151
|
Zhu L, Zhou C, Yang W, He S, Cheng GJ, Zhang X, Lee CS. Formal Syntheses of (±)-Platensimycin and (±)-Platencin via a Dual-Mode Lewis Acid Induced Cascade Cyclization Approach. J Org Chem 2013; 78:7912-29. [DOI: 10.1021/jo401105q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lizhi Zhu
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Congshan Zhou
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
- College of Chemistry and Chemical
Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wei Yang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Shuzhong He
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Gui-Juan Cheng
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Xinhao Zhang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| |
Collapse
|
152
|
Wang Y, Ma S. Recent Advances in Inhibitors of Bacterial Fatty Acid Synthesis Type II (FASII) System Enzymes as Potential Antibacterial Agents. ChemMedChem 2013; 8:1589-608. [DOI: 10.1002/cmdc.201300209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/30/2013] [Indexed: 12/25/2022]
|
153
|
Affiliation(s)
- J. S. Yadav
- Division of Natural Product Chemistry and Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Rajendar Goreti
- Division of Natural Product Chemistry and Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Srihari Pabbaraja
- Division of Natural Product Chemistry and Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - B. Sridhar
- Division of Natural Product Chemistry and Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| |
Collapse
|
154
|
Kurosu M, Siricilla S, Mitachi K. Advances in MRSA drug discovery: where are we and where do we need to be? Expert Opin Drug Discov 2013; 8:1095-116. [PMID: 23829425 DOI: 10.1517/17460441.2013.807246] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) have been on the increase during the past decade, due to the steady growth of the elderly and immunocompromised patients, and the emergence of multidrug-resistant (MDR) bacterial strains. Although there are a limited number of anti-MRSA drugs available, a number of different combination antimicrobial drug regimens have been used to treat serious MRSA infections. Thus, the addition of several new antistaphylococcal drugs into clinical practice should broaden clinician's therapeutic options. As MRSA is one of the most common and problematic bacteria associated with increasing antimicrobial resistance, continuous efforts for the discovery of lead compounds as well as development of alternative therapies and faster diagnostics are required. AREAS COVERED This article summarizes the FDA-approved drugs to treat MRSA infections, the drugs in clinical trials, and the drug leads for MRSA and related Gram-positive bacterial infections. In addition, the article discusses the mode of action of antistaphylococcal molecules and the resistant mechanisms of some molecules. EXPERT OPINION The number of pipeline drugs presently undergoing clinical trials is not particularly encouraging. There are limited and rather expensive therapeutic options for MRSA infections in the critically ill. Further research efforts are required for effective phage therapy on MRSA infections in clinical use, which seem to be attractive therapeutic options for the future.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee, 881 Madison Avenue, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
155
|
Singh SB, Young K, Miesel L. Screening strategies for discovery of antibacterial natural products. Expert Rev Anti Infect Ther 2013; 9:589-613. [PMID: 21819327 DOI: 10.1586/eri.11.81] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microbial-derived natural products have been a traditional source of antibiotics and antibiotic leads and continue to be effective sources of antibiotics today. The most important of these discoveries were made about 50 years ago. Chemical modifications of natural products discovered during those years continue to produce new clinical agents but their value is now, unfortunately, fading away owing to the exhaustion of opportunities of chemical modifications. The discovery of new natural antibiotics is directly linked to new screening technologies, particularly technologies that can help to eliminate the rediscovery of known antibiotics. In this article, we have reviewed the screening technologies from recent literature as well as originating from authors laboratories that were used for the screening of natural products. The article covers the entire spectrum of screening strategies, including classical empiric whole-cell assays to more sophisticated antisense based hypersensitive Staphylococcus aureus Fitness Test assays designed to screen all targets simultaneously. These technologies have led to the discovery of a series of natural product antibiotics, which have been summarized, including the discovery of platensimycin, platencin, nocathiacins, philipimycin, cyclothialidine and muryamycins. It is quite clear that natural products provide a tremendous opportunity to discover new antibiotics when combined with new hyper-sensitive whole-cell technologies.
Collapse
Affiliation(s)
- Sheo B Singh
- Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | |
Collapse
|
156
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
157
|
Occurrence, distribution, dereplication and efficient discovery of thiazolyl peptides by sensitive-resistant pair screening. J Antibiot (Tokyo) 2013; 66:599-607. [DOI: 10.1038/ja.2013.54] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 11/08/2022]
|
158
|
Ramamoorthy D, Turos E, Guida WC. Identification of a New Binding Site in E. coli FabH using Molecular Dynamics Simulations: Validation by Computational Alanine Mutagenesis and Docking Studies. J Chem Inf Model 2013; 53:1138-56. [DOI: 10.1021/ci3003528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Divya Ramamoorthy
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue,
Tampa, Florida 33620, United States
| | - Edward Turos
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue,
Tampa, Florida 33620, United States
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, 4202
E. Fowler Avenue, Tampa, Florida 33620, United States
- Center for Drug Discovery and Innovation, 4202 E. Fowler Avenue, Tampa,
Florida 33620, United States
| | - Wayne C. Guida
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue,
Tampa, Florida 33620, United States
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa,
Florida 33612, United States
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, 4202
E. Fowler Avenue, Tampa, Florida 33620, United States
- Center for Drug Discovery and Innovation, 4202 E. Fowler Avenue, Tampa,
Florida 33620, United States
| |
Collapse
|
159
|
Silver LL. Are natural products still the best source for antibacterial discovery? The bacterial entry factor. Expert Opin Drug Discov 2013; 3:487-500. [PMID: 23484922 DOI: 10.1517/17460441.3.5.487] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND One of the reasons for the low output of new antibacterial agents from recent discovery efforts has been the reliance on synthetic chemicals in screening for inhibitors of new bacterial targets. As the bulk of antibacterials are natural product-derived, is a return to natural products for screening warranted? OBJECTIVE As bacterial entry is required for inhibition of many targets, this review concentrates on the potential for natural products and compounds from synthetic libraries to enter and be retained in the bacterial cytoplasm. METHODS Papers investigating the physicochemical nature of synthetic libraries, natural products and antibacterials were reviewed; the requirements for entry into the bacterial cytoplasm were delineated. RESULTS/CONCLUSION Until rules for cytoplasmic entry are developed and routinely used for design of synthetic libraries, natural products still provide a rich resource for antibacterial discovery.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 3403 Park Place, Springfield, NJ 07081, USA +1 973 218 1466 ;
| |
Collapse
|
160
|
Perturbation of Staphylococcus aureus gene expression by the enoyl-acyl carrier protein reductase inhibitor AFN-1252. Antimicrob Agents Chemother 2013; 57:2182-90. [PMID: 23459481 DOI: 10.1128/aac.02307-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study examines the alteration in Staphylococcus aureus gene expression following treatment with the type 2 fatty acid synthesis inhibitor AFN-1252. An Affymetrix array study showed that AFN-1252 rapidly increased the expression of fatty acid synthetic genes and repressed the expression of virulence genes controlled by the SaeRS 2-component regulator in exponentially growing cells. AFN-1252 did not alter virulence mRNA levels in a saeR deletion strain or in strain Newman expressing a constitutively active SaeS kinase. AFN-1252 caused a more pronounced increase in fabH mRNA levels in cells entering stationary phase, whereas the depression of virulence factor transcription was attenuated. The effect of AFN-1252 on gene expression in vivo was determined using a mouse subcutaneous granuloma infection model. AFN-1252 was therapeutically effective, and the exposure (area under the concentration-time curve from 0 to 48 h [AUC(0-48)]) of AFN-1252 in the pouch fluid was comparable to the plasma levels in orally dosed animals. The inhibition of fatty acid biosynthesis by AFN-1252 in the infected pouches was signified by the substantial and sustained increase in fabH mRNA levels in pouch-associated bacteria, whereas depression of virulence factor mRNA levels in the AFN-1252-treated pouch bacteria was not as evident as it was in exponentially growing cells in vitro. The trends in fabH and virulence factor gene expression in the animal were similar to those in slower-growing bacteria in vitro. These data indicate that the effects of AFN-1252 on virulence factor gene expression depend on the physiological state of the bacteria.
Collapse
|
161
|
Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS One 2013; 8:e57370. [PMID: 23469191 PMCID: PMC3587592 DOI: 10.1371/journal.pone.0057370] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background The rising drug resistance in pathogenic bacteria and inefficiency of current antibiotics to meet clinical requirements has augmented the need to establish new and innovative approaches for antibacterial drug discovery involving identification of novel antibacterial targets and inhibitors. Being obligatory for bacterial growth, essential gene products are considered vital as drug targets. The bacterial protein YidC is highly conserved among pathogens and is essential for membrane protein insertion due to which it holds immense potential as a promising target for antibacterial therapy. Methods/Principal Findings The aim of this study was to explore the feasibility and efficacy of expressed antisense-mediated gene silencing for specific downregulation of yidC in Escherichia coli. We induced RNA silencing of yidC which resulted in impaired growth of the host cells. This was followed by a search for antibacterial compounds sensitizing the YidC depleted cells as they may act as inhibitors of the essential protein or its products. The present findings affirm that reduction of YidC synthesis results in bacterial growth retardation, which warrants the use of this enzyme as a viable target in search of novel antibacterial agents. Moreover, yidC antisense expression in E. coli resulted in sensitization to antibacterial essential oils eugenol and carvacrol. Fractional Inhibitory Concentration Indices (FICIs) point towards high level of synergy between yidC silencing and eugenol/carvacrol treatment. Finally, as there are no known YidC inhibitors, the RNA silencing approach applied in this study put forward rapid means to screen novel potential YidC inhibitors. Conclusions/Significance The present results suggest that YidC is a promising candidate target for screening antibacterial agents. High level of synergy reported here between yidC silencing and eugenol/carvacrol treatment is indicative of a potential antibacterial therapy. This is the first report indicating that the essential gene yidC is a therapeutic target of the antibacterial essential oils eugenol and carvacrol in E. coli.
Collapse
|
162
|
Horii S, Torihata M, Nagasawa T, Kuwahara S. Stereoselective Approach to the Racemic Oxatetracyclic Core of Platensimycin. J Org Chem 2013; 78:2798-801. [DOI: 10.1021/jo302813y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sakuya Horii
- Laboratory of Applied Bioorganic Chemistry, Graduate
School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Munefumi Torihata
- Laboratory of Applied Bioorganic Chemistry, Graduate
School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Tomohiro Nagasawa
- Laboratory of Applied Bioorganic Chemistry, Graduate
School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate
School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
163
|
Yu Z, Rateb ME, Smanski MJ, Peterson RM, Shen B. Isolation and structural elucidation of glucoside congeners of platencin from Streptomyces platensis SB12600. J Antibiot (Tokyo) 2013; 66:291-4. [DOI: 10.1038/ja.2013.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
164
|
Zhu L, Han Y, Du G, Lee CS. A Bifunctional Lewis Acid Induced Cascade Cyclization to the Tricyclic Core of ent-Kaurenoids and Its Application to the Formal Synthesis of (±)-Platensimycin. Org Lett 2013; 15:524-7. [DOI: 10.1021/ol3033412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lizhi Zhu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Yejian Han
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Guangyan Du
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| |
Collapse
|
165
|
Antibiotics for Emerging Pathogens. Infect Dis (Lond) 2013. [DOI: 10.1007/978-1-4614-5719-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
166
|
Moustafa GAI, Nojima S, Yamano Y, Aono A, Arai M, Mitarai S, Tanaka T, Yoshimitsu T. Potent growth inhibitory activity of (±)-platencin towards multi-drug-resistant and extensively drug-resistant Mycobacterium tuberculosis. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00016h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
167
|
Smanski MJ, Casper J, Peterson RM, Yu Z, Rajski SR, Shen B. Expression of the platencin biosynthetic gene cluster in heterologous hosts yielding new platencin congeners. JOURNAL OF NATURAL PRODUCTS 2012; 75:2158-2167. [PMID: 23157615 PMCID: PMC3532557 DOI: 10.1021/np3005985] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Platensimycin (PTM) and platencin (PTN) are potent and selective inhibitors of bacterial and mammalian fatty acid synthases and have emerged as promising drug leads for both antibacterial and antidiabetic therapies. We have previously cloned and sequenced the PTM-PTN dual biosynthetic gene cluster from Streptomyces platensis MA7327 and the PTN biosynthetic gene cluster from S. platensis MA7339, the latter of which is composed of 31 genes encoding PTN biosynthesis, regulation, and resistance. We have also demonstrated that PTM or PTN production can be significantly improved upon inactivation of the pathway-specific regulator ptmR1 or ptnR1 in S. platensis MA7327 or MA7339, respectively. We now report engineered production of PTN and congeners in a heterologous Streptomyces host. Expression constructs containing the ptn biosynthetic gene cluster were engineered from SuperCos 1 library clones and introduced into five model Streptomyces hosts, and PTN production was achieved in Streptomyces lividans K4-114. Inactivation of ptnR1 was crucial for expression of the ptn biosynthetic gene cluster, thereby PTN production, in S. lividans K4-114. Six PTN congeners, five of which were new, were also isolated from the recombinant strain S. lividans SB12606, revealing new insights into PTN biosynthesis. Production of PTN in a model Streptomyces host provides new opportunities to apply combinatorial biosynthetic strategies to the PTN biosynthetic machinery for structural diversity.
Collapse
Affiliation(s)
- Michael J. Smanski
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jeffrey Casper
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ryan M. Peterson
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Zhiguo Yu
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Scott R. Rajski
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ben Shen
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Department of Molecular Therapeutics, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Natural Products Library Initiative, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
168
|
East SP, Silver LL. Multitarget ligands in antibacterial research: progress and opportunities. Expert Opin Drug Discov 2012; 8:143-56. [PMID: 23252414 DOI: 10.1517/17460441.2013.743991] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Resistance to current antibacterial therapies is an inevitability that represents a significant global health concern. Bacteria have the capacity to render all current drug treatments ineffective, which places a demand on the drug discovery community to constantly develop new antibacterial agents. Compounds that inhibit multiple biological targets, often referred to as multitarget ligands, are an inviting prospect in antibacterial research because, although they will not solve the issue of resistance, they might help to delay the onset. AREAS COVERED This review covers some of the recent progress in identifying new ligands that deliberately interact with more than one essential biological target in bacteria. The two principal areas covered are inhibitors of DNA replication and cell wall biosynthesis. EXPERT OPINION Antibacterial programs for the design of multitarget ligands present an important opportunity for production of antibacterial agents. Their longevity, due to slow development of resistance, is comparable to that seen with other successful agents - but is much improved over single-targeted agents for which resistance can appear in vitro overnight. The preclinical development of these agents will have to overcome the standard problems of antibacterial discovery. Such problems include optimization of characteristics favoring cell entry and particularly the demonstration of selectivity of inhibition of the desired multiple targets without inhibition of other bacterial or any mammalian functions.
Collapse
Affiliation(s)
- Stephen P East
- Evotec (UK) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, UK.
| | | |
Collapse
|
169
|
Bioengineering natural product biosynthetic pathways for therapeutic applications. Curr Opin Biotechnol 2012; 23:931-40. [DOI: 10.1016/j.copbio.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/13/2012] [Indexed: 01/05/2023]
|
170
|
He R, Wakimoto T, Egami Y, Kenmoku H, Ito T, Asakawa Y, Abe I. Heterologously expressed β-hydroxyl fatty acids from a metagenomic library of a marine sponge. Bioorg Med Chem Lett 2012; 22:7322-5. [DOI: 10.1016/j.bmcl.2012.10.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
|
171
|
Singh SB, Goetz MA, Smith SK, Zink DL, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J, Dorso K, de la Cruz M, Martín J, Vicente F, Genilloud O, Donald RG, Phillips JW. Kibdelomycin A, a congener of kibdelomycin, derivatives and their antibacterial activities. Bioorg Med Chem Lett 2012; 22:7127-30. [DOI: 10.1016/j.bmcl.2012.09.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 11/17/2022]
|
172
|
Aluotto S, Tynan H, Maggio C, Falzone M, Mukherjee A, Gullo V, Demain AL. Development of a semi-defined medium supporting production of platensimycin and platencin by Streptomyces platensis. J Antibiot (Tokyo) 2012. [PMID: 23188381 DOI: 10.1038/ja.2012.97] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platensimycin and platencin are compounds that were discovered at Merck Research Laboratories and have shown promising antibacterial activity. They are both produced in fermentation by the actinomycete Streptomyces platensis. Merck reported a crude, insoluble production medium to produce the antibiotics. To test the possible effects of different primary metabolites and inorganic compounds on the production of these antibiotics, a chemically-defined medium is needed. The effects that these compounds have on production could provide information about the precursors and biosynthetic pathway of the antibiotics. We have tested and developed a number of media with varying degrees of chemical definition and solubility using the Merck medium as our starting point. Our latest production medium, PM5, is soluble and semi-defined. It yields suitable production of the compounds, as shown by agar diffusion assays, bioautography and HPLC. The antibiotics were located in the extracellular broths and not in the mycelia.
Collapse
Affiliation(s)
- Sabrina Aluotto
- Charles A Dana Research Institute for Scientists Emerti, Drew University, Madison, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Wang XL, Zhang YB, Tang JF, Yang YS, Chen RQ, Zhang F, Zhu HL. Design, synthesis and antibacterial activities of vanillic acylhydrazone derivatives as potential β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Eur J Med Chem 2012; 57:373-82. [DOI: 10.1016/j.ejmech.2012.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/24/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
|
174
|
Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs. Future Med Chem 2012; 4:1113-51. [PMID: 22709254 DOI: 10.4155/fmc.12.62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a large range of diseases, such diabetes and cancer, which are connected to abnormal fatty acid metabolism in human cells. Therefore, inhibitors of human fatty acid synthase have great potential to manage or treat these diseases. In prokaryotes, fatty acid synthesis is important for signaling, as well as providing starting materials for the synthesis of phospholipids, which are required for the formation of the cell membrane. Recently, there has been renewed interest in the development of new molecules that target bacterial fatty acid synthases for the treatment of bacterial diseases. In this review, we look at the differences and similarities between fatty acid synthesis in humans and bacteria and highlight various small molecules that have been shown to inhibit either the mammalian or bacterial fatty acid synthase or both.
Collapse
|
175
|
Halavaty AS, Kim Y, Minasov G, Shuvalova L, Dubrovska I, Winsor J, Zhou M, Onopriyenko O, Skarina T, Papazisi L, Kwon K, Peterson SN, Joachimiak A, Savchenko A, Anderson WF. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1359-70. [PMID: 22993090 PMCID: PMC3447402 DOI: 10.1107/s0907444912029101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/26/2012] [Indexed: 05/13/2024]
Abstract
Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS(SA)), Vibrio cholerae (AcpS(VC)) and Bacillus anthracis (AcpS(BA)) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS(BA) is emphasized because of the two 3',5'-adenosine diphosphate (3',5'-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3',5'-ADP is bound as the 3',5'-ADP part of CoA in the known structures of the CoA-AcpS and 3',5'-ADP-AcpS binary complexes. The position of the second 3',5'-ADP has never been described before. It is in close proximity to the first 3',5'-ADP and the ACP-binding site. The coordination of two ADPs in AcpS(BA) may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.
Collapse
Affiliation(s)
- Andrei S. Halavaty
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ievgeniia Dubrovska
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - James Winsor
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Min Zhou
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - Olena Onopriyenko
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Tatiana Skarina
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Leka Papazisi
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Keehwan Kwon
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Scott N. Peterson
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
176
|
Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev 2012; 41:5185-238. [PMID: 22743704 PMCID: PMC3426871 DOI: 10.1039/c2cs35116a] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
177
|
Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. Antonie van Leeuwenhoek 2012; 102:447-61. [DOI: 10.1007/s10482-012-9777-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
|
178
|
Herath K, Jayasuriya H, Zink DL, Sigmund J, Vicente F, de la Cruz M, Basilio A, Bills GF, Polishook JD, Donald R, Phillips J, Goetz M, Singh SB. Isolation, structure elucidation, and antibacterial activity of methiosetin, a tetramic acid from a tropical sooty mold (Capnodium sp.). JOURNAL OF NATURAL PRODUCTS 2012; 75:420-424. [PMID: 22288374 DOI: 10.1021/np200857y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Drug-resistant bacteria continue to make many existing antibiotic classes ineffective. In order to avoid a future epidemic from drug-resistant bacterial infections, new antibiotics with new modes of action are needed. In an antibiotic screening program for new drug leads with new modes of action using antisense Staphylococcus aureus Fitness Test screening, we discovered a new tetramic acid, methiosetin, from a tropical sooty mold, Capnodium sp. The fungus also produced epicorazine A, a known antibiotic. The structure and relative configuration of methiosetin was elucidated by 2D NMR and ESIMS techniques. Methiosetin and epicorazine A showed weak to modest antibacterial activity against S. aureus and Haemophilus influenzae. The isolation, structure elucidation, and antibacterial activity of both compounds are described.
Collapse
Affiliation(s)
- Kithsiri Herath
- Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, New Jersey 07065, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Smanski MJ, Peterson RM, Huang SX, Shen B. Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Curr Opin Chem Biol 2012; 16:132-41. [PMID: 22445175 DOI: 10.1016/j.cbpa.2012.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/22/2012] [Accepted: 03/02/2012] [Indexed: 11/15/2022]
Abstract
Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering.
Collapse
Affiliation(s)
- Michael J Smanski
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
180
|
Patra M, Gasser G, Wenzel M, Merz K, Bandow JE, Metzler-Nolte N. Sandwich and Half-Sandwich Derivatives of Platensimycin: Synthesis and Biological Evaluation. Organometallics 2012. [DOI: 10.1021/om201146c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Malay Patra
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| | - Gilles Gasser
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich,
Switzerland
| | - Michaela Wenzel
- Lehrstuhl für
Biologie
der Mikroorganismen, Fakultät
für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstrasse
150, D-44801 Bochum, Germany
| | - Klaus Merz
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| | - Julia E. Bandow
- Lehrstuhl für
Biologie
der Mikroorganismen, Fakultät
für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstrasse
150, D-44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| |
Collapse
|
181
|
Meng J, Kanzaki G, Meas D, Lam CK, Crummer H, Tain J, Xu HH. A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes. FEMS Microbiol Lett 2012; 329:45-53. [PMID: 22268863 DOI: 10.1111/j.1574-6968.2012.02503.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/27/2011] [Accepted: 01/09/2012] [Indexed: 11/27/2022] Open
Abstract
Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250 000 library transformants for conditional growth inhibitory recombinant clones from two shotgun genomic libraries of E. coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes, while 18 originated from nonessential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12-fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E. coli using regulated asRNA expression.
Collapse
Affiliation(s)
- Jia Meng
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Feng Z, Chakraborty D, Dewell SB, Reddy BVB, Brady SF. Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. J Am Chem Soc 2012; 134:2981-7. [PMID: 22224500 DOI: 10.1021/ja207662w] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a recent study of polyketide biosynthetic gene clusters cloned directly from soil, we isolated two antibiotics, fasamycins A and B, which showed activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. To identify the target of the fasamycins, mutants with elevated fasamycin A minimum inhibitory concentrations were selected from a wild-type culture of E. faecalis OG1RF. Next-generation sequencing of these mutants, in conjunction with in vitro biochemical assays, showed that the fasamycins inhibit FabF of type II fatty acid biosynthesis (FASII). Candidate gene overexpression studies also showed that fasamycin resistance is conferred by fabF overexpression. On the basis of comparisons with known FASII inhibitors and in silico docking studies, the chloro-gem-dimethyl-anthracenone substructure seen in the fasamycins is predicted to represent a naturally occurring FabF-specific antibiotic pharmacophore. Optimization of this pharmacophore should yield FabF-specific antibiotics with increased potencies and differing spectra of activity. This study demonstrates that culture-independent antibiotic discovery methods have the potential to provide access to novel metabolites with modes of action that differ from those of antibiotics currently in clinical use.
Collapse
Affiliation(s)
- Zhiyang Feng
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
183
|
Walsh CT, Haynes SW, Ames BD. Aminobenzoates as building blocks for natural productassembly lines. Nat Prod Rep 2012; 29:37-59. [DOI: 10.1039/c1np00072a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
184
|
Antibiotics for Emerging Pathogens. Infect Dis (Lond) 2012. [DOI: 10.1007/978-1-0716-2463-0_523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
185
|
Pitscheider M, Mäusbacher N, Sieber SA. Antibiotic activity and target discovery of three-membered natural product-derived heterocycles in pathogenic bacteria. Chem Sci 2012. [DOI: 10.1039/c2sc20290e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
186
|
Platensimycin and platencin biosynthesis in Streptomyces platensis, showcasing discovery and characterization of novel bacterial diterpene synthases. Methods Enzymol 2012; 515:163-86. [PMID: 22999174 DOI: 10.1016/b978-0-12-394290-6.00008-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diterpenoid natural products cover a vast chemical diversity and include many medicinally and industrially relevant compounds. All diterpenoids derive from a common substrate, (E,E,E)-geranylgeranyl diphosphate, which is cyclized into one of many scaffolds by a diterpene synthase (DTS). While diterpene biosynthesis has been extensively studied in plants and fungi, bacteria are now recognized for their production of unique diterpenoids and are likely to harbor an underexplored reservoir of new DTSs. Bacterial diterpenoid biosynthesis can be exploited for the discovery of new natural products, a better mechanistic understanding of DTSs, and the rational engineering of whole metabolic pathways. This chapter describes methods and protocols for identification and characterization of bacterial DTSs, based on our recent work with the DTSs involved in platensimycin and platencin biosynthesis.
Collapse
|
187
|
Borgaro JG, Chang A, Machutta CA, Zhang X, Tonge PJ. Substrate recognition by β-ketoacyl-ACP synthases. Biochemistry 2011; 50:10678-86. [PMID: 22017312 DOI: 10.1021/bi201199x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a β-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway.
Collapse
Affiliation(s)
- Janine G Borgaro
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | | | | | | |
Collapse
|
188
|
Liu X, Bolla K, Ashforth EJ, Zhuo Y, Gao H, Huang P, Stanley SA, Hung DT, Zhang L. Systematics-guided bioprospecting for bioactive microbial natural products. Antonie van Leeuwenhoek 2011; 101:55-66. [PMID: 22086462 DOI: 10.1007/s10482-011-9671-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/27/2011] [Indexed: 01/26/2023]
Abstract
Advances in the taxonomic characterization of microorganisms have accelerated the rate at which new producers of natural products can be understood in relation to known organisms. Yet for many reasons, chemical efforts to characterize new compounds from new microbes have not kept pace with taxonomic advances. That there exists an ever-widening gap between the biological versus chemical characterization of new microorganisms creates tremendous opportunity for the discovery of novel natural products through the calculated selection and study of organisms from unique, untapped, ecological niches. A systematics-guided bioprospecting, including the construction of high quality libraries of marine microbes and their crude extracts, investigation of bioactive compounds, and increasing the active compounds by precision engineering, has become an efficient approach to drive drug leads discovery. This review outlines the recent advances in these issues and shares our experiences on anti-infectious drug discovery and improvement of avermectins production as well.
Collapse
Affiliation(s)
- Xueting Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Lee JY, Lee EJ, Jeong KW, Kim YM. Antimicrobial Flavonoid, 3,6-Dihydroxyflavone, Have Dual Inhibitory Activity against KAS III and KAS I. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.9.3219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
190
|
Prosen KR, Carroll RK, Burda WN, Krute CN, Bhattacharya B, Dao ML, Turos E, Shaw LN. The impact of fatty acids on the antibacterial properties of N-thiolated β-lactams. Bioorg Med Chem Lett 2011; 21:5293-5. [PMID: 21821415 DOI: 10.1016/j.bmcl.2011.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 10/17/2022]
Abstract
Bacterial fatty acid synthesis (FAS) is a potentially important, albeit controversial, target for antimicrobial therapy. Recent studies have suggested that the addition of exogenous fatty acids (FAs) to growth media can circumvent the effects of FAS-targeting compounds on bacterial growth. Consequently, such agents may have limited in vivo applicability for the treatment of human disease, as free FAs are abundant within the body. Our group has previously developed N-thiolated β-lactams and found they function by interfering with FAS in select pathogenic bacteria, including MRSA. To determine if the FAS targeting activity of N-thiolated β-lactams can be abrogated by exogenous fatty acids, we performed MIC determinations for MRSA strains cultured with the fatty acids oleic acid and Tween 80. We find that, whilst the activity of the known FAS inhibitor triclosan is severely compromised by the addition of both oleic acid and Tween 80, exogenous FAs do not mitigate the antibacterial activity of N-thiolated β-lactams towards MRSA. Consequently, we propose that N-thiolated β-lactams are unique amongst FAS-inhibiting antimicrobials, as their effects are unimpeded by exogenous FAs.
Collapse
Affiliation(s)
- Katherine R Prosen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Platensimycin and platencin: promising antibiotics for future application in human medicine. J Antibiot (Tokyo) 2011; 64:705-10. [PMID: 21915133 DOI: 10.1038/ja.2011.80] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Platensimycin and platencin are novel antibiotics produced by Streptomyces platensis. They are potent and non-toxic natural products active against Gram-positive pathogens, including antibiotic-resistant strains and Mycobacterium tuberculosis. They were isolated using an intriguing target-based whole-cell antisense differential sensitivity assay as inhibitors of fatty acid biosynthesis of type II. This type of biosynthesis is not present in humans. Platensimycin inhibits the elongation-condensing enzyme FabF, whereas platencin inhibits both FabF and FabH. For these antibiotics to become successful drugs, their pharmacokinetics must be improved. They have too high a rate of clearance in the body, yielding a low degree of systematic exposure. They work well when administered by continuous infusion, but this is not a useful method of delivery to patients. The two antibiotics and many analogs have been prepared by chemical synthesis. Natural congeners have also been obtained from the producing actinomycete. However, none of these molecules are as active as platensimycin and platencin. Using tools of rational metabolic engineering, superior strains have been produced making hundreds of times more antibiotic than the natural strains.
Collapse
|
192
|
Good L, Stach JEM. Synthetic RNA silencing in bacteria - antimicrobial discovery and resistance breaking. Front Microbiol 2011; 2:185. [PMID: 21941522 PMCID: PMC3170882 DOI: 10.3389/fmicb.2011.00185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/20/2011] [Indexed: 12/30/2022] Open
Abstract
The increasing incidence and prevalence of antibiotic resistance in bacteria threatens the “antibiotic miracle.” Conventional antimicrobial drug development has failed to replace the armamentarium needed to combat this problem, and novel solutions are urgently required. Here we review both natural and synthetic RNA silencing and its potential to provide new antibacterials through improved target selection, evaluation, and screening. Furthermore, we focus on synthetic RNA silencers as a novel class of antibacterials and review their unique properties.
Collapse
Affiliation(s)
- Liam Good
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London London, UK
| | | |
Collapse
|
193
|
Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors. Proc Natl Acad Sci U S A 2011; 108:15378-83. [PMID: 21876172 DOI: 10.1073/pnas.1109208108] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements.
Collapse
|
194
|
Parsons JB, Rock CO. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr Opin Microbiol 2011; 14:544-9. [PMID: 21862391 DOI: 10.1016/j.mib.2011.07.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 11/30/2022]
Abstract
The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there is not a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | | |
Collapse
|
195
|
Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis. Proc Natl Acad Sci U S A 2011; 108:13498-503. [PMID: 21825154 DOI: 10.1073/pnas.1106919108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Platensimycin (PTM) and platencin (PTN) are potent and selective inhibitors of bacterial and mammalian fatty acid synthases and have emerged as promising drug leads for both antibacterial and antidiabetic therapies. Comparative analysis of the PTM and PTN biosynthetic machineries in Streptomyces platensis MA7327 and MA7339 revealed that the divergence of PTM and PTN biosynthesis is controlled by dedicated ent-kaurene and ent-atiserene synthases, the latter of which represents a new pathway for diterpenoid biosynthesis. The PTM and PTN biosynthetic machineries provide a rare glimpse at how secondary metabolic pathway evolution increases natural product structural diversity and support the wisdom of applying combinatorial biosynthesis methods for the generation of novel PTM and/or PTN analogues, thereby facilitating drug development efforts based on these privileged natural product scaffolds.
Collapse
|
196
|
Phillips J, Goetz M, Smith S, Zink D, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J, Dorso K, Lee S, Skwish S, de la Cruz M, Martín J, Vicente F, Genilloud O, Lu J, Painter R, Young K, Overbye K, Donald R, Singh S. Discovery of Kibdelomycin, A Potent New Class of Bacterial Type II Topoisomerase Inhibitor by Chemical-Genetic Profiling in Staphylococcus aureus. ACTA ACUST UNITED AC 2011; 18:955-65. [DOI: 10.1016/j.chembiol.2011.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 11/27/2022]
|
197
|
Bush K, Pucci MJ. New antimicrobial agents on the horizon. Biochem Pharmacol 2011; 82:1528-39. [PMID: 21798250 DOI: 10.1016/j.bcp.2011.07.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance issues necessitate the continued discovery and development of new antibacterial agents. Efforts are ongoing in two approaches to find new compounds that are effective against antibiotic-resistant pathogens. These efforts involve modification of existing classes including fluoroquinolones, tetracyclines, aminoglycosides, and β-lactams and identification of inhibitors against previously unexploited antibacterial targets. Examples of both approaches are described here with emphasis on compounds in late pre-clinical or clinical stages of development.
Collapse
Affiliation(s)
- Karen Bush
- Department of Biology, Jordan Hall, 1001 E. Third Street, Indiana University, Bloomington, IN 47405, United States.
| | | |
Collapse
|
198
|
Wenzel M, Bandow JE. Proteomic signatures in antibiotic research. Proteomics 2011; 11:3256-68. [DOI: 10.1002/pmic.201100046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/13/2011] [Accepted: 03/22/2011] [Indexed: 11/06/2022]
|
199
|
Patra M, Gasser G, Wenzel M, Merz K, Bandow JE, Metzler-Nolte N. Synthesis of Optically Active Ferrocene-Containing Platensimycin Derivatives with a C6-C7 Substitution Pattern. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100497] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
200
|
Yoshimitsu T, Nojima S, Hashimoto M, Tanaka T. Total Synthesis of (±)-Platencin. Org Lett 2011; 13:3698-701. [DOI: 10.1021/ol2013439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takehiko Yoshimitsu
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoji Nojima
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuaki Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|