151
|
Li D, Weng C, Chen C, Li K, Lin Q, Ruan Y, Zhang J, Wang S, Yao J. Optical biosensor based on weak value amplification for the high sensitivity detection of Pertuzumab in combination with Trastuzumab binding to the extracellular domain of HER2. OPTICS EXPRESS 2022; 30:36839-36848. [PMID: 36258605 DOI: 10.1364/oe.472012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
A real-time optical phase sensing scheme based on weak value amplification was proposed to monitor the especially binding process of Pertuzumab combined with Trastuzumab on HER2 positive cells. From the wavelength shift of output spectrum, the phase difference between measuring and referential path related to the concentration of Pertuzumab as well as Trastuzumab could be calculated. With this approach, the limit of detection (LOD) of 5.54 × 10-13 M for Pertuzumab assay was achieved. Besides, the kinetics signal of Pertuzumab in combination with Trastuzumab binding to HER2 was detected in real time. Experimental results demonstrated that both Trastuzumab and Pertuzumab can be captured by HER2, but the former was significantly superior to the latter in terms of the target number. Additionally, the binding speed was analyzed and demonstrated to be closely correlated with the initial concentration of the targeting agents.
Collapse
|
152
|
Dhanya CR, Mary AS, Madhavan M. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer. Chem Biol Drug Des 2022; 101:1162-1180. [PMID: 36099164 DOI: 10.1111/cbdd.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites. Aptamers offer several advantages as a vehicle for siRNA delivery, over other carriers such as antibodies. In this review, we discuss the progress made in the development and applications of aptamer-siRNA chimeras in HER2 targeting and gene silencing. A schematic workflow is also provided which will provide ample insight for all those researchers who are new to this field. Also, we think that a mechanistic understanding of the HER2 signaling pathway is crucial in designing extensive investigations aimed at the silencing of a wider array of genes. This review is expected to stimulate more research on aptamer-siRNA chimeras targeted against HER2 which might arm us with potential effective therapeutic interventions for the management of cancer.
Collapse
Affiliation(s)
- C R Dhanya
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, India
| | - Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
153
|
Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors. Nat Commun 2022; 13:5310. [PMID: 36085201 PMCID: PMC9463158 DOI: 10.1038/s41467-022-32782-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/17/2022] [Indexed: 12/26/2022] Open
Abstract
About 50% of human epidermal growth factor receptor 2 (HER2)+ breast cancer patients do not benefit from HER2-targeted therapy and almost 20% of them relapse after treatment. Here, we conduct a detailed analysis of two independent cohorts of HER2+ breast cancer patients treated with trastuzumab to elucidate the mechanisms of resistance to anti-HER2 monoclonal antibodies. In addition, we develop a fully humanized immunocompetent model of HER2+ breast cancer recapitulating ex vivo the biological processes that associate with patients’ response to treatment. Thanks to these two approaches, we uncover a population of TGF-beta-activated cancer-associated fibroblasts (CAF) specific from tumors resistant to therapy. The presence of this cellular subset related to previously described myofibroblastic (CAF-S1) and podoplanin+ CAF subtypes in breast cancer associates with low IL2 activity. Correspondingly, we find that stroma-targeted stimulation of IL2 pathway in unresponsive tumors restores trastuzumab anti-cancer efficiency. Overall, our study underscores the therapeutic potential of exploiting the tumor microenvironment to identify and overcome mechanisms of resistance to anti-cancer treatment. A substantial proportion of HER2+ breast cancer patients do not benefit from HER2-targeted therapy. Here, the authors identify a population of cancer-associated fibroblasts involved in the suppression of trastuzumab-induced ADCC that can be pharmacologically targeted to raise treatment effectiveness in unresponsive tumors.
Collapse
|
154
|
Lou H, Cao X. Antibody variable region engineering for improving cancer immunotherapy. Cancer Commun (Lond) 2022; 42:804-827. [PMID: 35822503 PMCID: PMC9456695 DOI: 10.1002/cac2.12330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 04/09/2023] Open
Abstract
The efficacy and specificity of conventional monoclonal antibody (mAb) drugs in the clinic require further improvement. Currently, the development and application of novel antibody formats for improving cancer immunotherapy have attracted much attention. Variable region-retaining antibody fragments, such as antigen-binding fragment (Fab), single-chain variable fragment (scFv), bispecific antibody, and bi/trispecific cell engagers, are engineered with humanization, multivalent antibody construction, affinity optimization and antibody masking for targeting tumor cells and killer cells to improve antibody-based therapy potency, efficacy and specificity. In this review, we summarize the application of antibody variable region engineering and discuss the future direction of antibody engineering for improving cancer therapies.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer ResearchUniversity of OxfordOxfordOX3 7DRUK
- Chinese Academy for Medical Sciences Oxford InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
- Department of ImmunologyCentre for Immunotherapy, Institute of Basic Medical SciencesChinese Academy of Medical SciencesBeijing100005P. R. China
| |
Collapse
|
155
|
Xu H, Zhang H, Guo W, Zhong X, Sun J, Zhang T, Wang Z, Ma X. Safety and efficacy profile of Trastuzumab deruxtecan in solid cancer: pooled reanalysis based on clinical trials. BMC Cancer 2022; 22:923. [PMID: 36028823 PMCID: PMC9414434 DOI: 10.1186/s12885-022-10015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE This study aimed to explore the efficiency and safety of the new generation antibody-drug conjugate Trastuzumab deruxtecan (DS-8201a) in treating HER2-positive solid cancers. METHOD By searching PubMed, Medline and Ovid for all clinical trials related to the safety and efficacy of DS-8201a. Event rates were calculated for all adverse events (AEs) to evaluate the safety of DS-8201a. Objective response rate (ORR) and progression-free survival (PFS) were summarized to assess the potency of DS-8201a. RESULT The AEs with event rates greater than 30% regardless of grades were nausea, decreased appetite, vomiting, fatigue, anemia, decreased neutrophil count, alopecia and diarrhea. In the grade 3 or more, decreased neutrophil count, anemia and decreased white blood cell count were the only three AEs with event rates greater than 10% (20.3, 15.0 and 10.3%). The median PFS of patients with breast cancer, gastric cancer and other HER2-positive solid cancers were 9.0-22.1, 3.0-8.3 and 4.1-11.9 months. The median ORR was 37-79.9% in patients with breast and gastric cancer and 28.3-55% in patients with other HER2-positive cancers. CONCLUSION DS-8201a plays an active role in treating HER2-positive cancers, especially breast and gastric cancer, which have HER2 amplification. The most common AEs of DS-8201a were related to gastrointestinal and hematological system. Decreased white blood cell count and appetite were the AEs occurred with high grades.
Collapse
Affiliation(s)
- Hanyue Xu
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, P.R. China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Hao Zhang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Wen Guo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xi Zhong
- Department of Intensive Care Unit, West China HospitalSichuan University, Chengdu, 610041, PR China
| | - Jing Sun
- Integrated Traditional and Western Medicine Department, Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, 266042, P.R. China
| | - Tao Zhang
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Zhoufeng Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Networks, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China.
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, P.R. China.
| |
Collapse
|
156
|
de Wit S, Glen C, de Boer RA, Lang NN. Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies. Cardiovasc Res 2022; 118:3451-3466. [PMID: 36004495 PMCID: PMC9897696 DOI: 10.1093/cvr/cvac132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) and cancer are the leading causes of death worldwide and accumulating evidence demonstrates that HF and cancer affect one another in a bidirectional way. Patients with HF are at increased risk for developing cancer, and HF is associated with accelerated tumour growth. The presence of malignancy may induce systemic metabolic, inflammatory, and microbial alterations resulting in impaired cardiac function. In addition to pathophysiologic mechanisms that are shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of targeted anti-cancer therapies. This review provides an overview of mechanisms involved in the bidirectional connection between HF and cancer, specifically focusing upon current 'hot-topics' in these shared mechanisms. It subsequently describes targeted anti-cancer therapies with cardiotoxic potential as a result of overlap between their anti-cancer targets and pathways required for normal cardiac function.
Collapse
Affiliation(s)
- Sanne de Wit
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Claire Glen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | |
Collapse
|
157
|
Lv L, Yang S, Zhu Y, Zhai X, Li S, Tao X, Dong D. Relationship between metabolic reprogramming and drug resistance in breast cancer. Front Oncol 2022; 12:942064. [PMID: 36059650 PMCID: PMC9434120 DOI: 10.3389/fonc.2022.942064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in women. At present, chemotherapy is the main method to treat breast cancer in addition to surgery and radiotherapy, but the process of chemotherapy is often accompanied by the development of drug resistance, which leads to a reduction in drug efficacy. Furthermore, mounting evidence indicates that drug resistance is caused by dysregulated cellular metabolism, and metabolic reprogramming, including enhanced glucose metabolism, fatty acid synthesis and glutamine metabolic rates, is one of the hallmarks of cancer. Changes in metabolism have been considered one of the most important causes of resistance to treatment, and knowledge of the mechanisms involved will help in identifying potential treatment deficiencies. To improve women's survival outcomes, it is vital to elucidate the relationship between metabolic reprogramming and drug resistance in breast cancer. This review analyzes and investigates the reprogramming of metabolism and resistance to breast cancer therapy, and the results offer promise for novel targeted and cell-based therapies.
Collapse
Affiliation(s)
- Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
158
|
A Simultaneous Multiparametric 18F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14163944. [PMID: 36010936 PMCID: PMC9406327 DOI: 10.3390/cancers14163944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the model supports the hypothesis that hybrid PET/MRI can provide quantitative data able to non-invasively detect tumor biological characteristics using artificial intelligence software and further encourages the conduction of additional studies for this purpose. Abstract Purpose: To investigate whether a machine learning (ML)-based radiomics model applied to 18F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically in discriminating triple negative (TN) from other molecular subtypes of BC. Methods: Eighty-six patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included and underwent simultaneous 18F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters were calculated and radiomics features extracted. Data were selected using the LASSO regression and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation for identification of TNBC lesions. Results: Eight radiomics models were built based on different combinations of quantitative parameters and/or radiomic features. The best performance (AUROC 0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for the model combining first order, neighborhood gray level dependence matrix and size zone matrix-based radiomics features extracted from ADC and PET images. Conclusion: A ML-based radiomics model applied to 18F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other BC molecular subtypes with high accuracy. In a future perspective, a “virtual biopsy” might be performed with radiomics signatures.
Collapse
|
159
|
Udagawa C, Kuah S, Shimoi T, Kato K, Yoshida T, Nakano MH, Shimo A, Kojima Y, Yoshie R, Tsugawa K, Mushiroda T, Tan EY, Zembutsu H. Replication Study for the Association of Five SNPs Identified by GWAS and Trastuzumab-Induced Cardiotoxicity in Japanese and Singaporean Cohorts. Biol Pharm Bull 2022; 45:1198-1202. [DOI: 10.1248/bpb.b22-00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chihiro Udagawa
- Department of Genetics Medicine and services, National Cancer Center Hospital
| | - Sherwin Kuah
- Department of General Surgery, Tan Tock Seng Hospital
| | | | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital
| | - Teruhiko Yoshida
- Department of Genetics Medicine and services, National Cancer Center Hospital
| | - Mari Hara Nakano
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine
| | - Arata Shimo
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine
| | - Yasuyuki Kojima
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine
| | - Reiko Yoshie
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine
| | - Koichiro Tsugawa
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Science
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital
| | - Hitoshi Zembutsu
- Department of Clinical Genomics, National Cancer Center Research Institute
| |
Collapse
|
160
|
Rala de Paula BH, Costa METF, de Sousa CAM, Bines J. Is there a window of opportunity to optimize trastuzumab cardiac monitoring? World J Cardiol 2022; 14:403-410. [PMID: 36161060 PMCID: PMC9350605 DOI: 10.4330/wjc.v14.i7.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It remains unclear whether the current arbitrary screening recommendations of trastuzumab-related cardiotoxicity provides an adequate balance between preventing heart damage and curtailing a curative treatment.
AIM To determine the incidence rate and consequences of trastuzumab-induced cardiotoxicity as adjuvant treatment in a real-world scenario.
METHODS We present a retrospective analysis of cardiac function measured by echocardiogram at baseline and every 3 mo during trastuzumab treatment. Cardiotoxicity was defined as a drop in left ventricular ejection fraction (LVEF) ≥ 10% from baseline and/or any drop < 50%.
RESULTS Between January 2011 and December 2014, 407 patients were selected. Most (93.6%) were treated with an anthracycline followed by a taxane-based regimen and trastuzumab for 12 mo. Forty patients (9.8%) had cardiotoxicity. None of them were symptomatic, and 28 (72.5%) completely recovered LVEF. Cardiotoxicity happened early as shown by LVEF measured on echocardiogram 2 to 4 as compared to 5 to 7 (odds ratio = 2.47, 95% confidence interval: 1.09, 5.63, P = 0.024). There were 54 deaths (13.3%) during the 70-mo follow-up period; 1 (0.2%) was attributed to late cardiotoxicity (4 years after treatment). The absence of symptomatic cardiotoxicity during trastuzumab treatment and moreover the early occurrence on the treatment period may translate into a strategy to evaluate less frequently.
CONCLUSION We observed a 10% rate of asymptomatic cardiotoxicity, which mirrors the results from the large adjuvant trials. Despite being transient, an LVEF drop led to frequent treatment delays and interruptions. It remains unclear whether LVEF decline is predictive of late cardiotoxicity, and treatment efficacy is compromised.
Collapse
Affiliation(s)
| | | | - Carlos Augusto Moreira de Sousa
- Departamento de Tecnologias da Informação e Educação em Saúde (DTIES), da Faculdade de Ciências Médicas (FCM), na Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, Brazil
| | - José Bines
- Department of Medical Oncology, Instituto Nacional de Câncer, Rio de Janeiro 20560-121, Brazil
| |
Collapse
|
161
|
Sasaki R, Kurebayashi N, Eguchi H, Horimoto Y, Shiga T, Miyazaki S, Kashiyama T, Akamatsu W, Saito M. Involvement of kallikrein-PAR2-proinflammatory pathway in severe trastuzumab-induced cardiotoxicity. Cancer Sci 2022; 113:3449-3462. [PMID: 35879248 PMCID: PMC9530879 DOI: 10.1111/cas.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Trastuzumab‐induced cardiotoxicity interferes with continued treatment in approximately 10% of patients with ErbB2‐positive breast cancer, but its mechanism has not been fully elucidated. In this study, we recruited trastuzumab‐treated patients with ≥30% reduction in left ventricular ejection fraction (SP) and noncardiotoxic patients (NP). From each of these patients, we established three cases of induced pluripotent stem cell‐derived cardiomyocytes (pt‐iPSC‐CMs). Reduced contraction and relaxation velocities following trastuzumab treatment were more evident in SP pt‐iPSC‐CMs than NP pt‐iPSC‐CMs, indicating the cardiotoxicity phenotype could be replicated. Differences in ATP production, reactive oxygen species, and autophagy activity were observed between the two groups. Analysis of transcripts revealed enhanced kallikrein5 expression and pro‐inflammatory signaling pathways, such as interleukin‐1β, in SP pt‐iPSC‐CMs after trastuzumab treatment. The kallilkrein5‐protease‐activated receptor 2 (PAR2)‐MAPK signaling pathway was more activated in SP pt‐iPSC‐CMs, and treatment with a PAR2‐antagonist suppressed interleukin‐1β expression. Our data indicate enhanced pro‐inflammatory responses through kallikrein5‐PAR2 signaling and vulnerability to external stresses appear to be the cause of trastuzumab‐induced cardiotoxicity in SP.
Collapse
Affiliation(s)
- Ritsuko Sasaki
- Department of Breast Oncology, Juntendo University Graduate School of Medicine
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine
| | - Hidetaka Eguchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University Graduate School of Medicine
| | - Takahiro Shiga
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine
| | - Sakiko Miyazaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Taku Kashiyama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine
| | - Mitsue Saito
- Department of Breast Oncology, Juntendo University Graduate School of Medicine
| |
Collapse
|
162
|
Zhang H, Zhu S, Deng W, Li R, Zhou H, Xiong H. The landscape of chimeric antigen receptor T cell therapy in breast cancer: Perspectives and outlook. Front Immunol 2022; 13:887471. [PMID: 35935930 PMCID: PMC9354605 DOI: 10.3389/fimmu.2022.887471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a revolutionary adoptive cell therapy, which could modify and redirect T cells to specific tumor cells. Since CAR-T cell therapy was first approved for B cell-derived malignancies in 2017, it has yielded unprecedented progress in hematological tumors and has dramatically reshaped the landscape of cancer therapy in recent years. Currently, cumulative evidence has demonstrated that CAR-T cell therapy could be a viable therapeutic strategy for solid cancers. However, owing to the immunosuppressive tumor microenvironment (TME) and heterogenous tumor antigens, the application of CAR-T cell therapy against solid cancers requires circumventing more challenging obstacles. Breast cancer is characterized by a high degree of invasiveness, malignancy, and poor prognosis. The review highlights the underlying targets of CAR-T cell therapy in breast cancer, summarizes the challenges associated with CAR-T cell therapy, and proposes the strategies to overcome these challenges, which provides a novel approach to breast cancer treatment.
Collapse
|
163
|
Wu Y, Wen H, Bernstein ZJ, Hainline KM, Blakney TS, Congdon KL, Snyder DJ, Sampson JH, Sanchez-Perez L, Collier JH. Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses. SCIENCE ADVANCES 2022; 8:eabm7833. [PMID: 35857833 PMCID: PMC9299545 DOI: 10.1126/sciadv.abm7833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Subunit vaccines inducing antibodies against tumor-specific antigens have yet to be clinically successful. Here, we use a supramolecular α-helical peptide nanofiber approach to design epitope-specific vaccines raising simultaneous B cell, CD8+ T cell, and CD4+ T cell responses against combinations of selected epitopes and show that the concurrent induction of these responses generates strong antitumor effects in mice, with significant improvements over antibody or CD8+ T cell-based vaccines alone, in both prophylactic and therapeutic subcutaneous melanoma models. Nanofiber vaccine-induced antibodies mediated in vitro tumoricidal antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). The addition of immune checkpoint and phagocytosis checkpoint blockade antibodies further improved the therapeutic effect of the nanofiber vaccines against murine melanoma. These findings highlight the potential clinical benefit of vaccine-induced antibody responses for tumor treatments, provided that they are accompanied by simultaneous CD8+ and CD4+ responses, and they illustrate a multiepitope cancer vaccine design approach using supramolecular nanomaterials.
Collapse
Affiliation(s)
- Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hanning Wen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Kelly M. Hainline
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tykia S. Blakney
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - David J. Snyder
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - John H. Sampson
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | | | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
164
|
Saksena SD, Liu G, Banholzer C, Horny G, Ewert S, Gifford DK. Computational counterselection identifies nonspecific therapeutic biologic candidates. CELL REPORTS METHODS 2022; 2:100254. [PMID: 35880012 PMCID: PMC9308162 DOI: 10.1016/j.crmeth.2022.100254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 01/13/2023]
Abstract
Effective biologics require high specificity and limited off-target binding, but these properties are not guaranteed by current affinity-selection-based discovery methods. Molecular counterselection against off targets is a technique for identifying nonspecific sequences but is experimentally costly and can fail to eliminate a large fraction of nonspecific sequences. Here, we introduce computational counterselection, a framework for removing nonspecific sequences from pools of candidate biologics using machine learning models. We demonstrate the method using sequencing data from single-target affinity selection of antibodies, bypassing combinatorial experiments. We show that computational counterselection outperforms molecular counterselection by performing cross-target selection and individual binding assays to determine the performance of each method at retaining on-target, specific antibodies and identifying and eliminating off-target, nonspecific antibodies. Further, we show that one can identify generally polyspecific antibody sequences using a general model trained on affinity data from unrelated targets with potential affinity for a broad range of sequences.
Collapse
Affiliation(s)
- Sachit Dinesh Saksena
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ge Liu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Geraldine Horny
- Novartis Institute of BioMedical Research (NIBR), Basel, Switzerland
| | - Stefan Ewert
- Novartis Institute of BioMedical Research (NIBR), Basel, Switzerland
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
165
|
Sirhan Z, Thyagarajan A, Sahu RP. The efficacy of tucatinib-based therapeutic approaches for HER2-positive breast cancer. Mil Med Res 2022; 9:39. [PMID: 35820970 PMCID: PMC9277867 DOI: 10.1186/s40779-022-00401-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2) occurs in approximately 15-20% of breast cancer cases. HER2 is a member of the epidermal growth factor receptor (EGFR) family with tyrosinase kinase activity, and its overexpression is linked to poor prognosis and shorter progression-free survival (PFS) and overall survival (OS). Among various treatment options, HER2-targeting monoclonal antibodies and tyrosine kinase inhibitors (TKIs) have mostly been applied in recent decades to treat HER2-positive (HER2+) breast cancer patients. Although positive clinical outcomes were documented in both advanced disease and neoadjuvant settings, the development of resistance mechanisms to such approaches has been one of the major challenges with the continuous usage of these drugs. In addition, patients who experience disease progression after treatment with multiple HER2-targeted therapies often have limited treatment options. The Food and Drug Administration (FDA) has recently approved a new TKI (i.e., tucatinib) for use in combination with immunotherapy and/or chemotherapeutic agents for the treatment of advanced-stage/metastatic HER2+ breast cancer. This review highlights recent updates on the efficacy of tucatinib-based therapeutic approaches in experimental models as well as in the clinical settings of HER2+ breast cancer.
Collapse
Affiliation(s)
- Zaid Sirhan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
166
|
Bang K, Cheon J, Park YS, Kim HD, Ryu MH, Park Y, Moon M, Lee H, Kang YK. Association between HER2 heterogeneity and clinical outcomes of HER2-positive gastric cancer patients treated with trastuzumab. Gastric Cancer 2022; 25:794-803. [PMID: 35524883 DOI: 10.1007/s10120-022-01298-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The GASTHER1 study showed that re-evaluation of HER2 status rescued 8% of HER2-positive gastric cancer (GC) patients with initially HER2-negative GC. Since rescued HER2 positivity represents HER2 heterogeneity, we aimed to investigate this in a larger cohort with longer follow-up duration. METHODS Data of 153 HER2-positive advanced GC patients who received first-line trastuzumab-based chemotherapy were analyzed. Repeat endoscopic biopsy was performed in patients with initially HER2-negative GC. Survival outcomes were analyzed according to the immunohistochemistry (IHC) score (IHC 2+ /in situ hybridization [ISH] + vs IHC 3+), HER2 status (initially vs rescued HER2 positive), and H-score. RESULTS IHC 2+ /ISH + patients showed worse progression-free survival (PFS) and overall survival (OS) than those with IHC 3+ (p < 0.05). Rescued HER2-positive patients showed worse PFS and OS than initially HER2-positive patients (p < 0.05). Although survival outcomes were comparable according to HER2 status in IHC 2+ /ISH + patients, initially HER2-positive patients showed more favorable PFS and OS than rescued HER2-positive patients (p < 0.05) among those with IHC 3+ . Among the subgroups determined by HER2 status and IHC score, the initially IHC 3+ subgroup had the highest H-score. The low H-score group (H-score ≤ 210) had significantly worse survival outcomes than the high H-score group (H-score > 210) (p < 0.05). An H-score of ≤ 210 was independently associated with shorter OS (HR = 1.54, 95% CI 1.02-2.31, p = 0.04). CONCLUSIONS Rescued HER2-positive patients showed worse clinical outcomes than initially HER2-positive patients, especially those with IHC 3+ . This finding highlights the impact of HER2 heterogeneity, which can be quantified indirectly as an H-score.
Collapse
Affiliation(s)
- Kyunghye Bang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jaekyung Cheon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Yangsoon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Meesun Moon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Hyungeun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
167
|
Quraishi MI. Radiomics-Guided Precision Medicine Approaches for Colorectal Cancer. Front Oncol 2022; 12:872656. [PMID: 35756680 PMCID: PMC9218262 DOI: 10.3389/fonc.2022.872656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of precision oncology entails molecular profiling of tumors to guide therapeutic interventions. Genomic testing through next-generation sequencing (NGS) molecular analysis provides the basis of such highly targeted therapeutics in oncology. As radiomic analysis delivers an array of structural and functional imaging-based biomarkers that depict these molecular mechanisms and correlate with key genetic alterations related to cancers. There is an opportunity to synergize these two big-data approaches to determine the molecular guidance for precision therapeutics. Colorectal cancer is one such disease whose therapeutic management is being guided by genetic and genomic analyses. We review the rationale and utility of radiomics as a combinative strategy for these approaches in the management of colorectal cancer.
Collapse
Affiliation(s)
- Mohammed I Quraishi
- Department of Radiology, University of Tennessee Medical Center, Knoxville, TN, United States
| |
Collapse
|
168
|
In Situ Prodrug Activation by an Affibody‐Ruthenium Catalyst Hybrid for HER2‐Targeted Chemotherapy. Angew Chem Int Ed Engl 2022; 61:e202202855. [DOI: 10.1002/anie.202202855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/07/2022]
|
169
|
Personalized Medicine for the Critically Ill Patient: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr10061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Personalized Medicine (PM) is rapidly advancing in everyday medical practice. Technological advances allow researchers to reach patients more than ever with their discoveries. The critically ill patient is probably the most complex of all, and personalized medicine must make serious efforts to fulfill the desire to “treat the individual, not the disease”. The complexity of critically ill pathologies arises from the severe state these patients and from the deranged pathways of their diseases. PM constitutes the integration of basic research into clinical practice; however, to make this possible complex and voluminous data require processing through even more complex mathematical models. The result of processing biodata is a digitized individual, from which fragments of information can be extracted for specific purposes. With this review, we aim to describe the current state of PM technologies and methods and explore its application in critically ill patients, as well as some of the challenges associated with PM in intensive care from the perspective of economic, approval, and ethical issues. This review can help in understanding the complexity of, P.M.; the complex processes needed for its application in critically ill patients, the benefits that make the effort of implementation worthwhile, and the current challenges of PM.
Collapse
|
170
|
Stolz BJ, Kaeppler J, Markelc B, Braun F, Lipsmeier F, Muschel RJ, Byrne HM, Harrington HA. Multiscale topology characterizes dynamic tumor vascular networks. SCIENCE ADVANCES 2022; 8:eabm2456. [PMID: 35687679 PMCID: PMC9187234 DOI: 10.1126/sciadv.abm2456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Advances in imaging techniques enable high-resolution three-dimensional (3D) visualization of vascular networks over time and reveal abnormal structural features such as twists and loops, and their quantification is an active area of research. Here, we showcase how topological data analysis, the mathematical field that studies the "shape" of data, can characterize the geometric, spatial, and temporal organization of vascular networks. We propose two topological lenses to study vasculature, which capture inherent multiscale features and vessel connectivity, and surpass the single-scale analysis of existing methods. We analyze images collected using intravital and ultramicroscopy modalities and quantify spatiotemporal variation of twists, loops, and avascular regions (voids) in 3D vascular networks. This topological approach validates and quantifies known qualitative trends such as dynamic changes in tortuosity and loops in response to antibodies that modulate vessel sprouting; furthermore, it quantifies the effect of radiotherapy on vessel architecture.
Collapse
Affiliation(s)
| | - Jakob Kaeppler
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Bostjan Markelc
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Franziska Braun
- Data Science, pRED Informatics, Pharma Research & Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Florian Lipsmeier
- Digital Biomarkers, pRED Informatics, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ruth J. Muschel
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Heather A. Harrington
- Mathematical Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
171
|
Cao X, Lai SWT, Chen S, Wang S, Feng M. Targeting tumor-associated macrophages for cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:61-108. [PMID: 35636930 DOI: 10.1016/bs.ircmb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant immune components in the tumor microenvironment and play a plethora of roles in regulating tumorigenesis. Therefore, the therapeutic targeting of TAMs has emerged as a new paradigm for immunotherapy of cancer. Herein, the review summarizes the origin, polarization, and function of TAMs in the progression of malignant diseases. The understanding of such knowledge leads to several distinct therapeutic strategies to manipulate TAMs to battle cancer, which include those to reduce TAM abundance, such as depleting TAMs or inhibiting their recruitment and differentiation, and those to harness or boost the anti-tumor activities of TAMs such as blocking phagocytosis checkpoints, inducing antibody-dependent cellular phagocytosis, and reprogramming TAM polarization. In addition, modulation of TAMs may reshape the tumor microenvironment and therefore synergize with other cancer therapeutics. Therefore, the rational combination of TAM-targeting therapeutics with conventional therapies including radiotherapy, chemotherapy, and other immunotherapies is also reviewed. Overall, targeting TAMs presents itself as a promising strategy to add to the growing repertoire of treatment approaches in the fight against cancer, and it is hopeful that these approaches currently being pioneered will serve to vastly improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| | - Seigmund W T Lai
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Sadira Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| |
Collapse
|
172
|
Karan C, Tan E, Sarfraz H, Knepper TC, Walko CM, Felder S, Kim R, Sahin IH. Human Epidermal Growth Factor Receptor 2-Targeting Approaches for Colorectal Cancer: Clinical Implications of Novel Treatments and Future Therapeutic Avenues. JCO Oncol Pract 2022; 18:545-554. [PMID: 35613416 DOI: 10.1200/op.21.00904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The treatment paradigm for colorectal cancer (CRC) has changed significantly over the past decade with targeted therapeutics. Human epidermal growth factor receptor 2 (HER2) amplification is seen among 3%-4% of patients with metastatic CRC (mCRC). The biological discovery of HER2 amplification in cancer cells has led to practice-changing drug development for several solid tumors, including breast, gastric, and esophageal cancers. HER2 amplification is now highly actionable in CRC with distinct therapeutic combinations, including the combination of monoclonal antibodies and HER2 receptor-specific tyrosine kinase inhibitors, as well as antibody-drug conjugates, that delivers targeted cytotoxic agents. However, it is essential to define the therapeutic role and sequence of these different combinations, some of which are already part of standard clinical practice. In this review article, we discuss recent clinical studies demonstrating the clinical benefits of each distinct therapeutic approach and their impacts on the current management of HER2-amplified mCRC. We also review ongoing clinical trials targeting the HER2 pathway in mCRC and elaborate on novel therapeutic opportunities in this space that may further define the changing paradigm of HER2-targeted therapy for CRC.
Collapse
Affiliation(s)
- Canan Karan
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Elaine Tan
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Humaira Sarfraz
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Todd C Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Christine M Walko
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Seth Felder
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Richard Kim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ibrahim Halil Sahin
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
173
|
Birts CN, Savva C, Laversin SA, Lefas A, Krishnan J, Schapira A, Ashton-Key M, Crispin M, Johnson PWM, Blaydes JP, Copson E, Cutress RI, Beers SA. Prognostic significance of crown-like structures to trastuzumab response in patients with primary invasive HER2 + breast carcinoma. Sci Rep 2022; 12:7802. [PMID: 35610242 PMCID: PMC9130517 DOI: 10.1038/s41598-022-11696-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity can initiate, promote, and maintain systemic inflammation via metabolic reprogramming of macrophages that encircle adipocytes, termed crown-like structures (CLS). In breast cancer the presence of CLS has been correlated to high body mass index (BMI), larger mammary adipocyte size and postmenopausal status. However, the prognostic significance of CLS in HER2 + breast cancer is still unknown. We investigated the prognostic significance of CLS in a cohort of 69 trastuzumab-naïve and 117 adjuvant trastuzumab-treated patients with primary HER2 + breast cancer. Immunohistochemistry of tumour blocks was performed for CLS and correlated to clinical outcomes. CLS were more commonly found at the adipose-tumour border (B-CLS) (64.8% of patients). The presence of multiple B-CLS was associated with reduced time to metastatic disease (TMD) in trastuzumab treated patients with BMI ≥ 25 kg/m2 but not those with BMI < 25 kg/m2. Phenotypic analysis showed the presence of CD32B + B-CLS was strongly correlated to BMI ≥ 25 kg/m2 and reduced TMD in trastuzumab treated patients. Multivariable analysis suggested that CD32B + B-CLS positive tumours are associated with shorter TMD in trastuzumab-treated patients (HR 4.2 [95%CI, (1.01-17.4). This study indicates adipose-tumour border crown-like structures that are CD32B + potentially represent a biomarker for improved personalisation of treatment in HER2-overexpressed breast cancer patients.
Collapse
Affiliation(s)
- Charles N Birts
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Constantinos Savva
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Stéphanie A Laversin
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Alicia Lefas
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Jamie Krishnan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Aron Schapira
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Margaret Ashton-Key
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cellular Pathology, University Hospitals Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Max Crispin
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Peter W M Johnson
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Jeremy P Blaydes
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ellen Copson
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Ramsey I Cutress
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
174
|
Alt K, Carraro F, Jap E, Linares-Moreau M, Riccò R, Righetto M, Bogar M, Amenitsch H, Hashad RA, Doonan C, Hagemeyer CE, Falcaro P. Self-Assembly of Oriented Antibody-Decorated Metal-Organic Framework Nanocrystals for Active-Targeting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106607. [PMID: 34866253 DOI: 10.1002/adma.202106607] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn2 (mIM)2 (CO3 ), from a solution of Zn2+ and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.
Collapse
Affiliation(s)
- Karen Alt
- Central Clinical School, Australian Centre of Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Edwina Jap
- Central Clinical School, Australian Centre of Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Raffaele Riccò
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
- Department of Industrial Systems Engineering, School of Engineering and Technology, Asian Institute of Technology (AIT), PO Box 4, Klong Luang, Pathum Thani, 12120, Thailand
| | - Marcello Righetto
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Marco Bogar
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Rania A Hashad
- Central Clinical School, Australian Centre of Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Christian Doonan
- School of Physical Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Australian Centre of Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
175
|
Fereydouni M, Ahani E, Desai P, Motaghed M, Dellinger A, Metcalfe DD, Yin Y, Lee SH, Kafri T, Bhatt AP, Dellinger K, Kepley CL. Human Tumor Targeted Cytotoxic Mast Cells for Cancer Immunotherapy. Front Oncol 2022; 12:871390. [PMID: 35574362 PMCID: PMC9097604 DOI: 10.3389/fonc.2022.871390] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
The diversity of autologous cells being used and investigated for cancer therapy continues to increase. Mast cells (MCs) are tissue cells that contain a unique set of anti-cancer mediators and are found in and around tumors. We sought to exploit the anti-tumor mediators in MC granules to selectively target them to tumor cells using tumor specific immunoglobin E (IgE) and controllably trigger release of anti-tumor mediators upon tumor cell engagement. We used a human HER2/neu-specific IgE to arm human MCs through the high affinity IgE receptor (FcεRI). The ability of MCs to bind to and induce apoptosis of HER2/neu-positive cancer cells in vitro and in vivo was assessed. The interactions between MCs and cancer cells were investigated in real time using confocal microscopy. The mechanism of action using cytotoxic MCs was examined using gene array profiling. Genetically manipulating autologous MC to assess the effects of MC-specific mediators have on apoptosis of tumor cells was developed using siRNA. We found that HER2/neu tumor-specific IgE-sensitized MCs bound, penetrated, and killed HER2/neu-positive tumor masses in vitro. Tunneling nanotubes formed between MCs and tumor cells are described that parallel tumor cell apoptosis. In solid tumor, human breast cancer (BC) xenograft mouse models, infusion of HER2/neu IgE-sensitized human MCs co-localized to BC cells, decreased tumor burden, and prolonged overall survival without indications of toxicity. Gene microarray of tumor cells suggests a dependence on TNF and TGFβ signaling pathways leading to apoptosis. Knocking down MC-released tryptase did not affect apoptosis of cancer cells. These studies suggest MCs can be polarized from Type I hypersensitivity-mediating cells to cytotoxic cells that selectively target tumor cells and specifically triggered to release anti-tumor mediators. A strategy to investigate which MC mediators are responsible for the observed tumor killing is described so that rational decisions can be made in the future when selecting which mediators to target for deletion or those that could further polarize them to cytotoxic MC by adding other known anti-tumor agents. Using autologous human MC may provide further options for cancer therapeutics that offers a unique anti-cancer mechanism of action using tumor targeted IgE’s.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Parth Desai
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Anthony Dellinger
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yuzhi Yin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sung Hyun Lee
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aadra P. Bhatt
- Lineberger Comprehensive Cancer Center, and the Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
176
|
Morelli MB, Bongiovanni C, Da Pra S, Miano C, Sacchi F, Lauriola M, D’Uva G. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front Cardiovasc Med 2022; 9:847012. [PMID: 35497981 PMCID: PMC9051244 DOI: 10.3389/fcvm.2022.847012] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy and targeted therapies have significantly improved the prognosis of oncology patients. However, these antineoplastic treatments may also induce adverse cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction. These common cardiovascular complications, commonly referred to as cardiotoxicity, not only may require the modification, suspension, or withdrawal of life-saving antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly impact the quality of life and overall survival, regardless of the oncological prognosis. The onset of cardiotoxicity may depend on the class, dose, route, and duration of administration of anticancer drugs, as well as on individual risk factors. Importantly, the cardiotoxic side effects may be reversible, if cardiac function is restored upon discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may also subsequently evolve in symptomatic congestive heart failure. Hence, there is an urgent need for cardioprotective therapies to reduce the clinical and subclinical cardiotoxicity onset and progression and to limit the acute or chronic manifestation of cardiac damages. In this review, we summarize the knowledge regarding the cellular and molecular mechanisms contributing to the onset of cardiotoxicity associated with common classes of chemotherapy and targeted therapy drugs. Furthermore, we describe and discuss current and potential strategies to cope with the cardiotoxic side effects as well as cardioprotective preventive approaches that may be useful to flank anticancer therapies.
Collapse
Affiliation(s)
| | - Chiara Bongiovanni
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Silvia Da Pra
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gabriele D’Uva
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- *Correspondence: Gabriele D’Uva,
| |
Collapse
|
177
|
Kalmuk J, Rinder D, Heltzel C, Lockhart AC. An overview of the preclinical discovery and development of trastuzumab deruxtecan: a novel gastric cancer therapeutic. Expert Opin Drug Discov 2022; 17:427-436. [DOI: 10.1080/17460441.2022.2050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- James Kalmuk
- Department of Hematology/Oncology, Medical University of South Carolina, Walton Research Building, Charleston, SC, USA
| | | | | | - Albert Craig Lockhart
- Department of Hematology/Oncology, Medical University of South Carolina, Walton Research Building, Charleston, SC, USA
| |
Collapse
|
178
|
In Situ Prodrug Activation by an Affibody–Ruthenium Catalyst Hybrid for HER2‐Targeted Chemotherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
179
|
Johnson KC, Quiroga D, Sudheendra P, Wesolowski R. Treatment of small (T1mic, T1a, and T1b) node-negative HER2+ breast cancer - a review of current evidence for and against the use of anti-HER2 treatment regimens. Expert Rev Anticancer Ther 2022; 22:505-522. [PMID: 35389302 PMCID: PMC9156575 DOI: 10.1080/14737140.2022.2063844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Since the advent of anti-HER2 therapies, evidence surrounding adjuvant treatment of small (T1mic, T1a, and T1b), node-negative, HER2-positive breast cancer (HER2+BC) has remained limited. Practices vary widely between institutions with little known regarding the added benefit of systemic therapy, including cytotoxic chemotherapy and HER2-directed treatments. Our group has set out to perform an extensive review of available literature on this topic. AREAS COVERED In this review, we examined HER2 biology, anti-HER therapies, outcome definitions, and available prospective and retrospective data surrounding the use of adjuvant therapy in those with small, node-negative, HER2+BC. For outcomes, we primarily explored breast cancer-specific survival (BCSS), invasive disease-free survival (iDFS), and overall survival (OS). We also investigated the incidence of adverse events with a particular focus on symptomatic and asymptomatic declines in left ventricular ejection fraction. EXPERT OPINION Retrospective data will likely be the main driver for future treatment decisions. Given what we know, high risk T1b and T1c subgroups derive measurable added benefit from HER2-guided combination therapies but it's not clear whether these benefits outweigh known risks associated with this combination therapy. For tumors ≤0.5cm (T1mic and T1a), treatment remains highly controversial with limited evidence available through retrospective analysis that suggest over-treatment may be occurring.
Collapse
Affiliation(s)
- Kai Cc Johnson
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA
| | - Dionisia Quiroga
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.,Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Robert Wesolowski
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.,Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
180
|
Combined treatment with anti-HER2/neu and anti-4-1BB monoclonal antibodies induces a synergistic antitumor effect but requires dose optimization to maintain immune memory for protection from lethal rechallenge. Cancer Immunol Immunother 2022; 71:967-978. [DOI: 10.1007/s00262-021-03120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
|
181
|
Jedrzkiewicz J, Sirohi D, Uvejzovic N, Gulbahce HE. RAI1 alternate probe identifies additional gastroesophageal adenocarcinoma cases as amplified following equivocal HER2 fluorescence in situ hybridization testing: experience from a national reference laboratory. Mod Pathol 2022; 35:549-553. [PMID: 34663915 DOI: 10.1038/s41379-021-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
The College of American Pathologists/American Society of Clinical Oncology recommends HER2 testing prior to initiation of targeted therapy for patients with advanced Gastroesophageal adenocarcinoma (GEA), using immunohistochemistry (IHC) followed by fluorescence in situ hybridization (FISH) in cases with an equivocal (score 2 + ) result on IHC. The FISH results are considered indeterminate if the HER2/CEP17 ratio is <2.0 with an average CEP17 copy number of ≥3.0 and a HER2 copy number ≥4.0 and ≤6.0 after counting additional tumor cells. Indeterminate results may be resolved by using an alternative chromosome 17 probe such as RAI1. The purpose of this study is to review our experience with RAI1 alternate probe in HER2 FISH testing of GEA in a large reference laboratory setting. Esophageal, gastroesophageal, and gastric adenocarcinomas received for HER2 FISH testing in our lab between 9/2018 and 1/2020 were included. HER2/CEP17 and HER2/ RAI1 ratios, and the average HER2, CEP17, RAI1 signals per cell were recorded. 328 GEA had HER2 testing performed in our lab during the study period. 101 (30.8%) were amplified, 169 (51.5%) were non-amplified and 58 (17.7%) were indeterminate. Following RAI1 testing, 42 (72.4%) of 58 indeterminate cases were reclassified as non-amplified and 16 (27.6%) were reclassified as amplified, increasing the total amplified cases to 117 (35.7%). The correlation between the average CEP17 and RAI1 copy number for all cases was weak (R2 = 0.095). In summary, using the alternate probe RAI1 reclassifies 27.6% of original HER2 FISH indeterminate gastroesophageal carcinomas as amplified, which makes them eligible for targeted therapies.
Collapse
Affiliation(s)
| | - Deepika Sirohi
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | - H Evin Gulbahce
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
182
|
Yu X, Ji X, Su C. HER2-Altered Non-Small Cell Lung Cancer: Biology, Clinicopathologic Features, and Emerging Therapies. Front Oncol 2022; 12:860313. [PMID: 35425713 PMCID: PMC9002096 DOI: 10.3389/fonc.2022.860313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022] Open
Abstract
Multiple oncogenic molecular alterations have been discovered that serve as potential drug targets in non-small cell lung cancer (NSCLC). While the pathogenic and pharmacological features of common targets in NSCLC have been widely investigated, those of uncommon targets are still needed to be clarified. Human epidermal growth factor receptor 2 (HER2, ERBB2)-altered tumors represent a highly heterogeneous group of diseases, which consists of three distinct situations including mutation, amplification and overexpression. Compared with breast and gastric cancer, previous studies have shown modest and variable results of anti-HER2 treatments in lung cancers with HER2 aberrations, thus effective therapies in these patients represent an unmet medical need. By far, encouraging efforts towards novel treatment strategies have been made to improve the clinical outcomes of these patients. In this review, we describe the biological and clinicopathological characteristics of HER2 alterations and systematically sum up recent studies on emerging therapies for this subset of patients.
Collapse
Affiliation(s)
| | | | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
183
|
Hany R, Leyris JP, Bret G, Mallié S, Sar C, Thouaye M, Hamze A, Provot O, Sokoloff P, Valmier J, Villa P, Rognan D. High-Throughput Screening for Extracellular Inhibitors of the FLT3 Receptor Tyrosine Kinase Reveals Chemically Diverse and Druggable Negative Allosteric Modulators. ACS Chem Biol 2022; 17:709-722. [PMID: 35227060 DOI: 10.1021/acschembio.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhibiting receptor tyrosine kinases is commonly achieved by two main strategies targeting either the intracellular kinase domain by low molecular weight compounds or the extracellular ligand-binding domain by monoclonal antibodies. Identifying small molecules able to inhibit RTKs at the extracellular level would be highly desirable to gain exquisite selectivity but is believed to be challenging owing to the size of RTK endogenous ligands (cytokines, growth factors) and the topology of RTK extracellular domains. We here report the high-throughput screening of the French Chemical Library (48K compounds) for extracellular inhibitors of the Fms-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase, by a homogeneous time-resolved fluorescence competition assay. A total of 679 small molecular weight ligands (1.4%) were confirmed to strongly inhibit (>75%) the binding of the fluorescent labeled FLT3 ligand (FL cytokine) to FLT3 overexpressed in HEK-293 cells, at two different concentrations (5 and 20 μM). Concentration-response curves, obtained for 111 lead-like molecules, confirmed the unexpected tolerance of the FLT3 extracellular domain for low molecular weight druggable inhibitors exhibiting submicromolar potencies, chemical diversity, and promising pharmacokinetic properties. Further investigation of one hit confirmed inhibitory properties in dorsal root ganglia neurons and in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Romain Hany
- Plate-forme de Chimie Biologique Intégrative de Strasbourg (PCBIS), UAR3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch Cedex, France
| | - Jean-Philippe Leyris
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
- BIODOL Therapeutics, CAP Alpha, 34830 Clapiers, France
| | - Guillaume Bret
- Laboratoire d’Innovation Thérapeutique (LIT), UMR7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| | - Sylvie Mallié
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Chamroeun Sar
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Maxime Thouaye
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | | | - Jean Valmier
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Pascal Villa
- Plate-forme de Chimie Biologique Intégrative de Strasbourg (PCBIS), UAR3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch Cedex, France
| | - Didier Rognan
- Laboratoire d’Innovation Thérapeutique (LIT), UMR7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
184
|
Cao X, Chen J, Li B, Dang J, Zhang W, Zhong X, Wang C, Raoof M, Sun Z, Yu J, Fakih MG, Feng M. Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy. SCIENCE ADVANCES 2022; 8:eabl9171. [PMID: 35302839 PMCID: PMC8932662 DOI: 10.1126/sciadv.abl9171] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 05/16/2023]
Abstract
Macrophages are essential in eliciting antibody-dependent cellular phagocytosis (ADCP) of cancer cells. However, a satisfactory anticancer efficacy of ADCP is contingent on early antibody administration, and resistance develops along with cancer progression. Here, we investigate the mechanisms underlying ADCP and demonstrate an effective combinatorial strategy to potentiate its efficacy. We identified paclitaxel as a universal adjuvant that efficiently potentiated ADCP by a variety of anticancer antibodies in multiple cancers. Rather than eliciting cytotoxicity on cancer cells, paclitaxel polarized macrophages toward a state with enhanced phagocytic ability. Paclitaxel-treated macrophages down-regulated cell surface CSF1R whose expression was negatively correlated with patient survival in multiple malignancies. The suppression of CSF1R in macrophages enhanced ADCP of cancer cells, suggesting a role of CSF1R in regulating macrophage phagocytic ability. Together, these findings define a potent strategy for using conventional anticancer drugs to stimulate macrophage phagocytosis and promote the therapeutic efficacy of clinical anticancer antibodies.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Bolei Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Wencan Zhang
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiancai Zhong
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, CA 91010, USA
| | - Marwan G. Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
185
|
Ferhati X, Jiménez-Moreno E, Hoyt EA, Salluce G, Cabeza-Cabrerizo M, Navo CD, Compañón I, Akkapeddi P, Matos MJ, Salaverri N, Garrido P, Martínez A, Laserna V, Murray TV, Jiménez-Osés G, Ravn P, Bernardes GJL, Corzana F. Single Mutation on Trastuzumab Modulates the Stability of Antibody-Drug Conjugates Built Using Acetal-Based Linkers and Thiol-Maleimide Chemistry. J Am Chem Soc 2022; 144:5284-5294. [PMID: 35293206 PMCID: PMC8972253 DOI: 10.1021/jacs.1c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are a class of targeted therapeutics used to selectively kill cancer cells. It is important that they remain intact in the bloodstream and release their payload in the target cancer cell for maximum efficacy and minimum toxicity. The development of effective ADCs requires the study of factors that can alter the stability of these therapeutics at the atomic level. Here, we present a general strategy that combines synthesis, bioconjugation, linker technology, site-directed mutagenesis, and modeling to investigate the influence of the site and microenvironment of the trastuzumab antibody on the stability of the conjugation and linkers. Trastuzumab is widely used to produce targeted ADCs because it can target with high specificity a receptor that is overexpressed in certain breast cancer cells (HER2). We show that the chemical environment of the conjugation site of trastuzumab plays a key role in the stability of linkers featuring acid-sensitive groups such as acetals. More specifically, Lys-207, located near the reactive Cys-205 of a thiomab variant of the antibody, may act as an acid catalyst and promote the hydrolysis of acetals. Mutation of Lys-207 into an alanine or using a longer linker that separates this residue from the acetal group stabilizes the conjugates. Analogously, Lys-207 promotes the beneficial hydrolysis of the succinimide ring when maleimide reagents are used for conjugation, thus stabilizing the subsequent ADCs by impairing the undesired retro-Michael reactions. This work provides new insights for the design of novel ADCs with improved stability properties.
Collapse
Affiliation(s)
- Xhenti Ferhati
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Ester Jiménez-Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Emily A Hoyt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Giulia Salluce
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Mar Cabeza-Cabrerizo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria J Matos
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Noelia Salaverri
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Pablo Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Víctor Laserna
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Thomas V Murray
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Peter Ravn
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
186
|
Venetis K, Crimini E, Sajjadi E, Corti C, Guerini-Rocco E, Viale G, Curigliano G, Criscitiello C, Fusco N. HER2 Low, Ultra-low, and Novel Complementary Biomarkers: Expanding the Spectrum of HER2 Positivity in Breast Cancer. Front Mol Biosci 2022; 9:834651. [PMID: 35372498 PMCID: PMC8965450 DOI: 10.3389/fmolb.2022.834651] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
HER2 status in breast cancer is assessed to select patients eligible for targeted therapy with anti-HER2 therapies. According to the American Society of Clinical Oncology (ASCO) and College of American Pathologists (CAP), the HER2 test positivity is defined by protein overexpression (score 3+) at immunohistochemistry (IHC) and/or gene amplification at in situ hybridization (ISH). The introduction of novel anti-HER2 compounds, however, is changing this paradigm because some breast cancers with lower levels of protein expression (i.e. score 1+/2+ with no gene amplification) benefited from HER2 antibody-drug conjugates (ADC). Recently, a potential for HER2 targeting in HER2 "ultra-low" (i.e. score 0 with incomplete and faint staining in ≤10% of tumor cells) and MutL-deficient estrogen receptor (estrogen receptor)-positive/HER2-negative breast cancers has been highlighted. All these novel findings are transforming the traditional dichotomy of HER2 status and have dramatically raised the expectations in this field. Still, a more aware HER2 status assessment coupled with the comprehensive characterization of the clinical and molecular features of these tumors is required. Here, we seek to provide an overview of the current state of HER2 targeting in breast cancers beyond the canonical HER2 positivity and to discuss the practical implications for pathologists and oncologists.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Edoardo Crimini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Corti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Viale
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
187
|
Hosseinzadeh A, Merikhian P, Naseri N, Eisavand MR, Farahmand L. MUC1 is a potential target to overcome trastuzumab resistance in breast cancer therapy. Cancer Cell Int 2022; 22:110. [PMID: 35248049 PMCID: PMC8897942 DOI: 10.1186/s12935-022-02523-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Although resistance is its major obstacle in cancer therapy, trastuzumab is the most successful agent in treating epidermal growth factor receptor 2 positive (HER2 +) breast cancer (BC). Some patients show resistance to trastuzumab, and scientists want to circumvent this problem. This review elaborately discusses possible resistance mechanisms to trastuzumab and introduces mucin 1 (MUC1) as a potential target efficient for overcoming such resistance. MUC1 belongs to the mucin family, playing the oncogenic/mitogenic roles in cancer cells and interacting with several other oncogenic receptors and pathways, such as HER2, β-catenin, NF-κB, and estrogen receptor (ERα). Besides, it has been established that MUC1- Cytoplasmic Domain (MUC1-CD) accelerates the development of resistance to trastuzumab and that silencing MUC1-C proto-oncogene is associated with increased sensitivity of HER2+ cells to trastuzumab-induced growth inhibitors. We mention why targeting MUC1 can be useful in overcoming trastuzumab resistance in cancer therapy.
Collapse
|
188
|
Mechanism of cooperative N-glycan processing by the multi-modular endoglycosidase EndoE. Nat Commun 2022; 13:1137. [PMID: 35241669 PMCID: PMC8894350 DOI: 10.1038/s41467-022-28722-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteria produce a remarkably diverse range of glycoside hydrolases to metabolize glycans from the environment as a primary source of nutrients, and to promote the colonization and infection of a host. Here we focus on EndoE, a multi-modular glycoside hydrolase secreted by Enterococcus faecalis, one of the leading causes of healthcare-associated infections. We provide X-ray crystal structures of EndoE, which show an architecture composed of four domains, including GH18 and GH20 glycoside hydrolases connected by two consecutive three α-helical bundles. We determine that the GH20 domain is an exo-β-1,2-N-acetylglucosaminidase, whereas the GH18 domain is an endo-β-1,4-N-acetylglucosaminidase that exclusively processes the central core of complex-type or high-mannose-type N-glycans. Both glycoside hydrolase domains act in a concerted manner to process diverse N-glycans on glycoproteins, including therapeutic IgG antibodies. EndoE combines two enzyme domains with distinct functions and glycan specificities to play a dual role in glycan metabolism and immune evasion. EndoE is a multi-domain glycoside hydrolase of the human pathogen Enterococcus faecalis. Here, the authors present crystal structures of EndoE and provide biochemical insights into the molecular basis of EndoE’s substrate specificity and catalytic mechanism.
Collapse
|
189
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
190
|
Lee MX, Wong ALA, Ow S, Sundar R, Tan DSP, Soo RA, Chee CE, Lim JSJ, Yong WP, Lim SE, Goh BC, Wang L, Lee SC. Phase Ib Dose-Finding Study of Varlitinib Combined with Weekly Paclitaxel With or Without Carboplatin ± Trastuzumab in Advanced Solid Tumors. Target Oncol 2022; 17:141-151. [PMID: 35195837 PMCID: PMC8995271 DOI: 10.1007/s11523-022-00867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
Background Varlitinib is a highly potent, small-molecule, pan-HER inhibitor targeting HER1, HER2, and HER4. It has demonstrated activity in gastric, biliary tract, and breast cancers. Objective We conducted a phase Ib dose confirmation study to determine safety and early efficacy signals of varlitinib in combination with chemotherapy (paclitaxel ± carboplatin) ± subcutaneous trastuzumab. Methods Eligible patients had advanced or metastatic solid tumors. A 3+3 dose de-escalation study design was used and pharmacokinetic analyses of varlitinib and paclitaxel were performed. Results Thirty-seven patients were enrolled into eight cohorts with median 4 (0–14) prior lines of palliative systemic therapies. Carboplatin area under the curve 1.5 and paclitaxel 80 mg/m2 weekly with varlitinib 500 mg twice daily continuously was de-escalated over four dose levels to 300 mg twice daily intermittently (4 days on, 3 days off) due to dose-limiting toxicities, most commonly neutropenia, febrile neutropenia, and electrolyte disturbances, with the triplet combination deemed intolerable and unable to be developed further. Varlitinib was then combined with paclitaxel alone; the recommended phase II dose of varlitinib was 300 mg twice daily intermittently. The addition of subcutaneous trastuzumab 600 mg was safe with no dose-limiting toxicities. Thirty-one patients were evaluable for response: 35.5% partial response, 41.9% stable disease. Twenty patients had HER2+ metastatic breast cancer with a median of 4 (0–14) treatment lines, 8/20 continued on single-agent varlitinib after completing chemotherapy for a median of 5.1 (range 2.0–13.3) months. A pharmacokinetic analysis showed that plasma exposure of varlitinib was dose dependent. Varlitinib administration did not significantly affect the maximum concentration or area under the curve of paclitaxel. Conclusions The recommended phase II dose of varlitinib with paclitaxel is 300 mg twice daily intermittently dosed. This is active in HER2+ metastatic breast cancer. Subcutaneous trastuzumab can be added safely to varlitinib and paclitaxel. This combination is currently being evaluated as neoadjuvant therapy in HER2+ breast cancer (NCT02396108). Clinical Trial Registration: NCT02396108, date of registration: 25 March, 2015. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00867-0.
Collapse
Affiliation(s)
- Matilda Xinwei Lee
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Andrea L A Wong
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Samuel Ow
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Cheng Ean Chee
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Joline S J Lim
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Siew Eng Lim
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
191
|
A pharmacokinetic study to comparatively evaluate the bioequivalence and safety of a humanized recombinant monoclonal antibody targeting human epidermal growth factor receptor-2 with the reference Herceptin in healthy Chinese subjects. Invest New Drugs 2022; 40:606-613. [PMID: 35190972 DOI: 10.1007/s10637-022-01220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE This study aimed to compare the safety, tolerability, pharmacokinetics (PK), and bioequivalence of a test humanized recombinant monoclonal antibody targeting human epidermal growth factor receptor-2 (HER-2) with the reference Herceptin®. MATERIALS AND METHODS The trial consisted of two parts (part I and part II). Part I was an open-label, sequential-cohort dose-escalation study, where 16 healthy subjects were either intravenously infused with QLHER2 (test) at single doses escalating from 0.2 to 6 mg/kg (0.2, 1, 2, 4, and 6 mg/kg) or given 4 mg/kg Herceptin (reference) for evaluating the safety, tolerability, and PK of QLHER2. Part II was a randomized, double-blind, parallel-group study to evaluate the bioequivalence of QLHER2 and Herceptin in 60 subjects. RESULTS Following a 1.5-h intravenous infusion of single ascending doses of QLHER2 (1, 2, 4, or 6 mg/kg) in part I, Cmax and Tmax were 19.43-120.01 μg/mL and 68.91-157.87 h, respectively. AUC0-t and CL were 1.91-34.21 h·μg/mL and 0.54-0.12 mL/h/kg, indicating lower clearance at higher doses, with a greater than proportional increase in AUC0-t and t1/2 of 68.91-157.87 h. In part II, serum concentrations were comparable between QLHER2 and Herceptin over a 70-day sampling period, and the QLHER2/Herceptin ratios of Cmax and AUC0-t were 105.90% [90% confidence interval (CI): 95.69%-117.26%] and 95.79% (90% CI: 87.74%-106.40%), respectively. CONCLUSION The 90% CI value of Cmax and AUC0-t for QLHER2/Herceptin ratio ranged between 80.0%-125.00%, indicating that QLHER2 was bioequivalent to Herceptin. These results support further evaluation of QLHER2. Trial registration number: ChiCTR2000041577 and ChiCTR2100041802. Date of registration: 30th December, 2020 and 5th January 2021.
Collapse
|
192
|
Tsao LC, Crosby EJ, Trotter TN, Wei J, Wang T, Yang X, Summers AN, Lei G, Rabiola CA, Chodosh LA, Muller WJ, Lyerly HK, Hartman ZC. Trastuzumab/Pertuzumab combination therapy stimulates anti-tumor responses through complement-dependent cytotoxicity and phagocytosis. JCI Insight 2022; 7:155636. [PMID: 35167491 PMCID: PMC8986081 DOI: 10.1172/jci.insight.155636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Standard-of-care treatment for advanced HER2+ breast cancers (BC) is comprised of two HER2-specific monoclonal antibodies (mAb), Trastuzumab (T) and Pertuzumab (P) with chemotherapy. While this combination (T+P) is highly effective, its synergistic mechanism of action (MOA) is not completely known. Initial studies had demonstrated that Pertuzumab suppressed HER2 hetero-dimerization as the potential therapeutic MOA, thus the improved outcome associated with the T+P combination MOA compared to Trastuzumab alone has been widely reported as being due to Pertuzumab-mediated suppression of HER2 signaling in combination with Trastuzumab-mediated induction of anti-tumor immunity. Unraveling this MOA may be critical to extend this combination strategy to other antigens or other cancers, as well as improving this current treatment modality. Using novel murine and human versions of Pertuzumab, we found it induced both Antibody-Dependent-Cellular-Phagocytosis (ADCP) by tumor-associated macrophages and suppression of HER2 oncogenic signaling. Most significantly, we identified that only T+P combination therapy, but not when either antibody used in isolation, allows for the activation of the classical complement pathway, resulting in both direct complement-dependent cytotoxicity (CDC) as well as complement-dependent cellular phagocytosis (CDCP) of HER2+ BC cells. Notably, we show that tumor expression of C1q was positively associated with survival outcome in HER2+ BC patients, whereas expression of complement regulators CD55 and CD59 were inversely correlated, suggesting the importance of complement activity in clinical outcomes. Accordingly, inhibition of C1 activity in mice abolished the synergistic therapeutic activity of T+P therapy, whereas knockdown of CD55 and CD59 expression enhanced T+P efficacy. In summary, our study identifies classical complement activation as a significant anti-tumor MOA for T+P therapy that may be functionally enhanced to augment therapeutic efficacy in the clinic.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, United States of America
| | - Erika J Crosby
- Department of Surgery, Duke University, Durham, United States of America
| | - Timothy N Trotter
- Department of Surgery, Duke University, Durham, United States of America
| | - Junping Wei
- Department of Surgery, Duke University, Durham, United States of America
| | - Tao Wang
- Department of Surgery, Duke University, Durham, United States of America
| | - Xiao Yang
- Department of Surgery, Duke University, Durham, United States of America
| | - Amanda N Summers
- Department of Surgery, Duke University, Durham, United States of America
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, United States of America
| | | | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, United States of America
| | | | - Herbert Kim Lyerly
- Department of Surgery, Duke University, Durham, United States of America
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, United States of America
| |
Collapse
|
193
|
Li Y, Abudureheiyimu N, Mo H, Guan X, Lin S, Wang Z, Chen Y, Chen S, Li Q, Cai R, Wang J, Luo Y, Fan Y, Yuan P, Zhang P, Li Q, Ma F, Xu B. In Real Life, Low-Level HER2 Expression May Be Associated With Better Outcome in HER2-Negative Breast Cancer: A Study of the National Cancer Center, China. Front Oncol 2022; 11:774577. [PMID: 35111669 PMCID: PMC8801428 DOI: 10.3389/fonc.2021.774577] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background To characterize the clinical and pathological features and survival of patients with human epidermal growth factor receptor 2 (HER2)-low breast cancer in China. Methods The China National Cancer Center database was used to identify 1,433 metastatic breast cancer patients with HER2-negative disease diagnosed between 2005 and 2015. Clinicopathological features, survival, and prognosis information were extracted. Overall survival (OS) was estimated using the Kaplan–Meier method and compared using the log-rank test. Prognostic factors associated with OS were analyzed using Cox regression model with 95% confidence interval (95% CI). Results There were 618 (43.1%) and 815 (56.9%) HER2-low and HER2-zero tumors out of 1,433 tumors, respectively. The proportion of hormone receptor (HR)-positive tumors was significantly higher in HER2-low tumors than in those with HER2-zero tumors (77.8% vs. 69.2%, p < 0.001). Patients with HER2-low tumors survived significantly longer than those with HER2-zero tumors in the overall population (48.5 months vs. 43.0 months, p = 0.004) and HR-positive subgroup (54.9 months vs. 48.1 months, p = 0.011), but not in the HR-negative subgroup (29.5 months vs. 29.9 months, p = 0.718). Multivariate regression analysis revealed that HER2-low tumors were independently associated with increased OS in HER2-negative population (HR: 0.85, 95% CI: 0.73–0.98, p = 0.026). Conclusion Our findings demonstrate that HER2-low tumors could be identified as a more distinct clinical entity from HER2-zero tumors, especially for the HR-positive subgroup. A more complex molecular landscape of HER2-low breast cancer might exist, and more precise diagnostic algorithms for HER2 testing could be investigated, thus offering new therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Yiqun Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nilupai Abudureheiyimu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoyan Lin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijing Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yimeng Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruigang Cai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
194
|
Chang CH, Jung CJ, Huang YM, Chiao L, Chang YL, Hsieh SC, Lin CH, Kuo YM. The first reported case of trastuzumab induced interstitial lung disease associated with anti-neutrophil cytoplasmic antibody vasculitis - A case report and a prospective cohort study on the usefulness of neutrophil derived biomarkers in monitoring vasculitis disease activity during follow-up. Breast 2022; 61:35-42. [PMID: 34894465 PMCID: PMC8669110 DOI: 10.1016/j.breast.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Targeted therapies against human epidermal growth factor receptor 2 (HER2) are associated with increased interstitial lung disease (ILD). Trastuzumab, lapatinib, pertuzumab, and trastuzumab emtansine have markedly extended HER2 breast cancer survival but current knowledge on how these HER2-targeted agents induce interstitial lung disease is still poorly defined due to limited cases in the literature. Physicians mostly managed this complication by dose interruption, dose de-escalation, or discontinuation with success. In 2019, the FDA had granted accelerated approval on trastuzumab deruxtecan (T-Dxd) in HER2 breast cancer in the late line setting. Severe ILD incidence rate was over ten percent and led to fatal outcomes in 2.2% of patients in the T-Dxd trial. Searching for biomarkers to detect ILD incidence before it becomes clinically fulminant or for treatment response monitoring is of high clinical value. A Case of life-threatening trastuzumab-induced ILD was encountered in our facility. The ILD was confirmed to be antineutrophil cytoplasmic antibody (ANCA) pulmonary capillaritis. The biomarker of neutrophil extracellular traps (NETs), serum MPO-DNA complex, showed a good correlation with the clinical severity. Soon after B cell depleting agent rituximab usage, the serum MPO-DNA outperformed ANCA autoantibody and maintained its correlation with clinical severity. In addition to the trastuzumab-induced ILD case, a prospective cohort in our facility also confirmed the usefulness of MPO-DNA in monitoring vasculitis activity. We postulated that upfront testing with biomarkers of vasculitis during HER2 targeted treatment with high ILD incidence may be beneficial in the future.
Collapse
Affiliation(s)
- Chen-Han Chang
- Department of Medical Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ming Huang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Lo Chiao
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Leong Chang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pathology, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Song-Chou Hsieh
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Medical Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yu-Min Kuo
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
195
|
Bartsch R, Gampenrieder SP, Rinnerthaler G, Petru E, Egle D, Petzer A, Balic M, Pluschnig U, Sliwa T, Singer C. Updated Austrian treatment algorithm in HER2+ metastatic breast cancer. Wien Klin Wochenschr 2022; 134:63-72. [PMID: 35089396 PMCID: PMC8813714 DOI: 10.1007/s00508-021-01987-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
A group of Austrian breast cancer specialists met in December 2020 to establish a comprehensive clinical benefit-risk profile of available HER2-targeted therapies based on recent data and to develop an updated treatment algorithm by consensus over several months in 2021. A total of four scenarios were developed in which treatment strategies appropriate for specific patient profiles were evaluated. Consensus was established by detailed discussions of each scenario and by reaching full consensus.
Collapse
Affiliation(s)
- Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Simon Peter Gampenrieder
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Gabriel Rinnerthaler
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Edgar Petru
- University Hospital for Gynecology and Obstetrics, Clinical Department of Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Daniel Egle
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Andreas Petzer
- Barmherzige Schwestern, Elisabethinen, Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz GmbH, Seilerstätte 4, 4010, Linz, Austria
| | - Marija Balic
- Department of Internal Medicine, Division of Clinical Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Ursula Pluschnig
- Department of Internal Medicine and Hematology and Internal Oncology, Klagenfurt Hospital, Feschnigstraße 11, 9020, Klagenfurt am Wörthersee, Austria
| | - Thamer Sliwa
- 3rd Medical Department, Hematology and Oncology, Hanusch Hospital, Heinrich-Collin-Straße 30, 1140, Vienna, Austria
| | - Christian Singer
- Department of Gynecology, Breast Cancer Center Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
196
|
Chen Z, Yuan J, Xu Y, Zhang C, Li Z, Gong J, Li Y, Shen L, Gao J. From AVATAR Mice to Patients: RC48-ADC Exerted Promising Efficacy in Advanced Gastric Cancer With HER2 Expression. Front Pharmacol 2022; 12:757994. [PMID: 35069192 PMCID: PMC8769204 DOI: 10.3389/fphar.2021.757994] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
RC48-ADC is a novel humanized antibody specific for human epidermal growth factor receptor 2 (HER2)in conjugation with a microtubule inhibitor via a cleavable linker. This study was to evaluate the antitumor activity and mechanism of RC48-ADC in gastric cancer (GC) and explore the population that may benefit from RC48-ADC treatment. Four human GC cell lines and nine patient-derived xenograft (PDX) models were exploited to evaluate the antitumor effect of RC48-ADC or trastuzumab treatment in vitro and in vivo. The expression and phosphorylation of HER2 were assessed by immunohistochemistry (IHC) staining. Critical molecules of downstream PI3K/AKT and cell cycle and apoptosis signaling pathways were detected and quantified by immunoblotting. Combined with preliminary results of preclinical research, three patients with IHC3+, IHC2+/FISH+, and IHC2+/FISH- of HER2 were enrolled to verify the efficacy of RC48-ADC treatment in advanced GC. In vitro, RC48-ADC had superior antiproliferative effects in a dose-dependent manner on GC cells, especially on HER2-positive cells. In vivo, RC48-ADC exceeded trastuzumab in GC PDX models with HER2 expression, even in models with moderate to low expression of HER2. Further exploration of mechanism showed that RC48-ADC exerted the antitumor effect by inhibiting phosphorylation of HER2, inducing G2/M phase arrest and cell apoptosis in HER2-expressed PDX models. In clinical practice, RC48-ADC had satisfactory efficacy in HER2-positive and HER2 moderately expressed GC patients and demonstrated promising efficacy in HER2-positive patients who have progressed after anti-HER2 therapy. In conclusion, RC48-ADC exerted promising antitumor activity in HER2-positive as well as score of 2+ in IHC and ISH-negative AGC patients after progression of systematic treatment.
Collapse
Affiliation(s)
- Zuhua Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yingying Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Cheng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanyan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
197
|
Macagno M, Bandini S, Bolli E, Bello A, Riccardo F, Barutello G, Merighi IF, Forni G, Lamolinara A, Del Pizzo F, Iezzi M, Cavallo F, Conti L, Quaglino E. Role of ADCC, CDC, and CDCC in Vaccine-Mediated Protection against Her2 Mammary Carcinogenesis. Biomedicines 2022; 10:biomedicines10020230. [PMID: 35203439 PMCID: PMC8869482 DOI: 10.3390/biomedicines10020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.
Collapse
Affiliation(s)
- Marco Macagno
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Elisabetta Bolli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Amanda Bello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Giuseppina Barutello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Irene Fiore Merighi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Guido Forni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Alessia Lamolinara
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Francesco Del Pizzo
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Manuela Iezzi
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Elena Quaglino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| |
Collapse
|
198
|
Bults P, van der Voort A, Meijer C, Sonke GS, Bischoff R, van de Merbel NC. Analytical and pharmacological consequences of the in vivo deamidation of trastuzumab and pertuzumab. Anal Bioanal Chem 2022; 414:1513-1524. [DOI: 10.1007/s00216-021-03756-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
|
199
|
Bordeau BM, Polli JR, Schweser F, Grimm HP, Richter WF, Balthasar JP. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Monoclonal Antibody Tumor Disposition. Int J Mol Sci 2022; 23:679. [PMID: 35054865 PMCID: PMC8775965 DOI: 10.3390/ijms23020679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
The prediction of monoclonal antibody (mAb) disposition within solid tumors for individual patients is difficult due to inter-patient variability in tumor physiology. Improved a priori prediction of mAb pharmacokinetics in tumors may facilitate the development of patient-specific dosing protocols and facilitate improved selection of patients for treatment with anti-cancer mAb. Here, we report the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), with tumor penetration of the contrast agent gadobutrol used as a surrogate, to improve physiologically based pharmacokinetic model (PBPK) predictions of cetuximab pharmacokinetics in epidermal growth factor receptor (EGFR) positive xenografts. In the initial investigations, mice bearing Panc-1, NCI-N87, and LS174T xenografts underwent DCE-MRI imaging with the contrast agent gadobutrol, followed by intravenous dosing of an 125Iodine-labeled, non-binding mAb (8C2). Tumor concentrations of 8C2 were determined following the euthanasia of mice (3 h-6 days after 8C2 dosing). Potential predictor relationships between DCE-MRI kinetic parameters and 8C2 PBPK parameters were evaluated through covariate modeling. The addition of the DCE-MRI parameter Ktrans alone or Ktrans in combination with the DCE-MRI parameter Vp on the PBPK parameters for tumor blood flow (QTU) and tumor vasculature permeability (σTUV) led to the most significant improvement in the characterization of 8C2 pharmacokinetics in individual tumors. To test the utility of the DCE-MRI covariates on a priori prediction of the disposition of mAb with high-affinity tumor binding, a second group of tumor-bearing mice underwent DCE-MRI imaging with gadobutrol, followed by the administration of 125Iodine-labeled cetuximab (a high-affinity anti-EGFR mAb). The MRI-PBPK covariate relationships, which were established with the untargeted antibody 8C2, were implemented into the PBPK model with considerations for EGFR expression and cetuximab-EGFR interaction to predict the disposition of cetuximab in individual tumors (a priori). The incorporation of the Ktrans MRI parameter as a covariate on the PBPK parameters QTU and σTUV decreased the PBPK model prediction error for cetuximab tumor pharmacokinetics from 223.71 to 65.02%. DCE-MRI may be a useful clinical tool in improving the prediction of antibody pharmacokinetics in solid tumors. Further studies are warranted to evaluate the utility of the DCE-MRI approach to additional mAbs and additional drug modalities.
Collapse
Affiliation(s)
- Brandon M. Bordeau
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| | - Joseph Ryan Polli
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Clinical and Translational Science Institute, Center for Biomedical Imaging, University at Buffalo, Buffalo, NY 14203, USA
| | - Hans Peter Grimm
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (H.P.G.); (W.F.R.)
| | - Wolfgang F. Richter
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (H.P.G.); (W.F.R.)
| | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| |
Collapse
|
200
|
Murphy P, Glynn D, Dias S, Hodgson R, Claxton L, Beresford L, Cooper K, Tappenden P, Ennis K, Grosso A, Wright K, Cantrell A, Stevenson M, Palmer S. Modelling approaches for histology-independent cancer drugs to inform NICE appraisals: a systematic review and decision-framework. Health Technol Assess 2022; 25:1-228. [PMID: 34990339 DOI: 10.3310/hta25760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The first histology-independent marketing authorisation in Europe was granted in 2019. This was the first time that a cancer treatment was approved based on a common biomarker rather than the location in the body at which the tumour originated. This research aims to explore the implications for National Institute for Health and Care Excellence appraisals. METHODS Targeted reviews were undertaken to determine the type of evidence that is likely to be available at the point of marketing authorisation and the analyses required to support National Institute for Health and Care Excellence appraisals. Several challenges were identified concerning the design and conduct of trials for histology-independent products, the greater levels of heterogeneity within the licensed population and the use of surrogate end points. We identified approaches to address these challenges by reviewing key statistical literature that focuses on the design and analysis of histology-independent trials and by undertaking a systematic review to evaluate the use of response end points as surrogate outcomes for survival end points. We developed a decision framework to help to inform approval and research policies for histology-independent products. The framework explored the uncertainties and risks associated with different approval policies, including the role of further data collection, pricing schemes and stratified decision-making. RESULTS We found that the potential for heterogeneity in treatment effects, across tumour types or other characteristics, is likely to be a central issue for National Institute for Health and Care Excellence appraisals. Bayesian hierarchical methods may serve as a useful vehicle to assess the level of heterogeneity across tumours and to estimate the pooled treatment effects for each tumour, which can inform whether or not the assumption of homogeneity is reasonable. Our review suggests that response end points may not be reliable surrogates for survival end points. However, a surrogate-based modelling approach, which captures all relevant uncertainty, may be preferable to the use of immature survival data. Several additional sources of heterogeneity were identified as presenting potential challenges to National Institute for Health and Care Excellence appraisal, including the cost of testing, baseline risk, quality of life and routine management costs. We concluded that a range of alternative approaches will be required to address different sources of heterogeneity to support National Institute for Health and Care Excellence appraisals. An exemplar case study was developed to illustrate the nature of the assessments that may be required. CONCLUSIONS Adequately designed and analysed basket studies that assess the homogeneity of outcomes and allow borrowing of information across baskets, where appropriate, are recommended. Where there is evidence of heterogeneity in treatment effects and estimates of cost-effectiveness, consideration should be given to optimised recommendations. Routine presentation of the scale of the consequences of heterogeneity and decision uncertainty may provide an important additional approach to the assessments specified in the current National Institute for Health and Care Excellence methods guide. FURTHER RESEARCH Further exploration of Bayesian hierarchical methods could help to inform decision-makers on whether or not there is sufficient evidence of homogeneity to support pooled analyses. Further research is also required to determine the appropriate basis for apportioning genomic testing costs where there are multiple targets and to address the challenges of uncontrolled Phase II studies, including the role and use of surrogate end points. FUNDING This project was funded by the National Institute for Health Research (NIHR) Evidence Synthesis programme and will be published in full in Health Technology Assessment; Vol. 25, No. 76. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter Murphy
- Centre for Reviews and Dissemination, University of York, York, UK
| | - David Glynn
- Centre for Health Economics, University of York, York, UK
| | - Sofia Dias
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Robert Hodgson
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Lindsay Claxton
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Lucy Beresford
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Katy Cooper
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Paul Tappenden
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Kate Ennis
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | | | - Kath Wright
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Anna Cantrell
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Matt Stevenson
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Stephen Palmer
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|