-ionizable cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDA) and they were characterized in terms of physico-chemical attributes, in vitro transfection efficiency and in vivo vaccine potency. Our results showed that SAM encapsulating DOTAP polymeric nanoparticles, DOTAP liposomes and DDA liposomes induced the highest antigen expression in vitro and, from these, DOTAP polymeric nanoparticles were the most potent in triggering humoral and cellular immunity among candidates in vivo.
Collapse
|
159
|
Chang AY, Liu X, Tian H, Hua L, Yang Z, Wang S. Microfluidic Electroporation Coupling Pulses of Nanoseconds and Milliseconds to Facilitate Rapid Uptake and Enhanced Expression of DNA in Cell Therapy. Sci Rep 2020; 10:6061. [PMID: 32269260 PMCID: PMC7142113 DOI: 10.1038/s41598-020-63172-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
Standard electroporation with pulses in milliseconds has been used as an effective tool to deliver drugs or genetic probes into cells, while irreversible electroporation with nanosecond pulses is explored to alter intracellular activities for pulse-induced apoptosis. A combination treatment, long nanosecond pulses followed by standard millisecond pulses, is adopted in this work to help facilitate DNA plasmids to cross both cell plasma membrane and nuclear membrane quickly to promote the transgene expression level and kinetics in both adherent and suspension cells. Nanosecond pulses with 400–800 ns duration are found effective on disrupting nuclear membrane to advance nuclear delivery of plasmid DNA. The additional microfluidic operation further helps suppress the negative impacts such as Joule heating and gas bubble evolution from common nanosecond pulse treatment that lead to high toxicity and/or ineffective transfection. Having appropriate order and little delay between the two types of treatment with different pulse duration is critical to guarantee the effectiveness: 2 folds or higher transfection efficiency enhancement and rapid transgene expression kinetics of GFP plasmids at no compromise of cell viability. The implementation of this new electroporation approach may benefit many biology studies and clinical practice that needs efficient delivery of exogenous probes.
Collapse
Affiliation(s)
- An-Yi Chang
- Chemical Engineering, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.,Institute for Micromanufacturing, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.,Center for Biomedical Engineering and Rehabilitations, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA
| | - Xuan Liu
- Macromolecular and Nanotechnology, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.,Center for Biomedical Engineering and Rehabilitations, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA
| | - Hong Tian
- Institute for Micromanufacturing, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA
| | - Liping Hua
- Institute for Micromanufacturing, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.,Center for Biomedical Engineering and Rehabilitations, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shengnian Wang
- Chemical Engineering, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA. .,Institute for Micromanufacturing, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA. .,Macromolecular and Nanotechnology, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA. .,Center for Biomedical Engineering and Rehabilitations, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.
| |
Collapse
|
160
|
Yadav DK, Kumar S, Choi EH, Kim MH. Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane. J Biomol Struct Dyn 2020; 39:1343-1353. [PMID: 32072876 DOI: 10.1080/07391102.2020.1730972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electroporation processes affect the permeability of cell membranes, which can be utilized for the delivery of plasma species in cancer therapy. By means of computational dynamics, many aspects of membrane electroporation have been unveiled at the atomic level for lipid membranes. Herein, a molecular dynamics simulation study was performed on native and oxidized membrane systems with transversal electric fields. The simulation result shows that the applied electric field mainly affects the membrane properties so that electroporation takes place and these pores are lined by hydrophilic headgroups of the lipid components. The calculated hydrophobic thickness, lateral diffusion and pair correlation revealed the role of 5α-CH in creation of water-pore in an oxidized membrane. Additionally, the permeability of reactive oxygen species was examined through these electroporated systems. The permeability study suggested that water pores in the membrane facilitate the penetration of these species across the membrane to the interior of the cell. These findings may have significance in experimental applications in vivo as once the reactive oxygen species reaches the interior of the cell, they may cause oxidative stress and induce apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Seoul, South Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
161
|
Hyder I, Eghbalsaied S, Kues WA. Systematic optimization of square-wave electroporation conditions for bovine primary fibroblasts. BMC Mol Cell Biol 2020; 21:9. [PMID: 32111153 PMCID: PMC7049184 DOI: 10.1186/s12860-020-00254-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene transfer by electroporation is an established method for the non-viral mediated transfection of mammalian cells. Primary cells pose a particular challenge for electroporation-mediated gene transfer, since they are more vulnerable than immortalized cells, and have a limited proliferative capacity. Improving the gene transfer by using square wave electroporation in difficult to transfect cells, like bovine fetal fibroblasts, is a prerequisite for transgenic and further downstream experiments. RESULTS Here, bovine fetal fibroblasts were used for square-wave electroporation experiments in which the following parameters were systematically tested: electroporation buffer, electroporation temperature, pulse voltage, pulse duration, pulse number, cuvette type and plasmid DNA amount. For the experiments a commercially available square-wave generator was applied. Post electroporation, the bovine fetal fibroblasts were observed after 24 h for viability and reporter expression. The best results were obtained with a single 10 millisecond square-wave pulse of 400 V using 10 μg supercoiled plasmid DNA and 0.3 × 106 cells in 100 μl of Opti-MEM medium in 4 mm cuvettes. Importantly, the electroporation at room temperature was considerably better than with pre-cooled conditions. CONCLUSIONS The optimized electroporation conditions will be relevant for gene transfer experiments in bovine fetal fibroblasts to obtain genetically engineered donor cells for somatic cell nuclear transfer and for reprogramming experiments in this species.
Collapse
Affiliation(s)
- Iqbal Hyder
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.,Department of Veterinary Physiology, NTR College of Veterinary Science, Gannavaram, India
| | - Shahin Eghbalsaied
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.,Transgenesis Center of Excellence, Isfahan (Khorasgan) branch, Islamic Azad University, Isfahan, Iran
| | - Wilfried A Kues
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.
| |
Collapse
|
162
|
A Comprehensive Review of Calcium Electroporation -A Novel Cancer Treatment Modality. Cancers (Basel) 2020; 12:cancers12020290. [PMID: 31991784 PMCID: PMC7073222 DOI: 10.3390/cancers12020290] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calcium electroporation is a potential novel anti-cancer treatment where high calcium concentrations are introduced into cells by electroporation, a method where short, high voltage pulses induce transient permeabilisation of the plasma membrane allowing passage of molecules into the cytosol. Calcium is a tightly regulated, ubiquitous second messenger involved in many cellular processes including cell death. Electroporation increases calcium uptake leading to acute and severe ATP depletion associated with cancer cell death. This comprehensive review describes published data about calcium electroporation applied in vitro, in vivo, and clinically from the first publication in 2012. Calcium electroporation has been shown to be a safe and efficient anti-cancer treatment in clinical studies with cutaneous metastases and recurrent head and neck cancer. Normal cells have been shown to be less affected by calcium electroporation than cancer cells and this difference might be partly induced by differences in membrane repair, expression of calcium transporters, and cellular structural changes. Interestingly, both clinical data and preclinical studies have indicated a systemic immune response induced by calcium electroporation. New cancer treatments are needed, and calcium electroporation represents an inexpensive and efficient treatment with few side effects, that could potentially be used worldwide and for different tumor types.
Collapse
|
163
|
Photoacoustic effect applied on model membranes and living cells: direct observation with multiphoton excitation microscopy and long-term viability analysis. Sci Rep 2020; 10:299. [PMID: 31941922 PMCID: PMC6962462 DOI: 10.1038/s41598-019-56799-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/01/2019] [Indexed: 01/09/2023] Open
Abstract
The photoacoustic effect is generated when a variable light interacts with a strongly light-absorbing material. In water, it may produce hot bubbles and shock waves that could affect the integrity of nearby cellular membranes, opening transient pores (photoporation). In this study, we have evaluated the effect of pulsed laser-irradiated carbon nanoparticles (cNP) on model membranes and on Chinese hamster ovary (CHO) cells. Fluorescence lifetime measurements of calcein-loaded liposomes support the notion that the photoacoustic effect causes transient openings in membranes, allowing diffusion fluxes driven by gradient concentrations. With CHO cells, we have shown that this effect can induce either intracellular delivery of calcein, or release of cellular compounds. The latter process has been recorded live with multiphoton excitation microscopy during pulsed infrared laser irradiation. Calcein loading and cell viability were assayed by flow cytometry, measuring necrotic cells as well as those in early apoptosis. To further assess long-term cell recovery after the rather harsh treatment, cells were reseeded and their behaviour recorded for 48 h. These extended studies on cell viability show that pulsed laser cNP photoporation may be considered an adequate intracellular delivery technique only if employed with soft irradiation conditions (below 50 mJ/cm2).
Collapse
|
164
|
Cell Size-Specific Transfection by Micropillar Array Electroporation. Methods Mol Biol 2020; 2050:3-12. [PMID: 31468474 DOI: 10.1007/978-1-4939-9740-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we reported a new micropillar array electroporation (MAE) platform to accomplish large-scale, size-specific DNA and RNA delivery to mammalian cells for nanomedicine. By introducing well-patterned micropillar array on the electrode surface, the number of micropillars each cell faces varies with the surface area of cell membrane or the size of cells. In this way, cell size-specific electroporation is conveniently done on a large population of cells in despite of their random locations between the two electrodes. The enhancement of this MAE system on the delivery of DNA and RNA probes without sacrifice of cell viability is demonstrated with an average increase of 2.5 to 3-fold on the transfection efficiency of DNA plasmids and additional knockdown of the targeted protein 10-55% more in siRNA delivery when compared to that using a commercial electroporation system. This MAE system works like many single cell electroporation are carried out in parallel, showing potential to bridge the gap between single cell electrophysiology study and in vitro electroporation to a large population of cells.
Collapse
|
165
|
Zhou Y, Lu Y, Cheng J, Xu Y. Highly uniform in-situ cell electrotransfection of adherent cultures using grouped interdigitated electrodes. Bioelectrochemistry 2019; 132:107435. [PMID: 31855831 DOI: 10.1016/j.bioelechem.2019.107435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 02/05/2023]
Abstract
Cell electrotransfection is an effective approach for transferring exogenous molecules into living cells by electric stimulation. The existing in-situ electrotransfection micro-devices for adherent cells exhibit the drawbacks of low transfection efficiency and low cell viability. An important reason for these drawbacks is the unequal exposure of cells to the electric field. It was found that cells growing directly below the energized electrodes experience a much lower electric field intensity when compared to the cells growing below the spacing area of the electrodes, resulting in low transfection with a strip-like pattern. Therefore, a new strategy for the in-situ electrotransfection of adherent cells growing in a standard 12-well plate is proposed in this study. By sequentially energizing electrodes arranged in a nested and non-contact manner, the cells were exposed to an overall equal intensity of the electric field, and thus a higher efficiency of transfection was achieved. The seven cell lines transfected using this method exhibited high transfection efficiency and high cell viability, demonstrating the potential for studying gene function.
Collapse
Affiliation(s)
- Yicen Zhou
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Lu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Cheng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; Center for Precision Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.
| | - Youchun Xu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.
| |
Collapse
|
166
|
Flow micropillar array electroporation to enhance size specific transfection to a large population of cells. Bioelectrochemistry 2019; 132:107417. [PMID: 31830670 DOI: 10.1016/j.bioelechem.2019.107417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/23/2022]
Abstract
Despite serving as a popular non-viral delivery approach, electroporation carries several drawbacks in its current configurations. We developed a Flow Micropillar-array Electroporation (FME) system to wisely regulate an important transmembrane-determining factor, namely cell size variations among individual cells, to achieve effective transfection. In FME, cells flow through a slit-type microfluidic channel on which carbon electrodes with well-patterned micropillar array texture are integrated as the top and bottom wall. Gravity helps bring cells to the micropillar array surface so that the permeable area on cells in different size populations is specified by their size regardless their random location fact. Without sacrificing cell viability, we demonstrate this FME concept by delivering DNA plasmids to several mammalian cell lines with obvious transfection enhancement when compared to a commercial system (K562: 3.0 folds; A549: 3.3 folds; HeLa: 1.8 folds, COS7: 1.7 folds; 293T: 2.9 folds; mES: 2.5 folds). Moreover, carbon-based electrodes are less expensive, more durable, and convenient for integration with a microfluidic setup which enables rapid and massive transfection capability that many therapeutic application needs. The success of FME may benefit many emerging biological studies and clinical practice that requires effective transfection to a large population of cells in limited processing time.
Collapse
|
167
|
Potočnik T, Miklavčič D, Maček Lebar A. Effect of electroporation and recovery medium pH on cell membrane permeabilization, cell survival and gene transfer efficiency in vitro. Bioelectrochemistry 2019; 130:107342. [DOI: 10.1016/j.bioelechem.2019.107342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
|
168
|
Wen R, Zhang AH, Liu D, Feng J, Yang J, Xia D, Wang J, Li C, Zhang T, Hu N, Hang T, He G, Xie X. Intracellular Delivery and Sensing System Based on Electroplated Conductive Nanostraw Arrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43936-43948. [PMID: 31696695 DOI: 10.1021/acsami.9b15619] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One-dimensional nanoneedle-like arrays have emerged as an attractive tool for penetrating the cell membrane to achieve intracellular applications including drug delivery, electrical recording, and biochemical detection. Hollow nanoneedles, also called nanostraws (NSs), combined with nanoelectroporation have been demonstrated as a powerful platform for intracellular drug delivery and extraction of intracellular contents. However, the fabrication technique of nanostraws still requires complicated and expensive atomic layer deposition and etching processes and fails to produce conductive nanostraws. Herein, we developed a commonly accessible and versatile electrodeposition approach to controllably fabricate conductive nanostraw arrays based on various types of metal or conductive polymer materials. Representatively, Pt nanostraws (Pt NSs) with 400 nm diameter were further integrated with a low-voltage nanoelectroporation system to achieve cell detection, intracellular drug delivery, and sensing of intracellular enzymes. Both theoretical simulations and experimental results revealed that the conductive nanostraws in direct contact with cells could induce high-efficiency cell electroporation at relatively low voltage (∼5 V). Efficient delivery of reagents into live cells with spatial control and repeated extraction of intracellular enzymes (e.g., caspase-3) for temporal monitoring from the same set of cells were demonstrated. This work not only pioneers a new avenue for universal production of conductive nanostraws on a large scale but also presents great potential for developing nanodevices to achieve a variety of biomedical applications including cell re-engineering, cell-based therapy, and signaling pathway monitoring.
Collapse
Affiliation(s)
- Rui Wen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Ai-Hua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Di Liu
- Pritzker School of Medicine , University of Chicago , Chicago , Illinois 60637 , United States
| | - Jianming Feng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou 510060 , China
| | - Dehua Xia
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Ji Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Chunwei Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Tao Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Tian Hang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University , Sun Yat-Sen University , Guangzhou 510006 , China
| |
Collapse
|
169
|
Ishino T, Kurita H, Kirisawa R, Shimamoto Y, Numano R, Kitamura H. Introduction of a plasmid and a protein into bovine and swine cells by water-in-oil droplet electroporation. J Vet Med Sci 2019; 82:14-22. [PMID: 31776296 PMCID: PMC6983666 DOI: 10.1292/jvms.19-0475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Instrument cost is a major problem for the transduction of DNA fragments and proteins into cells. Water-in-oil droplet electroporation (droplet-EP) was recently invented as a low-cost and
effective method for the transfection of plasmids into cultured human cells. We here applied droplet-EP to livestock animal cells. Although it is difficult to transfect plasmids into bovine
fibroblasts using conventional lipofection methods, droplet-EP enabled us to introduce an enhanced green fluorescent protein (EGFP)-expressing plasmid into bovine earlobe fibroblasts. The
optimal transfection condition was 3.0 kV, which allowed 19.1% of the cells to be transfected. For swine earlobe fibroblasts, the maximum transfection efficacy was 14.0% at 4.0 kV. After
transfection with droplet-EP, 69.1% of bovine and 76.5% of swine cells were viable. Furthermore, droplet-EP successfully transduced Escherichia coli recombinant EGFP into
frozen-thawed bovine sperm at 1.5 kV. Flow cytometry analysis revealed that 71.5% of spermatozoa exhibited green fluorescence after transfection. Overall, droplet-EP is suitable for the
transfection of plasmids and proteins into cultured livestock animal cells.
Collapse
Affiliation(s)
- Takeshi Ishino
- Laboratory of Veterinary Physiology, Departments of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Rikio Kirisawa
- Laboratory of Veterinary Virology, Departments of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Yoshinori Shimamoto
- Laboratory of Animal Therapeutics, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Rika Numano
- Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Departments of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
170
|
Miyazaki Y, Okazaki S, Shinoda W. pSPICA: A Coarse-Grained Force Field for Lipid Membranes Based on a Polar Water Model. J Chem Theory Comput 2019; 16:782-793. [DOI: 10.1021/acs.jctc.9b00946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yusuke Miyazaki
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Susumu Okazaki
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
171
|
Costantini I, Cicchi R, Silvestri L, Vanzi F, Pavone FS. In-vivo and ex-vivo optical clearing methods for biological tissues: review. BIOMEDICAL OPTICS EXPRESS 2019; 10:5251-5267. [PMID: 31646045 PMCID: PMC6788593 DOI: 10.1364/boe.10.005251] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 05/05/2023]
Abstract
Every optical imaging technique is limited in its penetration depth by scattering occurring in biological tissues. Possible solutions to overcome this problem consist of limiting the detrimental effects of scattering by reducing optical inhomogeneities within the sample. This can be achieved either by using physical methods (such as refractive index matching solutions) or by chemical methods (such as the removal of scatterers), based on tissue transformation protocols. This review provides an overview of the current state-of-the-art methods used for both ex-vivo and in-vivo optical clearing of biological tissues. We start with a brief history of the development of the most widespread clearing methods across the new millennium, then we describe the working principles of both physical and chemical methods. Clearing methods are then reviewed, pointing the attention of the reader on both physical and chemical methods, classified based on the tissue size and type for each specific application. A small section is reserved for methods that have already found in-vivo applications at the research level. Finally, a detailed discussion highlighting both the most relevant results achieved and the new ongoing developments in this field is reported in the last part, together with future perspectives for the clearing methodology.
Collapse
Affiliation(s)
- Irene Costantini
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Ludovico Silvestri
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
| | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
172
|
|
173
|
Hassan SA. Strong dependence of the nano-bio interactions on core morphology and layer composition of ultrasmall nanostructures. J Chem Phys 2019; 151:105102. [PMID: 31521088 PMCID: PMC6910586 DOI: 10.1063/1.5115192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023] Open
Abstract
The interactions between nanoparticles (NPs) and proteins, cells, and tissues, broadly known as nano-bio interactions, depend on the NP size and shape and on the characteristics of the NP coating layer, such as density, thickness, and chemical makeup. The dependence of nano-membrane interactions on the design parameters of ultrasmall nanostructures is studied by computer simulations. Considered here are spheres, plates, rings, rods, tubes, and helices made up of either bare magnetite or passivated gold, interacting with charged or zwitterionic membranes. The analysis reveals a strong dependence on shape, size, and layer composition of various quantities that characterize the nano-bio behavior, including binding modes and affinities. This sensitivity can be exploited to design nanostructures that bind preferentially to membranes or that stabilize or disrupt membrane structural integrity. The method used here is general and not limited to the ultrasmall regime, so it can be adopted to study other nano-bio interactions systematically. The implications for the distribution of NPs in cells and tissues (biodistribution) and for passive and active transmembrane transport are discussed, both important processes in biomedicine.
Collapse
Affiliation(s)
- Sergio A. Hassan
- Center for Molecular Modeling, OIR/CIT, National Institutes of Health, U.S. DHHS, Bethesda, Maryland 20892-0001, USA
| |
Collapse
|
174
|
Fiorentzis M, Viestenz A, Siebolts U, Seitz B, Coupland SE, Heinzelmann J. The Potential Use of Electrochemotherapy in the Treatment of Uveal Melanoma: In Vitro Results in 3D Tumor Cultures and In Vivo Results in a Chick Embryo Model. Cancers (Basel) 2019; 11:cancers11091344. [PMID: 31514412 PMCID: PMC6769976 DOI: 10.3390/cancers11091344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumor that arises from neoplastic melanocytes in the choroid, iris, and ciliary body. Electrochemotherapy (ECT) has been successfully established for the treatment of skin and soft tissue metastatic lesions, deep-seated tumors of the liver, bone metastases, and unresectable pancreas lesions. The aim of this study was to evaluate the effect of ECT in vitro in 3D spheroid culture systems in primary and metastatic UM cell lines. We also investigated the chick embryo chorioallantoic membrane (CAM) as an in vivo model system for the growth and treatment of UM tumors using ECT. The cytotoxic effect of ECT in 3D spheroids was analyzed seven days following treatment by assessment of the size and MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction] assay. The cytotoxicity of ECT after intratumoral or intraarterial administration was evaluated histologically. In vitro and in vivo ECT caused a significant reduction in tumor size and viability compared to electroporation or chemotherapy in both sections of our study. The current results underline the effectiveness of ECT in the treatment of UM and prepare the way for further investigation of its potential application in UM.
Collapse
Affiliation(s)
- Miltiadis Fiorentzis
- Department of Ophthalmology, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Arne Viestenz
- Department of Ophthalmology, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Udo Siebolts
- Department of Pathology, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany.
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Kirrberger Str. 100, 66421 Homburg/Saar, Germany.
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, West Derby Street, Liverpool L7 8TX, UK.
- Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Liverpool L69 3GA, UK.
| | - Joana Heinzelmann
- Department of Ophthalmology, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
175
|
Hsi P, Christianson RJ, Dubay RA, Lissandrello CA, Fiering J, Balestrini JL, Tandon V. Acoustophoretic rapid media exchange and continuous-flow electrotransfection of primary human T cells for applications in automated cellular therapy manufacturing. LAB ON A CHIP 2019; 19:2978-2992. [PMID: 31410419 DOI: 10.1039/c9lc00458k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Autologous cellular therapies based on modifying T cells to express chimeric antigen receptor genes have been highly successful in treating hematological cancers. Deployment of these therapies is limited by the complexity and costs associated with their manufacturing. Transitioning these processes from virus-based methods for gene delivery to a non-viral method, such as electroporation, has the potential to greatly reduce cost and manufacturing time while increasing safety and efficacy. Major challenges with electroporation are the negative impacts on cell health associated with exposure to high-magnitude electric fields, and that most commercial bulk electroporators are low-precision instruments designed for manually-operated, lower-throughput batch processing of cells. Negative effects on cell health can be mitigated by use of specialized electroporation medias, but this adds processing steps, and long-term exposure to these medias can reduce transfection efficiency and post-transfection viability. To enable automated, clinical-scale production of cellular therapies using electrotransfection in specialized medias, we developed a high-precision microfluidic platform that automatically and continuously transfers cells from culture media into electroporation media using acoustophoresis, and then immediately applies electric fields from integrated electrodes. This limits cell residence time in electroporation media to seconds, and enables high transfection efficiency with minimum impact on cell viability. We tested our system by transferring primary human T cells from a standard cell media to electroporation media, and then transfecting them with mRNA encoding an mCherry fluorescent protein. We achieved a media exchange efficiency of 86% and transfection efficiency of up to 60%, with less than a 5% reduction in viability.
Collapse
Affiliation(s)
- Peter Hsi
- Draper, 555 Technology Square, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
176
|
Ionomycin-Induced Changes in Membrane Potential Alter Electroporation Outcomes in HL-60 Cells. Biophys J 2019; 114:2875-2886. [PMID: 29925024 DOI: 10.1016/j.bpj.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown greater fluorophore uptake during electroporation on the anode-facing side of the cell than on the cathode-facing side. Based on these observations, we hypothesized that hyperpolarizing a cell before electroporation would decrease the requisite pulsed electric field intensity for electroporation outcomes, thereby yielding a higher probability of reversible electroporation at lower electric field strengths and a higher probability of irreversible electroporation (IRE) at higher electric field strengths. In this study, we tested this hypothesis by hyperpolarizing HL-60 cells using ionomycin before electroporation. These cells were then electroporated in a solution containing propidium iodide, a membrane integrity indicator. After 20 min, we added trypan blue to identify IRE cells. Our results showed that hyperpolarizing cells before electroporation alters the pulsed electric field intensity thresholds for reversible electroporation and IRE, allowing for greater control and selectivity of electroporation outcomes.
Collapse
|
177
|
Low-Voltage Flow-Through Electroporation Membrane and Method. Methods Mol Biol 2019. [PMID: 31468478 DOI: 10.1007/978-1-4939-9740-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Electroporation uses high electric field gradients to create pores within the membrane of living cells in order to deliver a substance, for example a gene, into the cytoplasm. To achieve such gradients, current electroporation devices deliver voltage pulses in the kV range to the cell medium. We describe here a new device based on gold-microtube membranes that can accomplish electroporation with voltage pulses that are orders of magnitude smaller, 4 V. The percentages of electroporated bacteria were found to be more than an order of magnitude higher than obtained with a commercial electroporator.
Collapse
|
178
|
Electrochemotherapy Causes Caspase-Independent Necrotic-Like Death in Pancreatic Cancer Cells. Cancers (Basel) 2019; 11:cancers11081177. [PMID: 31416294 PMCID: PMC6721532 DOI: 10.3390/cancers11081177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer represents a major challenge in oncology. Poor permeability of the pancreas and resistance to currently available therapies are impediments to improved patient survival. By transiently increasing cell membrane porosity and increasing drug uptake, Electrochemotherapy (ECT) has the potential to overcome these issues. In this study, we have evaluated the response of human and murine pancreatic cancer cells, in vitro, to electroporation in combination with Bleomycin, Cisplatin, or Oxaliplatin (ECT). The cytotoxic actions of all three drugs are potentiated when combined with electroporation in these cells. The biochemical and morphological changes post ECT are associated with immunogenic cell death that occurs with necroptosis rather than apoptosis. Moreover, ECT-induced cell death is rescued by Nec-1 suggesting that necroptosis may play a role in cell death mediated by cancer therapies.
Collapse
|
179
|
Pulsed electric field inactivation of microorganisms: from fundamental biophysics to synergistic treatments. Appl Microbiol Biotechnol 2019; 103:7917-7929. [DOI: 10.1007/s00253-019-10067-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
180
|
Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. Biomaterials 2019; 209:54-66. [DOI: 10.1016/j.biomaterials.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/09/2023]
|
181
|
Abstract
Nanostructured devices are able to foster the technology for cell membrane poration. With the size smaller than a cell, nanostructures allow efficient poration on the cell membrane. Emerging nanostructures with various physical transduction have been demonstrated to accommodate effective intracellular delivery. Aside from improving poration and intracellular delivery performance, nanostructured devices also allow for the discovery of novel physiochemical phenomena and the biological response of the cell. This article provides a brief introduction to the principles of nanostructured devices for cell poration and outlines the intracellular delivery capability of the technology. In the future, we envision more exploration on new nanostructure designs and creative applications in biomedical fields.
Collapse
Affiliation(s)
- Apresio K Fajrial
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309 United States of America
| | | |
Collapse
|
182
|
Bain J, Legge CJ, Beattie DL, Sahota A, Dirks C, Lovett JR, Staniland SS. A biomimetic magnetosome: formation of iron oxide within carboxylic acid terminated polymersomes. NANOSCALE 2019; 11:11617-11625. [PMID: 31173027 DOI: 10.1039/c9nr00498j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired macromolecules can aid nucleation and crystallisation of minerals by mirroring processes observed in nature. Specifically, the iron oxide magnetite (Fe3O4) is produced in a dedicated liposome (called a magnetosome) within magnetic bacteria. This process is controlled by a suite of proteins embedded within the liposome membrane. In this study we look to synthetically mimic both the liposome and nucleation proteins embedded within it using preferential orientation polymer design. Amphiphilic block co-polymers self-assemble into vesicles (polymersomes) and have been used to successfully mimic liposomes. Carboxylic acid residue-rich motifs are common place in biomineralisation nucleating proteins and several magnetosome membrane specific (Mms) proteins (namely Mms6) have a specific carboxylic acid motifs that are found to bind both ferrous and ferric iron ions and nucleate the formation of magnetite. Here we use a combination of 2 diblock co-polymers: Both have the hydrophobic 2-hydroxypropyl methacrylate (PHPMA) block with either a poly(ethylene glycol) (PEG) block or a carboxylic acid terminated poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) block. These copolymers ((PEG113-PHPMA400) and (PMPC28-PHPMA400) respectively) self-assemble in situ to form polymersomes, with PEG113-PHPMA400 displaying favourably on the outer surface and PMPC28-PHPMA400 on the inner lumen, exposing numerous acidic iron binding carboxylates on the inner membrane. This is a polymersome mimic of a magnetosome (PMM28) containing interior nucleation sites. The resulting PMM28 were found to be 246 ± 137 nm in size. When the PMM28 were subjected to electroporation (5 pulses at 750 V) in an iron solution, iron ions were transported into the PMM28 polymersome core where magnetic iron-oxide was crystallised to fill the core; mimicking a magnetosome. Furthermore it has been shown that PMM28 magnetopolymersomes (PMM28Fe) exhibit a 6 °C temperature increase during in vitro magnetic hyperthermia yielding an intrinsic loss power (ILP) of 3.7 nHm2 kg-1. Such values are comparable to commercially available nanoparticles, but, offer the added potential for further tuning and functionalisation with respect to drug delivery.
Collapse
Affiliation(s)
- Jennifer Bain
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | | | | | | | | | | | | |
Collapse
|
183
|
Pudasaini S, Perera ATK, Das D, Ng SH, Yang C. Continuous flow microfluidic cell inactivation with the use of insulating micropillars for multiple electroporation zones. Electrophoresis 2019; 40:2522-2529. [DOI: 10.1002/elps.201900150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sanam Pudasaini
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| | - A T K Perera
- Interdisciplinary Graduate SchoolNanyang Technological University Singapore
| | - Dhiman Das
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore
| | - Sum Huan Ng
- Singapore Institute of Manufacturing Technology (SIMTech) Singapore
| | - Chun Yang
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| |
Collapse
|
184
|
Kirsch SA, Böckmann RA. Coupling of Membrane Nanodomain Formation and Enhanced Electroporation near Phase Transition. Biophys J 2019; 116:2131-2148. [PMID: 31103234 PMCID: PMC6554532 DOI: 10.1016/j.bpj.2019.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022] Open
Abstract
Biological cells are enveloped by a heterogeneous lipid bilayer that prevents the uncontrolled exchange of substances between the cell interior and its environment. In particular, membranes act as a continuous barrier for salt and macromolecules to ensure proper physiological functions within the cell. However, it has been shown that membrane permeability strongly depends on temperature and, for phospholipid bilayers, displays a maximum at the transition between the gel and fluid phase. Here, extensive molecular dynamics simulations of dipalmitoylphosphatidylcholine bilayers were employed to characterize the membrane structure and dynamics close to phase transition, as well as its stability with respect to an external electric field. Atomistic simulations revealed the dynamic appearance and disappearance of spatially related nanometer-sized thick ordered and thin interdigitating domains in a fluid-like bilayer close to the phase transition temperature (Tm). These structures likely represent metastable precursors of the ripple phase that vanished at increased temperatures. Similarly, a two-phase bilayer with coexisting gel and fluid domains featured a thickness minimum at the interface because of splaying and interdigitating lipids. For all systems, application of an external electric field revealed a reduced bilayer stability with respect to pore formation for temperatures close to Tm. Pore formation occurred exclusively in thin interdigitating membrane nanodomains. These findings provide a link between the increased membrane permeability and the structural heterogeneity close to phase transition.
Collapse
Affiliation(s)
- Sonja A Kirsch
- Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
185
|
Fiorentzis M, Katopodis P, Kalirai H, Seitz B, Viestenz A, Coupland SE. Conjunctival melanoma and electrochemotherapy: preliminary results using 2D and 3D cell culture models in vitro. Acta Ophthalmol 2019; 97:e632-e640. [PMID: 30548215 PMCID: PMC6590119 DOI: 10.1111/aos.13993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Purpose To investigate the cytotoxic effect of bleomycin, mitomycin C (MMC) and Fluorouracil (5‐FU) in combination with electroporation (EP) on human conjunctival melanoma (CM) and normal conjunctival cell lines using 2D and 3D cell culture systems in vitro. Methods Two CM (CRMM1, CRMM2) and one normal conjunctival epithelial cell line (HCjE‐Gi) were treated with various EP conditions and increasing concentrations of 5‐FU, MMC and bleomycin. Cell survival was assessed by MTT viability assay. All cell lines were seeded to create spheroids and were treated with bleomycin on day 3 and day 8 combined with EP. Spheroids were collected, fixed in buffered formalin and subsequently paraffin embedded for histological assessment of the effects of the treatment on cell viability. Results CM cell lines were resistant to electroporation alone and showed a reduction in cell number only when treated with 1000 Volts/cm and 8 pulses. HCjE‐Gi cells showed higher sensitivity to electric pulses over 750 Volts/cm. MMC and 5‐FU demonstrated a higher cytotoxicity for the HCjE‐Gi cell line. The CM cell lines were resistant to MMC and 5‐FU. Bleomycin (1 μg/ml) alone had no significant effect on the HCjE‐Gi even when combined with EP conditions ≥750 Volts/cm. In contrast, it significantly (p ‐, paired t‐test) reduced cell viability in the CM cell lines. Spheroids treated with bleomycin and EP showed a reduction in tumour mass and proliferation rates after treatment. Conclusion Our in vitro study using 2D and 3D models indicates that the application of EP may effectively enhance chemotherapy with bleomycin in CM. This may offer new viable perspectives for CM treatment.
Collapse
Affiliation(s)
- Miltiadis Fiorentzis
- Department of Ophthalmology University Hospital Halle (Saale) Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
- Liverpool Ocular Oncology Research Group Department of Molecular and Clinical Cancer Medicine Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Periklis Katopodis
- Liverpool Ocular Oncology Research Group Department of Molecular and Clinical Cancer Medicine Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group Department of Molecular and Clinical Cancer Medicine Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Berthold Seitz
- Department of Ophthalmology Saarland University Medical Center Homburg/Saar Germany
| | - Arne Viestenz
- Department of Ophthalmology University Hospital Halle (Saale) Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group Department of Molecular and Clinical Cancer Medicine Institute of Translational Medicine University of Liverpool Liverpool UK
| |
Collapse
|
186
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
187
|
Campana LG, Miklavčič D, Bertino G, Marconato R, Valpione S, Imarisio I, Dieci MV, Granziera E, Cemazar M, Alaibac M, Sersa G. Electrochemotherapy of superficial tumors - Current status:: Basic principles, operating procedures, shared indications, and emerging applications. Semin Oncol 2019; 46:173-191. [PMID: 31122761 DOI: 10.1053/j.seminoncol.2019.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
Treatment of superficial tumors with electrochemotherapy (ECT) has shown a steep rise over the past decade and indications range from skin cancers to locally advanced or metastatic neoplasms. Based on reversible electroporation, which is a physical method to achieve transient tumor cell membrane permeabilization by means of short electric pulses, ECT increases cellular uptake of bleomycin and cisplatin and their cytotoxicity by 8,000- and 80-fold, respectively. Standard operating procedures were established in 2006 and updated in 2018. Ease of administration, patient tolerability, efficacy across histotypes, and repeatability are peculiar advantages, which make standard ECT (ie, ECT using fixed-geometry electrodes) a reliable option for controlling superficial tumor growth locally and preventing their morbidity. Consolidated indications include superficial metastatic melanoma, breast cancer, head and neck skin tumors, nonmelanoma skin cancers, and Kaposi sarcoma. In well-selected patients with oropharyngeal cancers, ECT ensures appreciable symptom control. Emerging applications include skin metastases from visceral or hematological malignancies, vulvar cancer, and some noncancerous skin lesions (keloids and capillary vascular malformations). Repeatability and integration with other oncologic therapies allow for consolidation of response and sustained tumor control. In this review, we present the basic principles of ECT, recently updated operating procedures, anesthesiological management, and provide a synthesis of the efficacy of standard ECT across histotypes.
Collapse
Affiliation(s)
- Luca G Campana
- Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Italy; Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Giulia Bertino
- Department of Otolaryngology Head Neck Surgery, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | | | | | - Ilaria Imarisio
- Medical Oncology Unit, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Maria Vittoria Dieci
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Medical Oncology-2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elisa Granziera
- Anesthesiology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mauro Alaibac
- Dermatology, Department of Medicine, University of Padua, Padua, Italy
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
188
|
Influence of the current density in moderate pulsed electric fields on P. putida F1 eradication. Bioelectrochemistry 2019; 126:172-179. [DOI: 10.1016/j.bioelechem.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
|
189
|
Hoejholt KL, Mužić T, Jensen SD, Dalgaard LT, Bilgin M, Nylandsted J, Heimburg T, Frandsen SK, Gehl J. Calcium electroporation and electrochemotherapy for cancer treatment: Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy. Sci Rep 2019; 9:4758. [PMID: 30894594 PMCID: PMC6427041 DOI: 10.1038/s41598-019-41188-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Calcium electroporation is a novel anti-cancer treatment investigated in clinical trials. We explored cell sensitivity to calcium electroporation and electroporation with bleomycin, using viability assays at different time and temperature points, as well as heat calorimetry, lipidomics, and flow cytometry. Three cell lines: HT29 (colon cancer), MDA-MB231 (breast cancer), and HDF-n (normal fibroblasts) were investigated for; (a) cell survival dependent on time of addition of drug relative to electroporation (1.2 kV/cm, 8 pulses, 99 µs, 1 Hz), at different temperatures (37 °C, 27 °C, 17 °C); (b) heat capacity profiles obtained by differential scanning calorimetry without added calcium; (c) lipid composition by mass spectrometry; (d) phosphatidylserine in the plasma membrane outer leaflet using flow cytometry. Temperature as well as time of drug administration affected treatment efficacy in HT29 and HDF-n cells, but not MDA-MB231 cells. Interestingly the HT29 cell line displayed a higher phase transition temperature (approximately 20 °C) versus 14 °C (HDF-n) and 15 °C (MDA-MB231). Furthermore the HT29 cell membranes had a higher ratio of ethers to esters, and a higher expression of phosphatidylserine in the outer leaflet. In conclusion, lipid composition and heat capacity of the membrane might influence permeabilisation of cells and thereby the effect of calcium electroporation and electrochemotherapy.
Collapse
Affiliation(s)
- K L Hoejholt
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - T Mužić
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - S D Jensen
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - L T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - M Bilgin
- Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - J Nylandsted
- Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - T Heimburg
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - S K Frandsen
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.
- Center for Experimental Drug and Gene Electrotransfer, Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark.
| | - J Gehl
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.
- Center for Experimental Drug and Gene Electrotransfer, Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
190
|
Liu Z, Nie J, Miao B, Li J, Cui Y, Wang S, Zhang X, Zhao G, Deng Y, Wu Y, Li Z, Li L, Wang ZL. Self-Powered Intracellular Drug Delivery by a Biomechanical Energy-Driven Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807795. [PMID: 30721538 DOI: 10.1002/adma.201807795] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Nondestructive, high-efficiency, and on-demand intracellular drug/biomacromolecule delivery for therapeutic purposes remains a great challenge. Herein, a biomechanical-energy-powered triboelectric nanogenerator (TENG)-driven electroporation system is developed for intracellular drug delivery with high efficiency and minimal cell damage in vitro and in vivo. In the integrated system, a self-powered TENG as a stable voltage pulse source triggers the increase of plasma membrane potential and membrane permeability. Cooperatively, the silicon nanoneedle-array electrode minimizes cellular damage during electroporation via enhancing the localized electrical field at the nanoneedle-cell interface and also decreases plasma membrane fluidity for the enhancement of molecular influx. The integrated system achieves efficient delivery of exogenous materials (small molecules, macromolecules, and siRNA) into different types of cells, including hard-to-transfect primary cells, with delivery efficiency up to 90% and cell viability over 94%. Through simple finger friction or hand slapping of the wearable TENGs, it successfully realizes a transdermal biomolecule delivery with an over threefold depth enhancement in mice. This integrated and self-powered system for active electroporation drug delivery shows great prospect for self-tuning drug delivery and wearable medicine.
Collapse
Affiliation(s)
- Zhirong Liu
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinhui Nie
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Miao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215125, P. R. China
| | - Jiadong Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215125, P. R. China
- State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Yuanbo Cui
- Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Shu Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xiaodi Zhang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gengrui Zhao
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yongbo Deng
- State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Yihui Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Zhou Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Linlin Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Zhong Lin Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
191
|
Schmitt MA, Friedrich O, Gilbert DF. Portoporator ©: A portable low-cost electroporation device for gene transfer to cultured cells in biotechnology, biomedical research and education. Biosens Bioelectron 2019; 131:95-103. [PMID: 30826656 DOI: 10.1016/j.bios.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 01/15/2023]
Abstract
Electroporation has been a widely established method for delivering DNA and other material into cells in vitro. Conventional electroporation infrastructure is typically immobile, non-customizable, non-transparent regarding the characteristics of output pulses, and expensive. Here, we describe a portable electroporator for DNA delivery into bacterial cells that can quickly be reconstructed using 3D desktop printing and off-the-shelf components. The device is light weight (700 g), small (70 × 180 × 210 mm) and extremely low-cost (<EUR 130). We provide the electrical circuitry and a detailed parts list for rebuilding the device. We characterize the properties of generated pulses and apply the system for gene delivery into bacterial Dh5α cells. We analyze the transformation efficiency based on the optical density of cell suspensions at 595 nm and on quantitative analysis of images obtained from bacterial cell-grown agar plates using colony forming units as well as confluence as indicators. We demonstrate time-dependency of the transformation efficiency using single pulses of 500 V between 1 and 1000 ms duration and we show that commercially available electroporation cuvettes of 1 mm gap size reveal higher transformation rates compared to cuvettes with 2 mm gap. We benchmark the transformation efficiency obtained using our platform with data from a heat shock-based transformation protocol and with data from a commercially available electroporator and show that our system reveals comparable results as the other techniques in the applied configurations. While this work focuses on genetic manipulation of bacterial cells, the device may also be applicable for delivery of genetic material small molecule or nanomaterials into other cell types, including mammalian cells.
Collapse
Affiliation(s)
- Max A Schmitt
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
192
|
Plaschke CC, Gehl J, Johannesen HH, Fischer BM, Kjaer A, Lomholt AF, Wessel I. Calcium electroporation for recurrent head and neck cancer: A clinical phase I study. Laryngoscope Investig Otolaryngol 2019; 4:49-56. [PMID: 30828619 PMCID: PMC6383303 DOI: 10.1002/lio2.233] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Background Calcium electroporation is a novel cancer treatment, which combines temporary cell permeability from electroporation with a high influx of calcium intracellularly resulting in cancer cell necrosis. Methods A phase I trial performing calcium electroporation on 6 patients suffering from recurrent head and neck cancer. In general anesthesia, intratumoral calcium injections were followed by electroporation. Safety was monitored by adverse events registration, serum Ca2+, ECG, and pain scores. Tumor response was measured on PET/MRI scans. Results Procedures were performed without complications. No serious adverse events, signs of hypercalcemia, or cardiac arrhythmias were observed. Two months post‐treatment tumor responses on MRI: three partial responses, one stable disease, and two progression. Responses on PET: one partial metabolic disease, four with stable metabolic disease, and one not evaluable. One patient was without clinical evidence of disease after 12 months of observation. Conclusion Calcium electroporation is feasible and safe in head and neck tumors. Clinical responses were observed in three of six patients, warranting further studies. Level of Evidence Level 4
Collapse
Affiliation(s)
- Christina Caroline Plaschke
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Julie Gehl
- Department of Clinical Medicine Copenhagen University Hospital Rigshospitalet Copenhagen Denmark.,Department of Clinical Oncology and Palliative Care, Center for Experimental Drug and Gene Electrotransfer (CEDGE) Zealand University Hospital Roskilde Denmark.,Department of Oncology Herlev and Gentofte Hospital, University of Copenhagen Herlev Denmark
| | - Helle Hjorth Johannesen
- Department of Clinical Physiology, Nuclear Medicine & PET, and Cluster for Molecular Imaging Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Barbara Malene Fischer
- Department of Clinical Medicine Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Andreas Kjaer
- Department of Clinical Medicine Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Anne Fog Lomholt
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Irene Wessel
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| |
Collapse
|
193
|
Góral M, Pankiewicz U, Sujka M, Kowalski R. Bioaccumulation of zinc ions in Lactobacillus rhamnosus B 442 cells under treatment of the culture with pulsed electric field. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-018-3219-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
194
|
Abstract
Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a space–time (x,y,t) multiphysics model based on quasi-static Maxwell’s equations and nonlinear Smoluchowski’s equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.
Collapse
|
195
|
Irreversible Electroporation in Liver Cancers and Whole Organ Engineering. J Clin Med 2018; 8:jcm8010022. [PMID: 30585195 PMCID: PMC6352021 DOI: 10.3390/jcm8010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Liver cancers contribute significantly to cancer-related mortality worldwide and liver transplants remain the cornerstone of curative treatment for select, early-stage patients. Unfortunately, because of a mismatch between demand and supply of donor organs, liver cancer patients must often wait extended periods of time prior to transplant. A variety of local therapies including surgical resection, transarterial chemoembolization, and thermal ablative methods exist in order to bridge to transplant. In recent years, a number of studies have examined the role of irreversible electroporation (IRE) as a non-thermal local ablative method for liver tumors, particularly for those adjacent to critical structures such as the vasculature, gall bladder, or bile duct. In addition to proving its utility as a local treatment modality, IRE has also demonstrated promise as a technique for donor organ decellularization in the context of whole-organ engineering. Through complete non-thermal removal of living cells, IRE allows for the creation of an acellular extra cellular matrix (ECM) scaffold that could theoretically be recellularized and implanted into a living host. Here, we comprehensively review studies investigating IRE, its role in liver cancer treatment, and its utility in whole organ engineering.
Collapse
|
196
|
Pintar M, Langus J, Edhemović I, Brecelj E, Kranjc M, Sersa G, Šuštar T, Rodič T, Miklavčič D, Kotnik T, Kos B. Time-Dependent Finite Element Analysis of In Vivo Electrochemotherapy Treatment. Technol Cancer Res Treat 2018; 17:1533033818790510. [PMID: 30089424 PMCID: PMC6083743 DOI: 10.1177/1533033818790510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrochemotherapy and irreversible electroporation are gaining importance in clinical practice for the treatment of solid tumors. For successful treatment, it is extremely important that the coverage and exposure time of the treated tumor to the electric field are within the specified range. In order to ensure successful coverage of the entire target volume with sufficiently strong electric fields, numerical treatment planning has been proposed and its use has also been demonstrated in practice. Most of numerical models in treatment planning are based on charge conservation equation and are not able to provide time course of electric current, electrical conductivity, or electric field distribution changes established in the tissue during pulse delivery. Recently, a model based on inverse analysis of experimental data that delivers time course of tissue electroporation has been introduced. The aim of this study was to apply the previously reported time-dependent numerical model to a complex in vivo example of electroporation with different tissue types and with a long-term follow-up. The model, consisting of a tumor placed in the liver with 2 needle electrodes inserted in the center of the tumor and 4 around the tumor, was validated by comparison of measured and calculated time course of applied electric current. Results of simulations clearly indicated that proposed numerical model can successfully capture transient effects, such as evolution of electric current during each pulse, and effects of pulse frequency due to electroporation effects in the tissue. Additionally, the model can provide evolution of electric field amplitude and electrical conductivity in the tumor with consecutive pulse sequences.
Collapse
Affiliation(s)
| | | | | | - Erik Brecelj
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matej Kranjc
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Tomaž Rodič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Kotnik
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Kos
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
197
|
Spatio-temporal dynamics of calcium electrotransfer during cell membrane permeabilization. Drug Deliv Transl Res 2018; 8:1152-1161. [PMID: 29752690 DOI: 10.1007/s13346-018-0533-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pulsed electric fields (PEFs) are applied as physical stimuli for DNA/drug delivery, cancer therapy, gene transformation, and microorganism eradication. Meanwhile, calcium electrotransfer offers an interesting approach to treat cancer, as it induces cell death easier in malignant cells than in normal cells. Here, we study the spatial and temporal cellular responses to 10 μs duration PEFs; by observing real-time, the uptake of extracellular calcium through the cell membrane. The experimental setup consisted of an inverted fluorescence microscope equipped with a color high-speed framing camera and a specifically designed miniaturized pulsed power system. The setup allowed us to accurately observe the permeabilization of HeLa S3 cells during application of various levels of PEFs ranging from 0.27 to 1.80 kV/cm. The low electric field experiments confirmed the threshold value of transmembrane potential (TMP). The high electric field observations enabled us to retrieve the entire spatial variation of the permeabilization angle (θ). The temporal observations proved that after a minimal permeabilization of the cell membrane, the ionic diffusion was the prevailing mechanism of the delivery to the cell cytoplasm. The observations suggest 0.45 kV/cm and 100 pulses at 1 kHz as an optimal condition to achieve full calcium concentration in the cell cytoplasm. The results offer precise levels of electric fields to control release of the extracellular calcium to the cell cytoplasm for inducing minimally invasive cancer calcium electroporation, an interesting affordable method to treat cancer patients with minimum side effects.
Collapse
|
198
|
Frandsen SK, Gehl J. A Review on Differences in Effects on Normal and Malignant Cells and Tissues to Electroporation-Based Therapies: A Focus on Calcium Electroporation. Technol Cancer Res Treat 2018; 17:1533033818788077. [PMID: 30012047 PMCID: PMC6050800 DOI: 10.1177/1533033818788077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Calcium electroporation is a potential novel anticancer treatment, where high
concentrations of calcium are introduced into the cell cytosol by electroporation. This is
a method where short, high-voltage pulses induce a transient permeabilization of the cell
membrane and thereby allow influx and efflux of ions and molecules. Electroporation is
used in combination with chemotherapeutic drugs (electrochemotherapy) as a standard
treatment for cutaneous metastases, and electroporation using a higher electric field and
number of pulses (irreversible electroporation) is increasingly being used as an
anticancer treatment. In this review, calcium electroporation is described with emphasis
on the investigations of differences in the effect on normal and malignant cells and
tissues in vitro and in vivo. Calcium electroporation
has been shown to induce cell death in vitro and tumor necrosis
in vivo with a difference in sensitivity between different tumor types.
Normal cells treated in vitro are significantly less affected than cancer
cells, and a similar trend is shown in vivo where muscle and skin tissue
surrounding a treated tumor as well as muscle and skin directly treated with calcium
electroporation were less affected than tumors. The mechanism behind this difference in
sensitivity is not fully understood but might be affected by differences in electric
impedance, membrane repair, and expression of plasma membrane calcium ATPases in normal
and malignant cells. The research on calcium electroporation shows a potential novel
anticancer treatment with significant effect on cancer cells and tissues while normal
cells and tissues are clearly less affected.
Collapse
Affiliation(s)
- Stine K Frandsen
- 1 Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark
| | - Julie Gehl
- 1 Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark.,2 Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
199
|
Du X, Wang J, Zhou Q, Zhang L, Wang S, Zhang Z, Yao C. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv 2018; 25:1516-1525. [PMID: 29968512 PMCID: PMC6058615 DOI: 10.1080/10717544.2018.1480674] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene delivery as a promising and valid tool has been used for treating many serious diseases that conventional drug therapies cannot cure. Due to the advancement of physical technology and nanotechnology, advanced physical gene delivery methods such as electroporation, magnetoporation, sonoporation and optoporation have been extensively developed and are receiving increasing attention, which have the advantages of briefness and nontoxicity. This review introduces the technique detail of membrane perforation, with a brief discussion for future development, with special emphasis on nanoparticles mediated optoporation that have developed as an new alternative transfection technique in the last two decades. In particular, the advanced physical approaches development and new technology are highlighted, which intends to stimulate rapid advancement of perforation techniques, develop new delivery strategies and accelerate application of these techniques in clinic.
Collapse
Affiliation(s)
- Xiaofan Du
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Jing Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Quan Zhou
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Luwei Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Sijia Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Zhenxi Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Cuiping Yao
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|
200
|
Ye H, Ng J. Shielding effects of myelin sheath on axolemma depolarization under transverse electric field stimulation. PeerJ 2018; 6:e6020. [PMID: 30533309 PMCID: PMC6282940 DOI: 10.7717/peerj.6020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/29/2018] [Indexed: 01/14/2023] Open
Abstract
Axonal stimulation with electric currents is an effective method for controlling neural activity. An electric field parallel to the axon is widely accepted as the predominant component in the activation of an axon. However, recent studies indicate that the transverse component to the axolemma is also effective in depolarizing the axon. To quantitatively investigate the amount of axolemma polarization induced by a transverse electric field, we computed the transmembrane potential (Vm) for a conductive body that represents an unmyelinated axon (or the bare axon between the myelin sheath in a myelinated axon). We also computed the transmembrane potential of the sheath-covered axonal segment in a myelinated axon. We then systematically analyzed the biophysical factors that affect axonal polarization under transverse electric stimulation for both the bare and sheath-covered axons. Geometrical patterns of polarization of both axon types were dependent on field properties (magnitude and field orientation to the axon). Polarization of both axons was also dependent on their axolemma radii and electrical conductivities. The myelin provided a significant “shielding effect” against the transverse electric fields, preventing excessive axolemma depolarization. Demyelination could allow for prominent axolemma depolarization in the transverse electric field, via a significant increase in myelin conductivity. This shifts the voltage drop of the myelin sheath to the axolemma. Pathological changes at a cellular level should be considered when electric fields are used for the treatment of demyelination diseases. The calculated term for membrane polarization (Vm) could be used to modify the current cable equation that describes axon excitation by an external electric field to account for the activating effects of both parallel and transverse fields surrounding the target axon.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University of Chicago, Chicago, IL, USA
| | - Jeffrey Ng
- Department of Biology, Loyola University of Chicago, Chicago, IL, USA
| |
Collapse
|