151
|
An electrophysiological classification associated with Guillain–Barré syndrome outcomes. J Neurol 2014; 261:1986-93. [DOI: 10.1007/s00415-014-7452-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
|
152
|
Bae JS, Yuki N, Kuwabara S, Kim JK, Vucic S, Lin CS, Kiernan MC. Guillain-Barré syndrome in Asia. J Neurol Neurosurg Psychiatry 2014; 85:907-13. [PMID: 24357682 DOI: 10.1136/jnnp-2013-306212] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Over the past 20 years, the most notable advance in understanding Guillain-Barré syndrome (GBS) has been the identification of an axonal variant. This advance arose chiefly through studies undertaken in East Asian countries and comprised two major aspects: first, the immunopathogenesis of axonal GBS related to anti-ganglioside antibodies and molecular mimicry of Campylobacter jejuni; and second, the observation that distinct electrophysiological patterns of axonal GBS existed, reflecting reversible conduction failure (RCF). As a consequence, the pathophysiology of acute motor axonal neuropathy (AMAN) has perhaps become better understood than acute inflammatory demyelinating polyneuropathy. Despite these more recent advances, a critical issue remains largely unresolved: whether axonal GBS is more common in Asia than in Europe or North America. If it is more common in Asia, then causative factors must be more critically considered, including geographical differences, issues of genetic susceptibility, the role of antecedent infections and other potential triggering factors. It has become apparent that the optimal diagnosis of AMAN requires serial electrophysiological testing, to better delineate RCF, combined with assessment for the presence of anti-ganglioside antibodies. Recent collaborative approaches between Europe and Asia have suggested that both the electrophysiological pattern of AMAN and the seropositivity for anti-ganglioside antibodies develop similarly. Separately, however, current electrodiagnostic criteria for AMAN limited to a single assessment appear inadequate to identify the majority of cases. As such, diagnostic criteria will need to be revised to improve the diagnostic sensitivity for AMAN.
Collapse
Affiliation(s)
- Jong Seok Bae
- Department of Neurology, College of Medicine, Hallym University, Seoul, Korea Neuroscience Research Australia, Sydney, Australia
| | - Nobuhiro Yuki
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jong Kuk Kim
- Department of Neurology, College of Medicine, Dong-A University, Busan, Korea
| | - Steve Vucic
- Neuroscience Research Australia, Sydney, Australia Department of Neurology, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Cindy S Lin
- Neuroscience Research Australia, Sydney, Australia
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain & Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
153
|
|
154
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 515] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
155
|
Watzlawik JO, Wootla B, Painter MM, Warrington AE, Rodriguez M. Cellular targets and mechanistic strategies of remyelination-promoting IgMs as part of the naturally occurring autoantibody repertoire. Expert Rev Neurother 2014; 13:1017-29. [PMID: 24053345 DOI: 10.1586/14737175.2013.835601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunoglobulins with germline sequences occur in invertebrates and vertebrates and are named naturally occurring autoantibodies (NAbs). NAbs may target foreign antigens, self- or altered self-components and are part of the normal immunoglobulin repertoire. Accumulating evidence indicates that naturally occurring antibodies can act as systemic surveillance molecules, which tag, damaged or stressed cells, invading pathogens and toxic cellular debris for elimination by the immune system. In addition to acting as detecting molecules, certain types of NAbs actively signal in different cell types with a broad range of responses from induction of apoptosis in cancer cells to stimulation of remyelination in glial cells. This review emphasizes functions and characteristics of NAbs with focus on remyelination-promoting mouse and human antibodies. Human remyelination-promoting NAbs are potential therapeutics to combat a wide spectrum of disease processes including demyelinating diseases like multiple sclerosis. We will highlight the identified glycosphingolipid (SL) antigens of polyreactive remyelination-promoting antibodies and their proposed mechanism(s) of action. The nature of the identified antigens suggests a lipid raft-based mechanism for remyelination-promoting antibodies with SLs as most essential raft components. However, accumulating evidence also suggests involvement of other antigens in stimulation of remyelination, which will be discussed in the text.
Collapse
Affiliation(s)
- Jens O Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic, College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
156
|
Wakerley BR, Yuki N. Infectious and noninfectious triggers in Guillain-Barré syndrome. Expert Rev Clin Immunol 2014; 9:627-39. [PMID: 23899233 DOI: 10.1586/1744666x.2013.811119] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Guillain-Barré syndrome (GBS) is the commonest cause of acquired flaccid paralysis in the world and regarded by many as the prototype for postinfectious autoimmunity. Here the authors consider both infectious and noninfectious triggers of GBS and determine where possible what immunological mechanisms may account for this association. In approximately two-thirds of cases, an infectious trigger is reported in the weeks that lead up to disease onset, indicating that the host's response to infection must play an important role in disease pathogenesis. The most frequently identified bacteria, Campylobacter jejuni, through a process known as molecular mimicry, has been shown to induce cross-reactive anti-ganglioside antibodies, which can lead to the development of axonal-type GBS in some patients. Whether this paradigm can be extended to other infectious organisms or vaccines remains an important area of research and has public health implications. GBS has also been reported rarely in patients with underlying systemic diseases and immunocompromised states and although the exact mechanism is yet to be established, increased susceptibility to known infectious triggers should be considered most likely.
Collapse
Affiliation(s)
- Benjamin R Wakerley
- Department of Medicine, National University Hospital, 1E Kent Ridge Road, Singapore.
| | | |
Collapse
|
157
|
Wang D, Bhat R, Sobel RA, Huang W, Wang LX, Olsson T, Steinman L. Uncovering cryptic glycan markers in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Drug Dev Res 2014; 75:172-88. [PMID: 24648292 DOI: 10.1002/ddr.21169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/10/2014] [Indexed: 01/18/2023]
Abstract
Using an integrated antigen microarray approach, we observed epitope-spreading of autoantibody responses to a variety of antigenic structures in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and in the serum of mice with experimental autoimmune encephalomyelitis (EAE). These included previously described protein- and lipid-based antigenic targets and newly discovered autoimmunogenic sugar moieties, notably, autoantibodies specific for the oligomannoses in both MS patient CSF and the sera of mice with EAE. These glycans are often masked by other sugar moieties and belong to a class of cryptic autoantigens. We further determined that these targets are highly expressed on multiple cell types in MS and EAE lesions. Co-immunization of SJL/J mice with a Man9-KLH conjugate at the time of EAE induction elicited highly significant levels of anti-Man9-cluster autoantibodies. Nevertheless, this anti-glycan autoantibody response was associated with a significantly reduced clinical severity of EAE. The potential of these cryptic glycan markers and targeting antibodies for diagnostic and therapeutic interventions of neurological disorders has yet to be explored.
Collapse
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA, 94025, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Acute motor axonal neuropathy (AMAN) is a pure motor axonal subtype of Guillain-Barré syndrome (GBS) that was identified in the late 1990s. In Asia and Central and South America, it is the major subtype of GBS, seen in 30-65% of patients. AMAN progresses more rapidly and has an earlier peak than demyelinating GBS; tendon reflexes are relatively preserved or even exaggerated, and autonomic dysfunction is rare. One of the main causes is molecular mimicry of human gangliosides by Campylobacter jejuni lipo-oligosaccharides. In addition to axonal degeneration, electrophysiology shows rapidly reversible nerve conduction blockade or slowing, presumably due to pathological changes at the nodes or paranodes. Autoantibodies that bind to GM1 or GD1a gangliosides at the nodes of Ranvier activate complement and disrupt sodium-channel clusters and axoglial junctions, which leads to nerve conduction failure and muscle weakness. Improved understanding of the disease mechanism and pathophysiology might lead to new treatment options and improve the outlook for patients with AMAN.
Collapse
Affiliation(s)
- Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | |
Collapse
|
159
|
Mohammed JP, Mattner J. Autoimmune disease triggered by infection with alphaproteobacteria. Expert Rev Clin Immunol 2014; 5:369-379. [PMID: 20161124 DOI: 10.1586/eci.09.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite having long been postulated, compelling evidence for the theory that microbial triggers drive autoimmunity has only recently been reported. A specific association between Novosphingobium aromaticivorans, an ubiquitous alphaproteobacterium, and primary biliary cirrhosis (PBC) has been uncovered in patients with PBC. Notably, the association between Novosphingobium infection and PBC has been confirmed in a mouse model in which infection leads to the development of liver lesions resembling PBC concomitant with the production of anti-PDC-E2 antibodies that cross-react with conserved PDC-E2 epitopes shared by Novosphingobium. The discovery of infectious triggers of autoimmunity is likely to change our current concepts about the etiology of various autoimmune syndromes and may suggest new and simpler ways to diagnose and treat these debilitating diseases.
Collapse
Affiliation(s)
- Javid P Mohammed
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | | |
Collapse
|
160
|
|
161
|
Uncini A, Yuki N. Electrophysiologic and immunopathologic correlates in Guillain–Barré syndrome subtypes. Expert Rev Neurother 2014; 9:869-84. [DOI: 10.1586/ern.09.43] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
162
|
Shahrizaila N, Yuki N. Antiganglioside antibodies in Guillain–Barré syndrome and its related conditions. Expert Rev Neurother 2014; 11:1305-13. [DOI: 10.1586/ern.11.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
163
|
Abstract
The peripheral nervous system (PNS) comprises the cranial nerves, the spinal nerves with their roots and rami, dorsal root ganglia neurons, the peripheral nerves, and peripheral components of the autonomic nervous system. Cell-mediated or antibody-mediated immune attack on the PNS results in distinct clinical syndromes, which are classified based on the tempo of illness, PNS component(s) involved, and the culprit antigen(s) identified. Insights into the pathogenesis of autoimmune neuropathy have been provided by ex vivo immunologic studies, biopsy materials, electrophysiologic studies, and experimental models. This review article summarizes earlier seminal observations and highlights the recent progress in our understanding of immunopathogenesis of autoimmune neuropathies based on data from animal models.
Collapse
Affiliation(s)
- Betty Soliven
- Address correspondence and reprint requests to Dr. Betty Soliven, Room S225, Department of Neurology MC2030, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 or
| |
Collapse
|
164
|
Abstract
Collagens, the most abundant proteins in animals, also occur in some recently described nucleocytoplasmic large DNA viruses such as Mimiviridae, which replicate in amoebae. To clarify the impact of viral collagens on the immune response of animals exposed to Mimiviridae, we have investigated the localization of collagens in Acanthamoeba polyphaga mimivirus particles and the response of mice to immunization with mimivirus particles. Using protein biotinylation, we have first shown that viral collagen encoded by open reading frame L71 is present at the surface of mimivirus particles. Exposure to mimivirus collagens elicited the production of anti-collagen antibodies in DBA/1 mice immunized intradermally with mimivirus protein extracts. This antibody response also targeted mouse collagen type II and was accompanied by T-cell reactivity to collagen and joint inflammation, as observed in collagen-induced arthritis following immunization of mice with bovine collagen type II. The broad distribution of nucleocytoplasmic large DNA viruses in the environment suggests that humans are constantly exposed to such large virus particles. A survey of blood sera from healthy human subjects and from rheumatoid arthritis patients indeed demonstrated that 30% of healthy-subject and 36% of rheumatoid arthritis sera recognized the major mimivirus capsid protein L425. Moreover, whereas 6% of healthy-subject sera recognized the mimivirus collagen protein L71, 22% of rheumatoid arthritis sera were positive for mimivirus L71. Accordingly, our study shows that environmental exposure to mimivirus represents a risk factor in triggering autoimmunity to collagens.
Collapse
|
165
|
Huizinga R, van Rijs W, Bajramovic JJ, Kuijf ML, Laman JD, Samsom JN, Jacobs BC. Sialylation of Campylobacter jejuni endotoxin promotes dendritic cell-mediated B cell responses through CD14-dependent production of IFN-β and TNF-α. THE JOURNAL OF IMMUNOLOGY 2013; 191:5636-45. [PMID: 24166974 DOI: 10.4049/jimmunol.1301536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Campylobacter jejuni is the most common bacterial cause of human gastroenteritis and often precedes development of Guillain-Barré syndrome (GBS), a life-threatening paralytic disease. The incorporation of the carbohydrate sialic acid into C. jejuni lipooligosaccharides (LOS) is associated with increased severity of gastroenteritis and with induction of GBS; however, the underlying mechanisms remain completely unknown. In this study, we demonstrate that sialic acids in C. jejuni endotoxin enhance the rapid production of IFN-β and TNF-α by human dendritic cells (DCs). Using neutralizing Abs and receptors it was shown that these DC-derived cytokines promote the proliferation of human mucosal B cells in a T cell-independent manner. The production of both IFN-β and TNF-α by DCs in response to LOS requires CD14, and the amplified response of DCs to sialylated C. jejuni LOS is CD14 dependent. Together, these results indicate that sialylation of C. jejuni LOS increases DC activation and promotes subsequent B cell responses through CD14-driven production of IFN-β and TNF-α. This enhanced DC/B cell response may explain the increased pathogenicity of sialylated C. jejuni and may be key to the initiation of B cell-mediated autoimmunity in GBS.
Collapse
Affiliation(s)
- Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
166
|
Settem RP, Honma K, Stafford GP, Sharma A. Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface. Front Microbiol 2013; 4:310. [PMID: 24146665 PMCID: PMC3797959 DOI: 10.3389/fmicb.2013.00310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/27/2013] [Indexed: 12/20/2022] Open
Abstract
Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized surface-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens.
Collapse
Affiliation(s)
- Rajendra P Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York Buffalo, NY, USA
| | | | | | | |
Collapse
|
167
|
Nodo-paranodopathy: Beyond the demyelinating and axonal classification in anti-ganglioside antibody-mediated neuropathies. Clin Neurophysiol 2013; 124:1928-34. [DOI: 10.1016/j.clinph.2013.03.025] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 11/21/2022]
|
168
|
Moeller S, Lau NM, Green PHR, Hellberg D, Higgins JJ, Rajadhyaksha AM, Alaedini A. Lack of association between autism and anti-GM1 ganglioside antibody. Neurology 2013; 81:1640-1. [PMID: 24068789 DOI: 10.1212/wnl.0b013e3182a9f3dd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sina Moeller
- From the Department of Medicine (S.M., N.M.L., P.H.R.G., A.A.), Columbia University Medical Center, New York, NY; Center for Clinical Research (D.H.), Uppsala University, Falun, Sweden; and Departments of Pediatrics (J.J.H., A.M.R.) and Neurology & Neuroscience (A.M.R.), Weill Cornell Medical College, New York, NY
| | | | | | | | | | | | | |
Collapse
|
169
|
Uncini A, Notturno F, Capasso M. Natura Non Facit Saltusin Anti-Ganglioside Antibody-Mediated Neuropathies. Muscle Nerve 2013; 48:484-7. [DOI: 10.1002/mus.23881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Antonino Uncini
- Department of Neuroscience and Imaging; University “G. d'Annunzio,”; Chieti-Pescara Italy
| | - Francesca Notturno
- Department of Neuroscience and Imaging; University “G. d'Annunzio,”; Chieti-Pescara Italy
| | - Margherita Capasso
- Department of Neuroscience and Imaging; University “G. d'Annunzio,”; Chieti-Pescara Italy
| |
Collapse
|
170
|
Lehmann HC, Hughes RAC, Kieseier BC, Hartung HP. Recent developments and future directions in Guillain-Barré syndrome. J Peripher Nerv Syst 2013; 17 Suppl 3:57-70. [PMID: 23279434 DOI: 10.1111/j.1529-8027.2012.00433.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Guillain-Barré syndrome (GBS) encompasses a spectrum of acquired neuropathic conditions characterized by inflammatory demyelinating or axonal peripheral neuropathy with acute onset. Clinical and experimental studies in the past years have led to substantial progress in epidemiology, pathogenesis of GBS variants, and identification of prognostic factors relevant to treatment. In this review we provide an overview and critical assessment of the most recent developments and future directions in GBS research.
Collapse
Affiliation(s)
- Helmar C Lehmann
- Department of Neurology, Heinrich-Heine-University, Medical School, Moorenstrasse 5, Düsseldorf, Germany
| | | | | | | |
Collapse
|
171
|
Glycolipid antigens and autoantibodies in autoimmune neuropathies. Trends Immunol 2013; 34:453-9. [DOI: 10.1016/j.it.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 05/01/2013] [Indexed: 11/24/2022]
|
172
|
Prasanphanich NS, Mickum ML, Heimburg-Molinaro J, Cummings RD. Glycoconjugates in host-helminth interactions. Front Immunol 2013; 4:240. [PMID: 24009607 PMCID: PMC3755266 DOI: 10.3389/fimmu.2013.00240] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022] Open
Abstract
Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics.
Collapse
Affiliation(s)
- Nina Salinger Prasanphanich
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Megan L. Mickum
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D. Cummings
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
173
|
Abstract
Although the immune system evolved to protect the host from foreign infection, it can sometimes recognize and attack host tissues, a phenomenon known as autoimmunity. In addition to genetic factors, environmental elements such as viruses and bacteria are thought to play a role in the development of autoimmune diseases. The major hypothesized mechanism by which infection with these agents can lead to autoimmunity is termed molecular mimicry. Here, immune responses initiated against foreign antigens are cross-reactive with self-antigens. This is thought to occur especially if the foreign antigen is similar in structure or amino acid sequence to the self-antigen. In this review, we explore evidence for the role of molecular mimicry in neurological diseases.
Collapse
Affiliation(s)
- Anne M Ercolini
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
174
|
Hotta S, Nagaoka T, Taguchi K, Nakatani Y, Utsnomiya I, Masuda Y, Abe K, Yuki N. Neurophysiological and immunohistochemical studies of IgG anti-GM1 monoclonal antibody on neuromuscular transmission: effects in rat neuromuscular junctions. Neurol Sci 2013; 35:205-13. [PMID: 23820959 DOI: 10.1007/s10072-013-1480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Guillain-Barré syndrome, which is a variant of acute inflammatory neuropathy, is associated with anti-GM1 antibodies and causes ataxia. We investigated the effects of IgG anti-GM1 monoclonal antibody (IgG anti-GM1 mAb) on spontaneous muscle action potentials in a rat spinal cord-muscle co-culture system and the localization of IgG anti-GM1 mAb binding in the rat hemi-diaphragm. The frequency of spontaneous muscle action potentials in innervated muscle cells was acutely inhibited by IgG anti-GM1 mAb. When cultures were pretreated with GM2 synthase antisense oligodeoxynucleotide, IgG anti-GM1 mAb failed to inhibit spontaneous muscle action potentials, demonstrating the importance of the GM1 epitope in the action of IgG anti-GM1 mAb. Immunohistochemistry of rat hemi-diaphragm showed that IgG anti-GM1 mAb binding overlapped with neurofilament 200 (NF200) antibodies staining, but not α-bungarotoxin (α-BuTx) staining, demonstrating that IgG anti-GM1 mAb was localized at the presynaptic nerve terminal. IgG anti-GM1 mAb binding overlapped with syntaxin antibody and S-100 antibody in the nerve terminal. After collagenase treatment, IgG anti-GM1 mAb and NF200 antibodies did not show staining, but α-BuTx selectively stained the hemi-diaphragm. IgG anti-GM1 mAb binds to the presynaptic nerve terminal of neuromuscular junctions. Therefore, we suggest that the inhibitory effect of IgG anti-GM1 mAb on spontaneous muscle action potentials is related to the GM1 epitope in presynaptic motor nerve terminals at the NMJs.
Collapse
Affiliation(s)
- Sayako Hotta
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Higashitamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Buttmann M, Kaveri S, Hartung HP. Polyclonal immunoglobulin G for autoimmune demyelinating nervous system disorders. Trends Pharmacol Sci 2013; 34:445-57. [PMID: 23791035 DOI: 10.1016/j.tips.2013.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/08/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
Abstract
Demyelinating diseases with presumed autoimmune pathogenesis are characterised by direct or indirect immune-mediated damage to myelin sheaths, which normally surround nerve fibres to ensure proper electrical nerve conduction. Parenteral administration of polyclonal IgG purified from multi-donor human plasma pools may beneficially modulate these misguided immune reactions via several mechanisms that are outlined in this review. Convincing therapeutic evidence from controlled trials now exists for certain disorders of the peripheral nervous system, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, and multifocal motor neuropathy. In addition, there is evidence for potential therapeutic benefits of IgG in patients with chronic inflammatory demyelinating diseases of the central nervous system, including multiple sclerosis and neuromyelitis optica. This review introduces these disorders, briefly summarises the established treatment options, and discusses therapeutic evidence for the use of polyclonal immunoglobulins with a particular emphasis on recent clinical trials and meta-analyses.
Collapse
Affiliation(s)
- Mathias Buttmann
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | | | | |
Collapse
|
176
|
Dalakas MC. Pathophysiology of autoimmune polyneuropathies. Presse Med 2013; 42:e181-92. [DOI: 10.1016/j.lpm.2013.01.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/14/2013] [Indexed: 11/16/2022] Open
|
177
|
Sathyabama S, Khan N, Agrewala JN. Friendly pathogens: prevent or provoke autoimmunity. Crit Rev Microbiol 2013; 40:273-80. [DOI: 10.3109/1040841x.2013.787043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
178
|
Enhanced, sialoadhesin-dependent uptake of Guillain-Barre syndrome-associated Campylobacter jejuni strains by human macrophages. Infect Immun 2013; 81:2095-103. [PMID: 23529622 DOI: 10.1128/iai.01437-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular mimicry between Campylobacter jejuni sialylated lipooligosaccharides (LOS) and human nerve gangliosides can trigger the production of cross-reactive antibodies which induce Guillain-Barré syndrome (GBS). To better understand the immune events leading to GBS, it is essential to know how sialylated LOS are recognized by the immune system. Here, we show that GBS-associated C. jejuni strains bind to human sialoadhesin (hSn), a conserved, mainly macrophage-restricted I-type lectin. Using hSn-transduced THP-1 cells, we observed that C. jejuni strains with α(2,3)-sialylated LOS, including strains expressing GM1a- and GD1a-like epitopes, bind to hSn. This observation is of importance, as these epitopes are frequently the targets of the cross-reactive antibodies detected in GBS patients. Interestingly, the Sn binding domains were not constitutively exposed on the surface of C. jejuni. Heat inactivation and the environmental conditions which food-borne C. jejuni encounters during its passage through the intestinal tract, such as low pH and contact with bile constituents, exposed LOS and facilitated Sn binding. Sn binding enhanced bacterial uptake and increased the production of interleukin-6 (IL-6) by primary human Sn-expressing monocyte-derived macrophages compared to control conditions, where Sn was blocked using neutralizing antibodies or when nonsialylated C. jejuni was used. Sn-mediated uptake has been reported to enhance humoral immune responses. As C. jejuni strains expressing ganglioside mimics GD1a and GM1a are closely associated with GBS, Sn binding may be a determining event in the production of cross-reactive antibodies and the development of GBS.
Collapse
|
179
|
Guyard-Nicodème M, Tresse O, Houard E, Jugiau F, Courtillon C, El Manaa K, Laisney MJ, Chemaly M. Characterization of Campylobacter spp. transferred from naturally contaminated chicken legs to cooked chicken slices via a cutting board. Int J Food Microbiol 2013; 164:7-14. [PMID: 23587707 DOI: 10.1016/j.ijfoodmicro.2013.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/05/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
Campylobacter represents the leading cause of gastroenteritis in Europe. Campylobacteriosis is mainly due to C. jejuni and C. coli. Poultry meat is the main source of contamination, and cross-contaminations in the consumer's kitchen appear to be the important route for exposure. The aim of this study was to examine the transfer of Campylobacter from naturally contaminated raw poultry products to a cooked chicken product via the cutting board and to determine the characteristics of the involved isolates. This study showed that transfer occurred in nearly 30% of the assays and that both the C. jejuni and C. coli species were able to transfer. Transfer seems to be linked to specific isolates: some were able to transfer during separate trials while others were not. No correlation was found between transfer and adhesion to inert surfaces, but more than 90% of the isolates presented moderate or high adhesion ability. All tested isolates had the ability to adhere and invade Caco-2 cells, but presented high variability between isolates. Our results highlighted the occurrence of Campylobacter cross-contamination via the cutting board in the kitchen. Moreover, they provided new interesting data to be considered in risk assessment studies.
Collapse
Affiliation(s)
- Muriel Guyard-Nicodème
- Anses, Ploufragan/Plouzané Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP 53, Ploufragan, F-22440, France
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
The identification of autoantibodies associated with dysimmune neuropathies was a major contribution to the characterization of peripheral nerve disorders, the understanding of their pathophysiology, and the clinical diagnosis of neuropathies. Antibodies directed to GM1, GQ1b, and disyalilated gangliosides, and anti-MAG antibodies are very useful in the diagnosis of acute or chronic motor or sensory-motor neuropathies with or without monoclonal IgM. Anti-onconeural anti-Hu and anti-CV2/CRMP antibodies allow when they are detected the diagnosis of paraneoplastic neuropathies. This chapter focuses on the description of these antibodies as diagnostic markers and on their immunopathogenesis. We give a background overview on the origin of these antibodies, their detection, and review those studies, which clearly show that these antibodies are capable of binding to the target tissues in peripheral nerve and thereby can exert a variety of pathophysiological effects. The corresponding electrophysiological and histological changes observed both in human and animal models are exemplified in order to get a better understanding of the immune mechanisms of these antibody-mediated neuropathies.
Collapse
Affiliation(s)
- Andreas Steck
- Department of Neurology, University Hospital Basel, Basel, Switzerland.
| | | | | |
Collapse
|
181
|
Abstract
The latest estimation for the frequency of Guillain-Barré syndrome (GBS) is 1.1 to 1.8 per 100000 persons per year. Guillain-Barré syndrome is today divided into two major subtypes: acute inflammatory demyelinating polyneuropathy (AIDP) and the axonal subtypes, acute motor axonal neuropathy (AMAN) and acute motor and sensory axonal neuropathy (AMSAN). The axonal forms of GBS are caused by certain autoimmune mechanisms, due to a molecular mimicry between antecedent bacterial infection (particularly Campylobacter jejuni) and human peripheral nerve gangliosides. Improvements in patient management in intensive care units has permitted a dramatic drop in mortality rates. Immunotherapy, including plasma exchange (PE) or intravenous immunoglobulin (IVIg), seems to shorten the time to recovery, but their effect remains limited. Further clinical investigations are needed to assess the effect of PE or IVIg on the GBS patients with mild affection, no response, or relapse.
Collapse
Affiliation(s)
- Harutoshi Fujimura
- Department of Neurology, Toneyama National Hospital, Toneyama, Toyonaka, Japan.
| |
Collapse
|
182
|
Dalakas MC. Autoimmune peripheral neuropathies. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
183
|
|
184
|
Heikema AP, Jacobs BC, Horst-Kreft D, Huizinga R, Kuijf ML, Endtz HP, Samsom JN, van Wamel WJB. Siglec-7 specifically recognizes Campylobacter jejuni strains associated with oculomotor weakness in Guillain-Barré syndrome and Miller Fisher syndrome. Clin Microbiol Infect 2012; 19:E106-12. [PMID: 23173866 DOI: 10.1111/1469-0691.12073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 11/26/2022]
Abstract
Due to molecular mimicry, Campylobacter jejuni lipo-oligosaccharides can induce a cross-reactive antibody response to nerve gangliosides, which leads to Guillain-Barré syndrome (GBS). Cross-reactive antibodies to ganglioside GQ1b are strongly associated with oculomotor weakness in GBS and its variant, Miller Fisher syndrome (MFS). Antigen recognition is a crucial first step in the induction of a cross-reactive antibody response, and it has been shown that GQ1b-like epitopes expressed on the surface of C. jejuni are recognized by sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7). We aimed to determine the epitope specificity of C. jejuni binding to Siglec-7, and correlate the outcome to disease symptoms in GBS and MFS patients. Using a well-defined GBS/MFS-associated C. jejuni strain collection, which included three sialic acid knockout strains, we found that Siglec-7 exclusively binds to C. jejuni strains that express terminal disialylated ganglioside mimics. When serological and diagnostic patient records were correlated with the Siglec-7-binding properties, we observed an association between Siglec-7 binding and the presence of anti-GQ1b antibodies in patient serum. In addition, Siglec-7 binding was associated with oculomotor weakness in GBS and MFS patients. Lipo-oligosaccharide-specific binding of C. jejuni to Siglec-7 may be an initiating event in immune recognition and presentation, and lead to anti-GQ1b antibody production and the development of ocular weakness in GBS or MFS.
Collapse
Affiliation(s)
- A P Heikema
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Hartung HP, Keller-Stanislawski B, Hughes RA, Lehmann HC. [Guillain-Barré syndrome after exposure to influenza]. DER NERVENARZT 2012; 83:714-30. [PMID: 22528062 DOI: 10.1007/s00115-012-3479-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Guillain-Barré Syndrome (GBS) is an acquired, monophasic inflammatory polyradiculoneuritis of autoimmune origin, which occurs after infection and occasionally also after vaccination. Seasonal and pandemic influenza vaccines have in particular been implicated as triggers for GBS. However, a number of recent studies indicate that infection with influenza virus may also cause GBS. This review summarizes the epidemiological and experimental data of the association of GBS with exposure to influenza antigens by immunization (including vaccines against A/H1N1/2009) and infection. Vaccination against influenza is associated with a very low risk for the occurrence of GBS. In contrast infection with influenza may play a more important role as a triggering factor for GBS than previously assumed.
Collapse
Affiliation(s)
- H-P Hartung
- Neurologische Klinik, Heinrich-Heine-Universität, Moorenstr. 5, 40225 Düsseldorf, Deutschland.
| | | | | | | |
Collapse
|
186
|
Elimination of Germinal-Center-Derived Self-Reactive B Cells Is Governed by the Location and Concentration of Self-Antigen. Immunity 2012; 37:893-904. [DOI: 10.1016/j.immuni.2012.07.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/12/2012] [Indexed: 11/29/2022]
|
187
|
Kverka M, Tlaskalova-Hogenova H. Two faces of microbiota in inflammatory and autoimmune diseases: triggers and drugs. APMIS 2012; 121:403-21. [DOI: 10.1111/apm.12007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/13/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Miloslav Kverka
- Department of Immunology and Gnotobiology, Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| | - Helena Tlaskalova-Hogenova
- Department of Immunology and Gnotobiology, Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| |
Collapse
|
188
|
An antibody to the GM1/GalNAc-GD1a complex correlates with development of pure motor Guillain-Barré syndrome with reversible conduction failure. J Neuroimmunol 2012; 254:141-5. [PMID: 23000056 DOI: 10.1016/j.jneuroim.2012.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 11/23/2022]
Abstract
Antibodies to a ganglioside complex consisting of GM1 and GalNAc-GD1a (GM1/GalNAc-GD1a) are found in sera from patients with Guillain-Barré syndrome (GBS). To elucidate the clinical significance of anti-GM1/GalNAc-GD1a antibodies in GBS, clinical features of 58 GBS patients with IgG anti-GM1/GalNAc-GD1a antibodies confirmed by enzyme-linked immunosorbent assay and thin layer chromatography immunostaining were analyzed. Compared to GBS patients without anti-GM1/GalNAc-GD1a antibodies, anti-GM1/GalNAc-GD1a-positive patients more frequently had a preceding respiratory infection (n=38, 66%, p<0.01) and were characterized by infrequency of cranial nerve deficits (n=9, 16%, p<0.01) and sensory disturbances (n=26, 45%, p<0.01). Of the 28 anti-GM1/GalNAc-GD1a-positive patients for whom electrophysiological data were available, 14 had conduction blocks (CBs) at intermediate segments of motor nerves, which were not followed by evident remyelination. Eight of 10 bedridden cases were able to walk independently within one month after the nadir. These results show that the presence of anti-GM1/GalNAc-GD1a antibodies correlated with pure motor GBS characterized by antecedent respiratory infection, fewer cranial nerve deficits, and CBs at intermediate sites of motor nerves. The CB may be generated through alteration of the regulatory function of sodium channels in the nodal axolemma.
Collapse
|
189
|
Kuwabara S, Uncini A. Multiple mechanisms for distal axonal loss in Guillain-Barré syndrome. Clin Neurophysiol 2012; 124:821-2. [PMID: 22981651 DOI: 10.1016/j.clinph.2012.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/07/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
|
190
|
|
191
|
Devaux JJ, Odaka M, Yuki N. Nodal proteins are target antigens in Guillain-Barré syndrome. J Peripher Nerv Syst 2012; 17:62-71. [PMID: 22462667 DOI: 10.1111/j.1529-8027.2012.00372.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurofascin-186 (NF186), neuronal cell adhesion molecule (NrCAM), and gliomedin are adhesion molecules playing a central role in the formation of nodes of Ranvier. In Guillain-Barré syndrome (GBS), immune attack toward the nodes may participate in the disabilities. Autoantibodies to NF186 and gliomedin have been detected in a rat model of GBS. Here, we investigated the prevalence of antibodies against nodal adhesion molecules in patients with GBS or chronic inflammatory demyelinating polyneuropathy (CIDP). Sera from 100 GBS patients, 50 CIDP patients, 80 disease controls, and 50 healthy controls were tested for their ability to bind the nodes of Ranvier. To characterize the antigens, we performed cell binding assays against NF186, gliomedin, contactin, and NrCAM. We found that 43% of patients with GBS and 30% of patients with CIDP showed IgG fixation at nodes or paranodes. In eight patients with GBS or CIDP, we identified that IgG antibodies recognized the native extracellular domain of NF186, gliomedin, or contactin. Also, 29 patients showed IgM against nodal adhesion molecules. However, we did not detect IgM fixation at nodes or paranodes. Antibodies to gliomedin or NF186 were mostly detected in demyelinating and axonal GBS, respectively. The adsorption of the antibodies to their soluble antigens abolished IgG deposition at nodes and paranodes in nerves, indicating these were specific to NF186, gliomedin, and contactin. In conclusion, gliomedin, NF186, and contactin are novel target antigens in GBS. At nodes, additional epitopes are also the targets of IgG. These results suggest that antibody attack against nodal antigens participates in the etiology of GBS.
Collapse
Affiliation(s)
- Jérôme J Devaux
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, CNRS, Aix-Marseille University, Boulevard Pierre Dramard, Marseille, France.
| | | | | |
Collapse
|
192
|
Devaux JJ. Antibodies to gliomedin cause peripheral demyelinating neuropathy and the dismantling of the nodes of Ranvier. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1402-13. [PMID: 22885108 DOI: 10.1016/j.ajpath.2012.06.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 11/18/2022]
Abstract
Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are conditions that affect peripheral nerves. The mechanisms that underlie demyelination in these neuropathies are unknown. Recently, we demonstrated that the node of Ranvier is the primary site of the immune attack in patients with GBS and CIDP. In particular, GBS patients have antibodies against gliomedin and neurofascin, two adhesion molecules that play a crucial role in the formation of nodes of Ranvier. We demonstrate that immunity toward gliomedin, but not neurofascin, induced a progressive neuropathy in Lewis rats characterized by conduction defects and demyelination in spinal nerves. The clinical symptoms closely followed the titers of anti-gliomedin IgG and were associated with an important deposition of IgG at nodes. Furthermore, passive transfer of antigliomedin IgG induced a severe demyelinating condition and conduction loss. In both active and passive models, the immune attack at nodes occasioned the loss of the nodal clusters for gliomedin, neurofascin-186, and voltage-gated sodium channels. These results indicate that primary immune reaction against gliomedin, a peripheral nervous system adhesion molecule, can be responsible for the initiation or progression of the demyelinating form of GBS. Furthermore, these autoantibodies affect saltatory propagation by dismantling nodal organization and sodium channel clusters. Antibodies reactive against nodal adhesion molecules thus likely participate in the pathologic process of GBS and CIDP.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Cell Adhesion Molecules, Neuronal/immunology
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Humans
- Immunity/immunology
- Immunization
- Immunization, Passive
- Immunoglobulin G/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Neuritis, Autoimmune, Experimental/immunology
- Neuritis, Autoimmune, Experimental/pathology
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/pathology
- Ranvier's Nodes/immunology
- Ranvier's Nodes/pathology
- Rats
- Rats, Inbred Lew
- Spinal Nerve Roots/pathology
Collapse
Affiliation(s)
- Jérôme J Devaux
- National Center for Scientific Research (CNRS), Aix-Marseille University, Marseille, France.
| |
Collapse
|
193
|
Semchenko EA, Day CJ, Moutin M, Wilson JC, Tiralongo J, Korolik V. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides. PLoS One 2012; 7:e40920. [PMID: 22815868 PMCID: PMC3397941 DOI: 10.1371/journal.pone.0040920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 06/19/2012] [Indexed: 11/24/2022] Open
Abstract
Lipooligosaccharides of the gastrointestinal pathogen Campylobacter jejuni are regarded as a major virulence factor and are implicated in the production of cross-reactive antibodies against host gangliosides, which leads to the development of autoimmune neuropathies such as Guillain-Barré and Fisher Syndromes. C. jejuni strains are known to produce diverse LOS structures encoded by more than 19 types of LOS biosynthesis clusters. This study demonstrates that the final C. jejuni LOS structure cannot always be predicted from the genetic composition of the LOS biosynthesis cluster, as determined by novel lectin array analysis of the terminal LOS glycans. The differences were shown to be partially facilitated by the differential on/off status of three genes wlaN, cst and cj1144-45. The on/off status of these genes was also analysed in C. jejuni strains grown in vitro and in vivo, isolated directly from the host animal without passaging, using immunoseparation. Importantly, C. jejuni strains 331, 421 and 520 encoding cluster type C were shown to produce different LOS, mimicking asialo GM1, asialo GM2 and a heterogeneous mix of gangliosides and other glycoconjugates respectively. In addition, individual C. jejuni colonies were shown to consistently produce heterogeneous LOS structures, irrespective of the cluster type and the status of phase variable genes. Furthermore we describe C. jejuni strains (351 and 375) with LOS clusters that do not match any of the previously described LOS clusters, yet are able to produce LOS with asialo GM2-like mimicries. The LOS biosynthesis clusters of these strains are likely to contain genes that code for LOS biosynthesis machinery previously not identified, yet capable of synthesising LOS mimicking gangliosides.
Collapse
Affiliation(s)
- Evgeny A. Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Marc Moutin
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jennifer C. Wilson
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
194
|
Affiliation(s)
- Nobuhiro Yuki
- Department of Medicine, National University of Singapore, Singapore.
| | | |
Collapse
|
195
|
FdhTU-modulated formate dehydrogenase expression and electron donor availability enhance recovery of Campylobacter jejuni following host cell infection. J Bacteriol 2012; 194:3803-13. [PMID: 22636777 DOI: 10.1128/jb.06665-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an ΔfdhU ΔfdhA double mutant were similar to those of a ΔfdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the ΔfdhU and ΔfdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment.
Collapse
|
196
|
|
197
|
|
198
|
Uncini A, Kuwabara S. Electrodiagnostic criteria for Guillain-Barrè syndrome: a critical revision and the need for an update. Clin Neurophysiol 2012; 123:1487-95. [PMID: 22480600 DOI: 10.1016/j.clinph.2012.01.025] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/02/2012] [Accepted: 01/05/2012] [Indexed: 10/28/2022]
Abstract
Electrophysiology plays a determinant role in Guillain-Barré syndrome (GBS) diagnosis, classification of the subtypes and in establishing prognosis. In the last three decades, different electrodiagnostic criteria sets have been proposed for acute inflammatory demyelinating neuropathy (AIDP), acute motor axonal neuropathy (AMAN) and acute motor and sensory axonal neuropathy (AMSAN). Criteria sets for AIDP varied for the parameters indicative of demyelination considered, for the cut-off limits and the number of required abnormalities (all a priori established) showing different sensitivities. Criteria sets for AMAN and AMSAN were proposed on the initial assumption that these subtypes were pathologically characterised by simple axonal degeneration. However, some AMAN patients show transient conduction block/slowing in intermediate and distal nerve segments, mimicking demyelination but without the development of abnormal temporal dispersion, named reversible conduction failure (RCF). The lack of distinction between RCF and demyelinating conduction block leads to fallaciously classify AMAN patients with RCF as AIDP or AMAN with axonal degeneration. Serial electrophysiological studies are mandatory for proper diagnosis of GBS subtypes, identification of pathophysiological mechanisms and prognosis. More reliable electrodiagnostic criteria should be devised to distinguish axonal and demyelinating subtypes of GBS, taking into consideration the RCF pattern and focussing on temporal dispersion.
Collapse
Affiliation(s)
- Antonino Uncini
- Department of Neuroscience and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy.
| | | |
Collapse
|
199
|
Haruta I, Shimizu K, Yanagisawa N, Shiratori K, Yagi J. Commensal Flora, is it an Unwelcomed Companion as a Triggering Factor of Autoimmune Pancreatitis? Front Physiol 2012; 3:77. [PMID: 22485093 PMCID: PMC3317269 DOI: 10.3389/fphys.2012.00077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/16/2012] [Indexed: 12/21/2022] Open
Abstract
The etiopathogenesis of many autoimmune disorders has not been identified. The aim of this paper is to focus on the involvement of bacterial exposure, as an environmental factor, in the pathogenesis of autoimmune pancreatitis (AIP), which is broadly categorized as autoimmune disorders involving pancreatic lesions. Avirulent and/or commensal bacteria, which may have an important role(s) as initiating/progressing factors in the pathogenesis of autoimmune disorder AIP, will be emphasized.
Collapse
Affiliation(s)
- Ikuko Haruta
- Department of Microbiology and Immunology, Tokyo Women's Medical University Tokyo, Japan
| | | | | | | | | |
Collapse
|
200
|
Huizinga R, Easton AS, Donachie AM, Guthrie J, van Rijs W, Heikema A, Boon L, Samsom JN, Jacobs BC, Willison HJ, Goodyear CS. Sialylation of Campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice. PLoS One 2012; 7:e34416. [PMID: 22470569 PMCID: PMC3314637 DOI: 10.1371/journal.pone.0034416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 02/28/2012] [Indexed: 11/27/2022] Open
Abstract
Background Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown. Methodology/Principal Findings In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC. Conclusions/Significance These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS.
Collapse
Affiliation(s)
- Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alistair S. Easton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne M. Donachie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jim Guthrie
- Department of Bacteriology, Southern General Hospital, Glasgow, United Kingdom
| | - Wouter van Rijs
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Astrid Heikema
- Department of Microbiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Janneke N. Samsom
- Division Gastroenterology and Nutrition, Department of Paediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bart C. Jacobs
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hugh J. Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carl S. Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|