151
|
Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, Ast G. Intronic Alus influence alternative splicing. PLoS Genet 2008; 4:e1000204. [PMID: 18818740 PMCID: PMC2533698 DOI: 10.1371/journal.pgen.1000204] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 08/20/2008] [Indexed: 01/25/2023] Open
Abstract
Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA) formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Ram
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y. Levanon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gil Ast
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
152
|
A general definition and nomenclature for alternative splicing events. PLoS Comput Biol 2008; 4:e1000147. [PMID: 18688268 PMCID: PMC2467475 DOI: 10.1371/journal.pcbi.1000147] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 07/01/2008] [Indexed: 11/19/2022] Open
Abstract
Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells is one of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenon contributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora of different transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify the different types of reflected splicing variation. In this work, we present a general definition of the AS event along with a notation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assigns a specific “AS code” to every possible pattern of splicing variation. On the basis of this definition and the corresponding codes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of AS events in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversity across genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—of the observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate and to compare the AS landscape of different reference annotation sets in human and in other metazoan species and found that proportions of AS events change substantially depending on the annotation protocol, species-specific attributes, and coding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conduct specific studies investigating the occurrence, impact, and regulation of AS. The genome sequence is said to be an organism's blueprint, a set of instructions driving the organism's biology. The unfolding of these instructions—the so-called genes—is initiated by the transcription of DNA into RNA molecules, which subsequently are processed before they can take their functional role. During this processing step, initially identical RNA molecules may result in different products through a process known as alternative splicing (AS). AS therefore allows for widening the diversity from the limited repertoire of genes, and it is often postulated as an explanation for the apparent paradox that complex and simple organisms resemble in their number of genes; it characterizes species, individuals, and developmental and cellular conditions. Comparing the differences of AS products between cells may help to reveal the broad molecular basis underlying phenotypic differences—for instance, between a cancer and a normal cell. An obstacle for such comparisons has been that, so far, no paradigm existed to delineate each single quantum of AS, so-called AS events. Here, we describe a possibility of exhaustively decomposing AS complements into qualitatively different groups of events and a nomenclature to unequivocally denote them. This typological catalogue of AS events along with their observed frequencies represent the AS landscape, and we propose a procedure to automatically identify such landscapes. We use it to describe the human AS landscape and to investigate how it has changed throughout evolution.
Collapse
|
153
|
Smith DJ, Query CC, Konarska MM. "Nought may endure but mutability": spliceosome dynamics and the regulation of splicing. Mol Cell 2008; 30:657-66. [PMID: 18570869 DOI: 10.1016/j.molcel.2008.04.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Indexed: 11/18/2022]
Abstract
The spliceosome is both compositionally and conformationally dynamic. Each transition along the splicing pathway presents an opportunity for progression, pausing, or discard, allowing splice site choice to be regulated throughout both the assembly and catalytic phases of the reaction.
Collapse
|
154
|
Shepard PJ, Hertel KJ. Conserved RNA secondary structures promote alternative splicing. RNA (NEW YORK, N.Y.) 2008; 14:1463-9. [PMID: 18579871 PMCID: PMC2491482 DOI: 10.1261/rna.1069408] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/09/2008] [Indexed: 05/23/2023]
Abstract
Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site strength, splicing regulators, the exon/intron architecture, and the process of pre-mRNA synthesis itself. RNA secondary structures have also been proposed to influence alternative splicing as stable RNA secondary structures that mask splice sites are expected to interfere with splice-site recognition. Using structural and functional conservation, we identified RNA structure elements within the human genome that associate with alternative splice-site selection. Their frequent involvement with alternative splicing demonstrates that RNA structure formation is an important mechanism regulating gene expression and disease.
Collapse
Affiliation(s)
- Peter J Shepard
- Department of Microbiology and Molecular Genetics, Institute for Genomics and Bioinformatics, University of California at Irvine, Irvine, California 92697-4025, USA
| | | |
Collapse
|
155
|
Marengo MS, Wassarman DA. A DNA damage signal activates and derepresses exon inclusion in Drosophila TAF1 alternative splicing. RNA (NEW YORK, N.Y.) 2008; 14:1681-1695. [PMID: 18596254 PMCID: PMC2491473 DOI: 10.1261/rna.1048808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/06/2008] [Indexed: 05/26/2023]
Abstract
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.
Collapse
Affiliation(s)
- Matthew S Marengo
- University of Wisconsin School of Medicine and Public Health, Department of Pharmacology, Molecular and Cellular Pharmacology Program, Madison, WI 53706, USA
| | | |
Collapse
|
156
|
Murray JI, Voelker RB, Henscheid KL, Warf MB, Berglund JA. Identification of motifs that function in the splicing of non-canonical introns. Genome Biol 2008; 9:R97. [PMID: 18549497 PMCID: PMC2481429 DOI: 10.1186/gb-2008-9-6-r97] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/27/2007] [Accepted: 06/12/2008] [Indexed: 01/22/2023] Open
Abstract
The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests a novel mechanism for intron recognition that compensates for a weakened canonical pre-mRNA splicing motif. Background While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment. Results Human introns were classified computationally into low- and high-scoring PY tracts by scoring the likely U2AF65 binding site strength. Biochemical studies confirmed that low-scoring PY tracts are weak U2AF65 binding sites while high-scoring PY tracts are strong U2AF65 binding sites. A large population of human introns contains weak PY tracts. Computational analysis revealed many families of motifs, including C-rich and G-rich motifs, that are enriched upstream of weak PY tracts. In vivo splicing studies show that C-rich and G-rich motifs function as intronic splicing enhancers in a combinatorial manner to compensate for weak PY tracts. Conclusion The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests that a novel mechanism for intron recognition exists, which compensates for a weakened canonical pre-mRNA splicing motif.
Collapse
Affiliation(s)
- Jill I Murray
- Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | | | | |
Collapse
|
157
|
Huang YF, Niu DK. Evidence against the energetic cost hypothesis for the short introns in highly expressed genes. BMC Evol Biol 2008; 8:154. [PMID: 18492248 PMCID: PMC2424036 DOI: 10.1186/1471-2148-8-154] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/20/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In animals, the moss Physcomitrella patens and the pollen of Arabidopsis thaliana, highly expressed genes have shorter introns than weakly expressed genes. A popular explanation for this is selection for transcription efficiency, which includes two sub-hypotheses: to minimize the energetic cost or to minimize the time cost. RESULTS In an individual human, different organs may differ up to hundreds of times in cell number (for example, a liver versus a hypothalamus). Considered at the individual level, a gene specifically expressed in a large organ is actually transcribed tens or hundreds of times more than a gene with a similar expression level (a measure of mRNA abundance per cell) specifically expressed in a small organ. According to the energetic cost hypothesis, the former should have shorter introns than the latter. However, in humans and mice we have not found significant differences in intron length between large-tissue/organ-specific genes and small-tissue/organ-specific genes with similar expression levels. Qualitative estimation shows that the deleterious effect (that is, the energetic burden) of long introns in highly expressed genes is too negligible to be efficiently selected against in mammals. CONCLUSION The short introns in highly expressed genes should not be attributed to energy constraint. We evaluated evidence for the time cost hypothesis and other alternatives.
Collapse
Affiliation(s)
- Yi-Fei Huang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, P R China.
| | | |
Collapse
|
158
|
Lev-Maor G, Goren A, Sela N, Kim E, Keren H, Doron-Faigenboim A, Leibman-Barak S, Pupko T, Ast G. The "alternative" choice of constitutive exons throughout evolution. PLoS Genet 2008; 3:e203. [PMID: 18020709 PMCID: PMC2077895 DOI: 10.1371/journal.pgen.0030203] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/01/2007] [Indexed: 12/23/2022] Open
Abstract
Alternative cassette exons are known to originate from two processes—exonization of intronic sequences and exon shuffling. Herein, we suggest an additional mechanism by which constitutively spliced exons become alternative cassette exons during evolution. We compiled a dataset of orthologous exons from human and mouse that are constitutively spliced in one species but alternatively spliced in the other. Examination of these exons suggests that the common ancestors were constitutively spliced. We show that relaxation of the 5′ splice site during evolution is one of the molecular mechanisms by which exons shift from constitutive to alternative splicing. This shift is associated with the fixation of exonic splicing regulatory sequences (ESRs) that are essential for exon definition and control the inclusion level only after the transition to alternative splicing. The effect of each ESR on splicing and the combinatorial effects between two ESRs are conserved from fish to human. Our results uncover an evolutionary pathway that increases transcriptome diversity by shifting exons from constitutive to alternative splicing. Alternative splicing is believed to play a major role in the creation of transcriptomic diversification leading to higher order of organismal complexity, especially in mammals. As much as 80% of human genes generate more than one type of mRNA by alternative splicing. Thus, alternative splicing can bridge the low number of protein coding genes (∼24,500) and the total number of proteins generated in the human proteome (∼90,000). The correlation between the higher order of phenotypic diversity and alternative splicing was recently demonstrated and thus the origin of alternative splicing is of great interest. There are currently two models regarding the origin of alternatively spliced exons—exonization of intronic sequences and exon shuffling. According to these two mechanisms, a protein-coding gene was first established and only then a new alternative exon appeared within it or was added to the gene. Our current study provides evidences for a new mechanism indicating that during evolution constitutively spliced exons became alternatively spliced. Large-scale bioinformatic analyses reveal the magnitude of this process and experimental validation systems provide insights into its mechanisms.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Keren
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Doron-Faigenboim
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | - Tal Pupko
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
159
|
Peng T, Xue C, Bi J, Li T, Wang X, Zhang X, Li Y. Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse. BMC Genomics 2008; 9:191. [PMID: 18439302 PMCID: PMC2432081 DOI: 10.1186/1471-2164-9-191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 04/26/2008] [Indexed: 12/19/2022] Open
Abstract
Background Alternative splicing expands transcriptome diversity and plays an important role in regulation of gene expression. Previous studies focus on the regulation of a single cassette exon, but recent experiments indicate that multiple cassette exons within a gene may interact with each other. This interaction can increase the potential to generate various transcripts and adds an extra layer of complexity to gene regulation. Several cases of exon interaction have been discovered. However, the extent to which the cassette exons coordinate with each other remains unknown. Results Based on EST data, we employed a metric of correlation coefficients to describe the interaction between two adjacent cassette exons and then categorized these exon pairs into three different groups by their interaction (correlation) patterns. Sequence analysis demonstrates that strongly-correlated groups are more conserved and contain a higher proportion of pairs with reading frame preservation in a combinatorial manner. Multiple genome comparison further indicates that different groups of correlated pairs have different evolutionary courses: (1) The vast majority of positively-correlated pairs are old, (2) most of the weakly-correlated pairs are relatively young, and (3) negatively-correlated pairs are a mixture of old and young events. Conclusion We performed a large-scale analysis of interactions between adjacent cassette exons. Compared with weakly-correlated pairs, the strongly-correlated pairs, including both the positively and negatively correlated ones, show more evidence that they are under delicate splicing control and tend to be functionally important. Additionally, the positively-correlated pairs bear strong resemblance to constitutive exons, which suggests that they may evolve from ancient constitutive exons, while negatively and weakly correlated pairs are more likely to contain newly emerging exons.
Collapse
Affiliation(s)
- Tao Peng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, PRoC.
| | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
Alternative splicing is a well-characterized mechanism by which multiple transcripts are generated from a single mRNA precursor. By allowing production of several protein isoforms from one pre-mRNA, alternative splicing contributes to proteomic diversity. But what do we know about the origin of this mechanism? Do the same evolutionary forces apply to alternatively and constitutively splice exons? Do similar forces act on all types of alternative splicing? Are the products generated by alternative splicing functional? Why is "improper" recognition of exons and introns allowed by the splicing machinery? In this review, we summarize the current knowledge regarding these issues from an evolutionary perspective.
Collapse
Affiliation(s)
- Eddo Kim
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
161
|
McGuire AM, Pearson MD, Neafsey DE, Galagan JE. Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biol 2008; 9:R50. [PMID: 18321378 PMCID: PMC2397502 DOI: 10.1186/gb-2008-9-3-r50] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/28/2008] [Accepted: 03/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variations in transcript splicing can reveal how eukaryotes recognize intronic splice sites. Retained introns (RIs) commonly appear when the intron definition (ID) mechanism of splice site recognition inconsistently identifies intron-exon boundaries, and cassette exons (CEs) are often caused by variable recognition of splice junctions by the exon definition (ED) mechanism. We have performed a comprehensive survey of alternative splicing across 42 eukaryotes to gain insight into how spliceosomal introns are recognized. RESULTS All eukaryotes we studied exhibit RIs, which appear more frequently than previously thought. CEs are also present in all kingdoms and most of the organisms in our analysis. We observe that the ratio of CEs to RIs varies substantially among kingdoms, while the ratio of competing 3' acceptor and competing 5' donor sites remains nearly constant. In addition, we find the ratio of CEs to RIs in each organism correlates with the length of its introns. In all 14 fungi we examined, as well as in most of the 9 protists, RIs far outnumber CEs. This differs from the trend seen in 13 multicellular animals, where CEs occur much more frequently than RIs. The six plants we analyzed exhibit intermediate proportions of CEs and RIs. CONCLUSION Our results suggest that most extant eukaryotes are capable of recognizing splice sites via both ID and ED, although ED is most common in multicellular animals and ID predominates in fungi and most protists.
Collapse
Affiliation(s)
- Abigail M McGuire
- The Broad Institute of MIT and Harvard, Cambridge Center, Cambridge, MA 02142, USA
| | - Matthew D Pearson
- The Broad Institute of MIT and Harvard, Cambridge Center, Cambridge, MA 02142, USA
| | - Daniel E Neafsey
- The Broad Institute of MIT and Harvard, Cambridge Center, Cambridge, MA 02142, USA
| | - James E Galagan
- The Broad Institute of MIT and Harvard, Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
162
|
Warnecke T, Parmley JL, Hurst LD. Finding exonic islands in a sea of non-coding sequence: splicing related constraints on protein composition and evolution are common in intron-rich genomes. Genome Biol 2008; 9:R29. [PMID: 18257921 PMCID: PMC2374712 DOI: 10.1186/gb-2008-9-2-r29] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/23/2007] [Accepted: 02/07/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In mammals, splice-regulatory domains impose marked trends on the relative abundance of certain amino acids near exon-intron boundaries. Is this a mammalian particularity or symptomatic of exonic splicing regulation across taxa? Are such trends more common in species that a priori have a harder time identifying exon ends, that is, those with pre-mRNA rich in intronic sequence? We address these questions surveying exon composition in a sample of phylogenetically diverse genomes. RESULTS Biased amino acid usage near exon-intron boundaries is common throughout the metazoa but not restricted to the metazoa. There is extensive cross-species concordance as to which amino acids are affected, and reduced/elevated abundances are well predicted by knowledge of splice enhancers. Species expected to rely on exon definition for splicing, that is, those with a higher ratio of intronic to coding sequence, more introns per gene and longer introns, exhibit more amino acid skews. Notably, this includes the intron-rich basidiomycete Cryptococcus neoformans, which, unlike intron-poor ascomycetes (Schizosaccharomyces pombe, Saccharomyces cerevisiae), exhibits compositional biases reminiscent of the metazoa. Strikingly, 5 prime ends of nematode exons deviate radically from normality: amino acids strongly preferred near boundaries are strongly avoided in other species, and vice versa. This we suggest is a measure to avoid attracting trans-splicing machinery. CONCLUSION Constraints on amino acid composition near exon-intron boundaries are phylogenetically widespread and characteristic of species where exon localization should be problematic. That compositional biases accord with sequence preferences of splice-regulatory proteins and are absent in ascomycetes is consistent with selection on exonic splicing regulation.
Collapse
Affiliation(s)
- Tobias Warnecke
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | | |
Collapse
|
163
|
Functioning of the Drosophila Wilms'-tumor-1-associated protein homolog, Fl(2)d, in Sex-lethal-dependent alternative splicing. Genetics 2008; 178:737-48. [PMID: 18245840 DOI: 10.1534/genetics.107.081679] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
fl(2)d, the Drosophila homolog of Wilms'-tumor-1-associated protein (WTAP), regulates the alternative splicing of Sex-lethal (Sxl), transformer (tra), and Ultrabithorax (Ubx). Although WTAP has been found in functional human spliceosomes, exactly how it contributes to the splicing process remains unknown. Here we attempt to identify factors that interact genetically and physically with fl(2)d. We begin by analyzing the Sxl-Fl(2)d protein-protein interaction in detail and present evidence suggesting that the female-specific fl(2)d(1) allele is antimorphic with respect to the process of sex determination. Next we show that fl(2)d interacts genetically with early acting general splicing regulators and that Fl(2)d is present in immunoprecipitable complexes with Snf, U2AF50, U2AF38, and U1-70K. By contrast, we could not detect Fl(2)d complexes containing the U5 snRNP protein U5-40K or with a protein that associates with the activated B spliceosomal complex SKIP. Significantly, the genetic and molecular interactions observed for Sxl are quite similar to those detected for fl(2)d. Taken together, our findings suggest that Sxl and fl(2)d function to alter splice-site selection at an early step in spliceosome assembly.
Collapse
|
164
|
Asang C, Hauber I, Schaal H. Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer. Nucleic Acids Res 2008; 36:1450-63. [PMID: 18203748 PMCID: PMC2275126 DOI: 10.1093/nar/gkm1147] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The guanosine-adenosine-rich exonic splicing enhancer (GAR ESE) identified in exon 5 of the human immunodeficiency virus type-1 (HIV-1) pre-mRNA activates either an enhancer-dependent 5′ splice site (ss) or 3′ ss in 1-intron reporter constructs in the presence of the SR proteins SF2/ASF2 and SRp40. Characterizing the mode of action of the GAR ESE inside the internal HIV-1 exon 5 we found that this enhancer fulfils a dual splicing regulatory function (i) by synergistically mediating exon recognition through its individual SR protein-binding sites and (ii) by conferring 3′ ss selectivity within the 3′ ss cluster preceding exon 5. Both functions depend upon the GAR ESE, U1 snRNP binding at the downstream 5′ ss D4 and the E42 sequence located between these elements. Therefore, a network of cross-exon interactions appears to regulate splicing of the alternative exons 4a and 5. As the GAR ESE-mediated activation of the upstream 3′ ss cluster also is essential for the processing of intron-containing vpu/env-mRNAs during intermediate viral gene expression, the GAR enhancer substantially contributes to the regulation of viral replication.
Collapse
Affiliation(s)
- Corinna Asang
- Institut für Virologie, Universitätsklinikum Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
165
|
Sharma S, Kohlstaedt LA, Damianov A, Rio DC, Black DL. Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat Struct Mol Biol 2008; 15:183-91. [PMID: 18193060 DOI: 10.1038/nsmb.1375] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 12/13/2007] [Indexed: 11/09/2022]
Abstract
The polypyrimidine tract binding protein (PTB) binds pre-mRNAs to alter splice-site choice. We characterized a series of spliceosomal complexes that assemble on a pre-mRNA under conditions of either PTB-mediated splicing repression or its absence. In the absence of repression, exon definition complexes that were assembled downstream of the regulated exon could progress to pre-spliceosomal A complexes and functional spliceosomes. Under PTB-mediated repression, assembly was arrested at an A-like complex that was unable to transition to spliceosomal complexes. Trans-splicing experiments indicated that, even when the U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) are properly bound to the upstream and downstream exons, the presence of PTB prevents the interaction of the two exon complexes. Proteomic analyses of these complexes provide a new description of exon definition complexes, and indicate that splicing regulators can act on the transition between the exon definition complex and an intron-defined spliceosome.
Collapse
Affiliation(s)
- Shalini Sharma
- Howard Hughes Medical Institute, University of California, Los Angeles, MRL5-748, Charles E. Young Drive South, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
166
|
|
167
|
Abstract
Accurate and efficient splicing of eukaryotic pre-mRNAs requires recognition by trans-acting factors of a complex array of cis-acting RNA elements. Here, we developed a generalized Bayesian network to model the coevolution of splicing cis elements in diverse eukaryotic taxa. Cross-exon but not cross-intron compensatory interactions between the 5' splice site (5'ss) and 3' splice site (3'ss) were observed in human/mouse, indicating that the exon is the primary evolutionary unit in mammals. Studied plants, fungi, and invertebrates exhibited exclusively cross-intron interactions, suggesting that intron definition drives evolution in these organisms. In mammals, 5'ss strength and the strength of several classes of exonic splicing silencers (ESSs) evolved in a correlated way, whereas specific exonic splicing enhancers (ESEs), including motifs associated with hTra2, SRp55, and SRp20, evolved in a compensatory manner relative to the 5'ss and 3'ss. Interactions between specific ESS or ESE motifs were not observed, suggesting that elements bound by different factors are not commonly interchangeable. Thus, the splicing elements defining exons coevolve in a way that preserves overall exon strength, allowing specific elements to substitute for loss or weakening of others.
Collapse
|
168
|
Functional coupling of last-intron splicing and 3'-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage. Mol Cell Biol 2007; 28:849-62. [PMID: 17967872 DOI: 10.1128/mcb.01410-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed an in vitro transcription system, using HeLa nuclear extract, that supports not only efficient splicing of a multiexon transcript but also efficient cleavage and polyadenylation. In this system, both last-intron splicing and cleavage/polyadenylation are functionally coupled to transcription via the tether of nascent RNA that extends from the terminal exon to the transcribing polymerase downstream. Communication between the 3' splice site and the poly(A) site across the terminal exon is established within minutes of their transcription, and multiple steps leading up to 3'-end processing of this exon can be distinguished. First, the 3' splice site establishes connections to enhance 3'-end processing, while the nascent 3'-end processing apparatus makes reciprocal functional connections to enhance splicing. Then, commitment to poly(A) site cleavage itself occurs and the connections of the 3'-end processing apparatus to the transcribing polymerase are strengthened. Finally, the chemical steps in the processing of the terminal exon take place, beginning with poly(A) site cleavage, continuing with polyadenylation of the 3' end, and then finishing with splicing of the last intron.
Collapse
|
169
|
Zhijian C, Chao D, Dahe J, Wenxin L. The effect of intron location on the splicing of BmKK2 in 293T cells. J Biochem Mol Toxicol 2007; 20:127-32. [PMID: 16788950 DOI: 10.1002/jbt.20127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previously reported results showed that the BmKK2's intron could be recognized and spliced in cultured HEK 293T cells. At the same time, a cryptic splicing site of BmKK2 gene was found in the second exon. Moreover, replacing BmKK2's intron with BmP03's intron (an artificial BmKK2-BmP03 mosaic gene) did not affect the intron's recognition and splicing, but increased the expression level of the toxin-GFP fusion protein (Cao et al., J Biochem Mol Toxicol 2006;20:1-6). In this investigation, the BmKK2's intron with 79 nucleotides length was artificially shifted from the 49th nt (the 17th Gly codon between the first base and the second base) to the 100th nt (the 34th Gly codon between the first base and the second base). Based on the constructed intron-splicing system, the results of RT-PCR and the western blotting analysis showed that the BmKK2's shifted-intron (named BmKK2-s) was not recognized and spliced correctly, but the cryptic splicing site of BmKK2 gene was still spliced in the second exon, which possibly indicated that locations of introns were very important to the recognition and splicing of introns, and splicing of introns was very much associated with the corresponding upstream and downstream exons. This result possibly provides evidence for splice-site recognition across the exons.
Collapse
Affiliation(s)
- Cao Zhijian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | | | | | | |
Collapse
|
170
|
Fontanillas P, Hartl DL, Reuter M. Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin. PLoS Genet 2007; 3:e210. [PMID: 18081425 PMCID: PMC2098804 DOI: 10.1371/journal.pgen.0030210] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 10/09/2007] [Indexed: 02/07/2023] Open
Abstract
The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection against new insertions. Understanding the distribution of TEs therefore provides insights into the forces shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic regions with low gene density and low recombination rate. However, little is known about the factors modulating insertion rates across the genome and their evolutionary significance. One candidate factor is gene expression, which has been suggested to increase local insertion rate by rendering DNA more accessible. We test this hypothesis by comparing the TE density around germline- and soma-expressed genes in the euchromatin of Drosophila melanogaster. Because only insertions that occur in the germline are transmitted to the next generation, we predicted a higher density of TEs around germline-expressed genes than soma-expressed genes. We show that the rate of TE insertions is greater near germline- than soma-expressed genes. However, this effect is partly offset by stronger selection for genome compactness (against excess noncoding DNA) on germline-expressed genes. We also demonstrate that the local genome organization in clusters of coexpressed genes plays a fundamental role in the genomic distribution of TEs. Our analysis shows that-in addition to recombination rate-the distribution of TEs is shaped by the interaction of gene expression and genome organization. The important role of selection for compactness sheds a new light on the role of TEs in genome evolution. Instead of making genomes grow passively, TEs are controlled by the forces shaping genome compactness, most likely linked to the efficiency of gene expression or its complexity and possibly their interaction with mechanisms of TE silencing.
Collapse
Affiliation(s)
- Pierre Fontanillas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Max Reuter
- The Galton Laboratory, Department of Biology, University College London, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
171
|
Zhang C, Hastings ML, Krainer AR, Zhang MQ. Dual-specificity splice sites function alternatively as 5' and 3' splice sites. Proc Natl Acad Sci U S A 2007; 104:15028-33. [PMID: 17848517 PMCID: PMC1986607 DOI: 10.1073/pnas.0703773104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a result of large-scale sequencing projects and recent splicing-microarray studies, estimates of mammalian genes expressing multiple transcripts continue to increase. This expansion of transcript information makes it possible to better characterize alternative splicing events and gain insights into splicing mechanisms and regulation. Here, we describe a class of splice sites that we call dual-specificity splice sites, which we identified through genome-wide, high-quality alignment of mRNA/EST and genome sequences and experimentally verified by RT-PCR. These splice sites can be alternatively recognized as either 5' or 3' splice sites, and the dual splicing is conceptually similar to a pair of mutually exclusive exons separated by a zero-length intron. The dual-splice-site sequences are essentially a composite of canonical 5' and 3' splice-site consensus sequences, with a CAG|GURAG core. The relative use of a dual site as a 5' or 3' splice site can be accurately predicted by assuming competition for specific binding between spliceosomal components involved in recognition of 5' and 3' splice sites, respectively. Dual-specificity splice sites exist in human and mouse, and possibly in other vertebrate species, although most sites are not conserved, suggesting that their origin is recent. We discuss the implications of this unusual splicing pattern for the diverse mechanisms of exon recognition and for gene evolution.
Collapse
Affiliation(s)
- Chaolin Zhang
- *Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; and
- Department of Biomedical Engineering, State University of New York, Stony Brook, NY 11794
| | - Michelle L. Hastings
- *Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; and
| | - Adrian R. Krainer
- *Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; and
- To whom correspondence may be addressed. E-mail:
or
| | - Michael Q. Zhang
- *Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
172
|
Fahey ME, Higgins DG. Gene expression, intron density, and splice site strength in Drosophila and Caenorhabditis. J Mol Evol 2007; 65:349-57. [PMID: 17763878 DOI: 10.1007/s00239-007-9015-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 07/06/2007] [Indexed: 10/22/2022]
Abstract
In this paper we investigate the relationships among intron density (number of introns per kilobase of coding sequence), gene expression level, and strength of splicing signals in two species: Drosophila melanogaster and Caenorhabditis elegans. We report a negative correlation between intron density and gene expression levels, opposite to the effect previously observed in human. An increase in splice site strength has been observed in long introns in D. melanogaster. We show this is also true of C. elegans. We also examine the relationship between intron density and splice site strength. There is an increase in splice site strength as the intron structure becomes less dense. This could suggest that introns are not recognized in isolation but could function in a cooperative manner to ensure proper splicing. This effect remains if we control for the effects of alternative splicing on splice site strength.
Collapse
Affiliation(s)
- Marie E Fahey
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
173
|
Lazarev D, Manley JL. Concurrent splicing and transcription are not sufficient to enhance splicing efficiency. RNA (NEW YORK, N.Y.) 2007; 13:1546-57. [PMID: 17630325 PMCID: PMC1950766 DOI: 10.1261/rna.595907] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The concept of a tight integration of transcription and splicing of mRNA precursors has been supported with increasing evidence in recent years. However, the mechanism and functional consequences of this integration remain largely unknown. We have examined how these processes impact upon one another when they occur together in HeLa nuclear extract. While both processes do in fact occur in parallel reactions in the extracts, we found no evidence that one process affects the other, under a variety of conditions tested. For example, neither the kinetics nor efficiency of splicing is significantly enhanced by de novo RNA polymerase II-mediated transcription, relative to that of presynthesized RNA added exogenously to the extract. Our results indicate that the act of transcription by RNA polymerase II in vitro is not sufficient to enhance splicing of the newly made RNA.
Collapse
Affiliation(s)
- Denis Lazarev
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
174
|
Voelker RB, Berglund JA. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing. Genes Dev 2007; 17:1023-33. [PMID: 17525134 PMCID: PMC1899113 DOI: 10.1101/gr.6017807] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 04/12/2007] [Indexed: 11/24/2022]
Abstract
Orthologous mammalian introns contain many highly conserved sequences. Of these sequences, many are likely to represent protein binding sites that are under strong positive selection. In order to identify conserved protein binding sites that are important for splicing, we analyzed the composition of intronic sequences that are conserved between human and six eutherian mammals. We focused on all completely conserved sequences of seven or more nucleotides located in the regions adjacent to splice-junctions. We found that these conserved intronic sequences are enriched in specific motifs, and that many of these motifs are statistically associated with either alternative or constitutive splicing. In validation of our methods, we identified several motifs that are known to play important roles in alternative splicing. In addition, we identified several novel motifs containing GCT that are abundant and are associated with alternative splicing. Furthermore, we demonstrate that, for some of these motifs, conservation is a strong indicator of potential functionality since conserved instances are associated with alternative splicing while nonconserved instances are not. A surprising outcome of this analysis was the identification of a large number of AT-rich motifs that are strongly associated with constitutive splicing. Many of these appear to be novel and may represent conserved intronic splicing enhancers (ISEs). Together these data show that conservation provides important insights into the identification and possible roles of cis-acting intronic sequences important for alternative and constitutive splicing.
Collapse
Affiliation(s)
- Rodger B. Voelker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - J. Andrew Berglund
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
175
|
Koren E, Lev-Maor G, Ast G. The emergence of alternative 3' and 5' splice site exons from constitutive exons. PLoS Comput Biol 2007; 3:e95. [PMID: 17530917 PMCID: PMC1876488 DOI: 10.1371/journal.pcbi.0030095] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/10/2007] [Indexed: 11/19/2022] Open
Abstract
Alternative 3' and 5' splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3'ss and 5'ss exons. The results revealed that alternative 3'ss and 5'ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3'ss and 5'ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.
Collapse
Affiliation(s)
- Eli Koren
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
176
|
Tsai KW, Tarn WY, Lin WC. Wobble splicing reveals the role of the branch point sequence-to-NAGNAG region in 3' tandem splice site selection. Mol Cell Biol 2007; 27:5835-48. [PMID: 17562859 PMCID: PMC1952111 DOI: 10.1128/mcb.00363-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alternative splicing involving the 3' tandem splice site NAGNAG sequence may play a role in the structure-function diversity of proteins. However, how 3' tandem splice site utilization is determined is not well understood. We previously demonstrated that 3' NAGNAG-based wobble splicing occurs mostly in a tissue- and developmental stage-independent manner. Bioinformatic analysis reveals that the nucleotide preceding the AG dinucleotide may influence 3' splice site utilization; this is also supported by an in vivo splicing assay. Moreover, we found that the intron sequence plays an important role in 3' splice site selection for NAGNAG wobble splicing. Mutations of the region between the branch site and the NAGNAG 3' splice site, indeed, affected the ratio of the distal/proximal AG selection. Finally, we found that single nucleotide polymorphisms around the NAGNAG motif could affect the splice site choice, which may lead to a change in mRNA patterns and influence protein function. We conclude that the NAGNAG motif and its upstream region to the branch point sequence are required for 3' tandem splice site selection.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
177
|
Ramos-Trujillo E, González-Acosta H, Flores C, García-Nieto V, Guillén E, Gracia S, Vicente C, Espinosa L, Maseda MAF, Santos F, Camacho JA, Claverie-Martín F. A missense mutation in the chloride/proton ClC-5 antiporter gene results in increased expression of an alternative mRNA form that lacks exons 10 and 11. Identification of seven new CLCN5 mutations in patients with Dent’s disease. J Hum Genet 2007; 52:255-261. [PMID: 17262170 DOI: 10.1007/s10038-007-0112-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Mutations in the voltage-gated chloride/proton antiporter ClC-5 gene, CLCN5, are associated with Dent's disease, an X-linked renal tubulopathy. Our interest is to identify and characterize disease-causing CLCN5 mutations, especially those that alter the splicing of the pre-mRNA. We analyzed the CLCN5 gene from nine unrelated Spanish Dent's disease patients and their relatives by DNA sequencing. Pre-mRNA splicing analysis was performed by RT-PCR. Seven new mutations were identified, consisting of three missense mutations (C219R, F273L, and W547G), one splice-site mutation (IVS-2A > G), one deletion (976delG), and two non-sense mutations (Y140X and W314X). We found that missense mutation W547G also led to increased expression of a new alternative isoform lacking exons 10 and 11 that was expressed in several human tissues. In addition, we describe another novel CLCN5 splicing variant lacking exon 11 alone, which was expressed only in human skeletal muscle. We conclude that missense mutation W547G can also alter the expression levels of a CLCN5 mRNA splicing variant. This type of mutation has not been previously described in the CLCN5 gene. Our results support the importance of a routine analysis at the pre-mRNA level of mutations that are commonly assumed to cause single amino acids alterations.
Collapse
Affiliation(s)
- Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Hilaria González-Acosta
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Víctor García-Nieto
- Unidad de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Encarna Guillén
- Servicio de Pediatría, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Salvador Gracia
- Servicio de Pediatría, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Carmen Vicente
- Servicio de Pediatría, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Laura Espinosa
- Servicio de Nefrología Infantil, Hospital Universitario La Paz, Madrid, Spain
| | | | - Fernando Santos
- Servicio de Nefrología Pediátrica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan A Camacho
- Sección de Nefrología, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Félix Claverie-Martín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
178
|
Singh NN, Singh RN, Androphy EJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res 2006; 35:371-89. [PMID: 17170000 PMCID: PMC1802598 DOI: 10.1093/nar/gkl1050] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Humans have two nearly identical copies of the survival motor neuron (SMN ) gene, SMN1 and SMN2. Homozygous loss of SMN1 causes spinal muscular atrophy (SMA). SMN2 is unable to prevent the disease due to skipping of exon 7. Using a systematic approach of in vivo selection, we have previously demonstrated that a weak 5' splice site (ss) serves as the major cause of skipping of SMN2 exon 7. Here we show the inhibitory impact of RNA structure on the weak 5' ss of exon 7. We call this structure terminal stem-loop 2 (TSL2). Confirming the inhibitory nature of TSL2, point mutations that destabilize TSL2 promote exon 7 inclusion in SMN2, whereas strengthening of TSL2 promotes exon 7 skipping even in SMN1. We also demonstrate that TSL2 negatively affects the recruitment of U1snRNP at the 5' ss of exon 7. Using enzymatic structure probing, we confirm that the sequence at the junction of exon 7/intron 7 folds into TSL2 and show that mutations in TSL2 cause predicted structural changes in this region. Our findings reveal for the first time the critical role of RNA structure in regulation of alternative splicing of human SMN.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA.
| | | | | |
Collapse
|
179
|
Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns. BMC Genomics 2006; 7:311. [PMID: 17156453 PMCID: PMC1713244 DOI: 10.1186/1471-2164-7-311] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 12/08/2006] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The signals that determine the specificity and efficiency of splicing are multiple and complex, and are not fully understood. Among other factors, the relative contributions of different mechanisms appear to depend on intron size inasmuch as long introns might hinder the activity of the spliceosome through interference with the proper positioning of the intron-exon junctions. Indeed, it has been shown that the information content of splice sites positively correlates with intron length in the nematode, Drosophila, and fungi. We explored the connections between the length of vertebrate introns, the strength of splice sites, exonic splicing signals, and evolution of flanking exons. RESULTS A compensatory relationship is shown to exist between different types of signals, namely, the splice sites and the exonic splicing enhancers (ESEs). In the range of relatively short introns (approximately, < 1.5 kilobases in length), the enhancement of the splicing signals for longer introns was manifest in the increased concentration of ESEs. In contrast, for longer introns, this effect was not detectable, and instead, an increase in the strength of the donor and acceptor splice sites was observed. Conceivably, accumulation of A-rich ESE motifs beyond a certain limit is incompatible with functional constraints operating at the level of protein sequence evolution, which leads to compensation in the form of evolution of the splice sites themselves toward greater strength. In addition, however, a correlation between sequence conservation in the exon ends and intron length, particularly, in synonymous positions, was observed throughout the entire length range of introns. Thus, splicing signals other than the currently defined ESEs, i.e., potential new classes of ESEs, might exist in exon sequences, particularly, those that flank long introns. CONCLUSION Several weak but statistically significant correlations were observed between vertebrate intron length, splice site strength, and potential exonic splicing signals. Taken together, these findings attest to a compensatory relationship between splice sites and exonic splicing signals, depending on intron length.
Collapse
|
180
|
Abstract
Alternative splicing increases transcriptome and proteome diversification. Previous analyses aiming at comparing the rate of alternative splicing between different organisms provided contradicting results. These contradicting results were attributed to the fact that both analyses were dependent on the expressed sequence tag (EST) coverage, which varies greatly between the tested organisms. In this study we compare the level of alternative splicing among eight different organisms. By employing an EST independent approach we reveal that the percentage of genes and exons undergoing alternative splicing is higher in vertebrates compared with invertebrates. We also find that alternative exons of the skipping type are flanked by longer introns compared to constitutive ones, whereas alternative 5′ and 3′ splice sites events are generally not. In addition, although the regulation of alternative splicing and sizes of introns and exons have changed during metazoan evolution, intron retention remained the rarest type of alternative splicing, whereas exon skipping is more prevalent and exhibits a slight increase, from invertebrates to vertebrates. The difference in the level of alternative splicing suggests that alternative splicing may contribute greatly to the mammal higher level of phenotypic complexity, and that accumulation of introns confers an evolutionary advantage as it allows increasing the number of alternative splicing forms.
Collapse
Affiliation(s)
| | | | - Gil Ast
- To whom correspondence should be addressed. Tel: +972 3 640 9900; Fax: +972 3 640 6893;
| |
Collapse
|
181
|
Ordovás L, Roy R, Zaragoza P, Rodellar C. Structural and functional characterization of the bovine solute carrier family 27 member 1 (SLC27A1) gene. Cytogenet Genome Res 2006; 115:115-22. [PMID: 17065791 DOI: 10.1159/000095230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 02/03/2006] [Indexed: 02/03/2023] Open
Abstract
The Solute Carrier Family 27 Member 1 (SLC27A1) is an evolutionarily conserved protein involved in regulating the long chain fatty acid uptake into cells. It has been shown to be expressed in tissues undergoing rapid fatty acid metabolism such as heart, skeletal muscle and adipose tissues, but no expression is detected in liver. Here we report the molecular characterization of the bovine SLC27A1 gene and draw a comparison with orthologous genes of some monogastric species. The bovine SLC27A1 gene is organized in 13 exons and extends over more than 40 kb of genomic DNA. It codes for a protein of 646 amino acids with a predicted molecular weight of 71 kDa which has 92%, 88% and 88% similarity with the human, mouse and rat SLC27A1 proteins respectively. The bovine SLC27A1 RNA expression was high in heart, testis, nervous tissue and muscle and very low in liver. Surprisingly, adipose tissues showed very low RNA expression levels contrary to the results described for both human and mouse genes. On the other hand, discordances observed between the bovine SLC27A1 RNA and protein expression patterns suggest that complex regulation mechanisms may be involved in determining the final SLC27A1 protein levels in each tissue. Finally, we have identified an alternative transcript generated by exon skipping of exon 3 to 7 which could encode a cytosolic SLC27A1 isoform of approximately 37 kDa.
Collapse
Affiliation(s)
- L Ordovás
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | |
Collapse
|
182
|
Ram O, Ast G. SR proteins: a foot on the exon before the transition from intron to exon definition. Trends Genet 2006; 23:5-7. [PMID: 17070958 DOI: 10.1016/j.tig.2006.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 09/05/2006] [Accepted: 10/17/2006] [Indexed: 10/24/2022]
Abstract
Two recent publications illuminate the evolution of alternative splicing, showing that a SR (serine-arginine-rich) protein that regulates alternative splicing in multicellular organisms is also found in a unicellular organism without alternative splicing, in which it can assist in the splicing of weak introns. Moreover, insertion of SR proteins into an organism lacking such proteins can restore the splicing of weak introns. These results imply that SR proteins had already facilitated the splicing of weak introns before the evolution of alternative splicing.
Collapse
Affiliation(s)
- Oren Ram
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
183
|
Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res 2006; 34:3494-510. [PMID: 16855287 PMCID: PMC1524908 DOI: 10.1093/nar/gkl498] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 12/25/2022] Open
Abstract
The number of aberrant splicing processes causing human disease is growing exponentially and many recent studies have uncovered some aspects of the unexpectedly complex network of interactions involved in these dysfunctions. As a consequence, our knowledge of the various cis- and trans-acting factors playing a role on both normal and aberrant splicing pathways has been enhanced greatly. However, the resulting information explosion has also uncovered the fact that many splicing systems are not easy to model. In fact we are still unable, with certainty, to predict the outcome of a given genomic variation. Nonetheless, in the midst of all this complexity some hard won lessons have been learned and in this survey we will focus on the importance of the wide sequence context when trying to understand why apparently similar mutations can give rise to different effects. The examples discussed in this summary will highlight the fine 'balance of power' that is often present between all the various regulatory elements that define exon boundaries. In the final part, we shall then discuss possible therapeutic targets and strategies to rescue genetic defects of complex splicing systems.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| |
Collapse
|
184
|
Hicks MJ, Yang CR, Kotlajich MV, Hertel KJ. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol 2006; 4:e147. [PMID: 16640457 PMCID: PMC1450099 DOI: 10.1371/journal.pbio.0040147] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/09/2006] [Indexed: 11/19/2022] Open
Abstract
RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs. A novel in vitro method to study transcription and splicing leads to the proposal that linking transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs.
Collapse
Affiliation(s)
- Martin J Hicks
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Chin-Rang Yang
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- 2Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Matthew V Kotlajich
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Klemens J Hertel
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- 2Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
185
|
Abstract
The branch point sequence (BPS) is a conserved splicing signal important for spliceosome assembly and lariat intron formation. BPS mutations may result in aberrant pre-mRNA splicing and genetic disorders, but their phenotypic consequences have been difficult to predict, largely due to a highly degenerate nature of the BPS consensus. Here, we have examined the splicing pattern of nine reporter pre-mRNAs that have previously been shown to give rise to human hereditary diseases as a result of single-nucleotide substitutions in the predicted BPS. Increased exon skipping and intron retention observed in vivo were recapitulated for each mutated pre-mRNA, but the reproducibility of cryptic splice site activation was lower. BP mutations in reporter pre-mRNAs frequently induced aberrant 3' splice sites and also activated a cryptic 5' splice site. Systematic mutagenesis of BP adenosines showed that in most pre-mRNAs, the expression of canonical transcripts was lower for BP transitions than BP transversions. Differential splicing outcome for transitions vs. transversions was abrogated or reduced if introns were truncated to 200 nt or less, suggesting that the nature of the BP residue is less critical for interactions across very short introns. Together, these results improve prediction of phenotypic consequences of point mutations upstream of splice acceptor sites and suggest that the overrepresentation of disease-causing adenosine-to-guanosine BP substitutions observed in Mendelian disorders is due to more profound defects of gene expression at the level of pre-mRNA splicing.
Collapse
Affiliation(s)
- Jana Královicová
- Division of Human Genetics, School of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | |
Collapse
|
186
|
Ner-Gaon H, Fluhr R. Whole-Genome Microarray in Arabidopsis Facilitates Global Analysis of Retained Introns. DNA Res 2006; 13:111-21. [PMID: 16980712 DOI: 10.1093/dnares/dsl003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing (AS) is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Different types of AS have been observed; these include exon skipping, alternative donor or acceptor site and intron retention. In humans, exon skipping is the most common type while intron retention is rare. In contrast, in Arabidopsis, intron retention is the most prevalent AS type (approximately 40%). Here we show that direct transcript expression analysis using high-density oligonucleotide-based whole-genome microarrays (WGAs) is particularly amenable for assessing global intron retention in Arabidopsis. By applying a novel algorithm retained introns are detected in 8% of the transcripts examined. A sampling of 14 transcripts showed that 86% can be confirmed by RT-PCR. This rate of detection predicts an overall total AS rate of 20% for Arabidopsis compared with 10-22% based on EST/cDNA-based analysis. These findings will facilitate monitoring constitutive and dynamic whole-genome splicing on the next generation WGA slides.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Plant Sciences, Weizmann Institute of Science Rehovot 76100, Israel
| | | |
Collapse
|