151
|
Satoh M, Tokaji Y, Nagano AJ, Hara-Nishimura I, Hayashi M, Nishimura M, Ohta H, Masuda S. Arabidopsis mutants affecting oxylipin signaling in photo-oxidative stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:90-95. [PMID: 24342708 DOI: 10.1016/j.plaphy.2013.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Plant oxylipins derive from oxygenation of polyunsaturated fatty acids in thylakoid membranes and oxylipins such as jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) play important roles in adaptation to photo-oxidative stress. OPDA functions both as a JA precursor and as a biologically active signaling molecule that induces expression of a specific set of genes. These genes can be induced by OPDA in the JA-insensitive coronatine insensitive1 (coi1) mutant, suggesting that there is an alternative pathway for OPDA signaling, independent of COI1-dependent JA signaling. However, little is known about OPDA signaling in photo-oxidative stress responses. In this study, we isolated Arabidopsis mutants with constitutively enhanced expression from the OPDA-responsive HsfA2 promoter. We used deletion mapping and complementation analysis to identify one responsible gene as CATALASE2. Our results thus indicate that ROS-producing cellular metabolism links to OPDA signaling.
Collapse
Affiliation(s)
- Masanori Satoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yoshihito Tokaji
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Atsushi J Nagano
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | | | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829 Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-0867, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| |
Collapse
|
152
|
Okazaki Y, Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:584-96. [PMID: 24844563 DOI: 10.1111/tpj.12556] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
Lipids are the major constituents of biological membranes that can sense extracellular conditions. Lipid-mediated signaling occurs in response to various environmental stresses, such as temperature change, salinity, drought and pathogen attack. Lysophospholipid, fatty acid, phosphatidic acid, diacylglycerol, inositol phosphate, oxylipins, sphingolipid, and N-acylethanolamine have all been proposed to function as signaling lipids. Studies on these stress-inducible lipid species have demonstrated that each lipid class has specific biological relevance, biosynthetic mechanisms and signaling cascades, which activate defense reactions at the transcriptional level. In addition to their roles in signaling, lipids also function as stress mitigators to reduce the intensity of stressors. To mitigate particular stresses, enhanced syntheses of unique lipids that accumulate in trace quantities under normal growth conditions are often observed under stressed conditions. The accumulation of oligogalactolipids and glucuronosyldiacylglycerol has recently been found to mitigate freezing and nutrition-depletion stresses, respectively, during lipid remodeling. In addition, wax, cutin and suberin, which are not constituents of the lipid bilayer, but are components derived from lipids, contribute to the reduction of drought stress and tissue injury. These features indicate that lipid-mediated defenses against environmental stress contributes to plant survival.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
153
|
Mano J, Nagata M, Okamura S, Shiraya T, Mitsui T. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach. PLANT & CELL PHYSIOLOGY 2014; 55:1233-44. [PMID: 24850833 DOI: 10.1093/pcp/pcu072] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In plants, environmental stresses cause an increase in the intracellular level of reactive oxygen species (ROS), leading to tissue injury. To obtain biochemical insights into this damage process, we investigated the protein carbonyls formed by ROS or by the lipid peroxide-derived α,β-unsaturated aldehydes and ketones (i.e. reactive carbonyl species, or RCS) in the leaves of Arabidopsis thaliana under salt stress. A. thaliana Col-0 plants that we treated with 300 mM NaCl for 72 h under continuous illumination suffered irreversible leaf damage. Several RCS such as 4-hydroxy-(E)-2-nonenal (HNE) were increased within 12 h of this salt treatment. Immunoblotting using distinct antibodies against five different RCS, i.e. HNE, 4-hydroxy-(E)-2-hexenal, acrolein, crotonaldehyde and malondialdehyde, revealed that RCS-modified proteins accumulated in leaves with the progress of the salt stress treatment. The band pattern of Western blotting suggested that these different RCS targeted a common set of proteins. To identify the RCS targets, we collected HNE-modified proteins via an anti-HNE antiserum affinity trap and performed an isobaric tag for relative and absolute quantitation, as a quantitative proteomics approach. Seventeen types of protein, modified by 2-fold more in the stressed plants than in the non-stressed plants, were identified as sensitive RCS targets. With aldehyde-reactive probe-based affinity trapping, we collected the oxidized proteins and identified 22 additional types of protein as sensitive ROS targets. These RCS and ROS target proteins were distributed in the cytosol and apoplast, as well as in the ROS-generating organelles the peroxisome, chloroplast and mitochondrion, suggesting the participation of plasma membrane oxidation in the cellular injury. Possible mechanisms by which these modified targets cause cell death are discussed.
Collapse
Affiliation(s)
- Jun'ichi Mano
- Science Research Center, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515 JapanGraduate School of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515 Japan
| | - Mitsuaki Nagata
- Graduate School of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515 Japan
| | - Shoutarou Okamura
- Graduate School of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515 Japan
| | - Takeshi Shiraya
- Faculty of Agriculture, Niigata University, Ikarashi-Ninocho 8050, Nishi-ku, Niigata, 950-2181 JapanNiigata Crop Research Center, Niigata Agricultural Research Institute, Nagakura-cho 857, Nagaoka, 940-0826 Japan
| | - Toshiaki Mitsui
- Faculty of Agriculture, Niigata University, Ikarashi-Ninocho 8050, Nishi-ku, Niigata, 950-2181 Japan
| |
Collapse
|
154
|
Häusler RE, Heinrichs L, Schmitz J, Flügge UI. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. MOLECULAR PLANT 2014; 7:1121-37. [PMID: 25006007 DOI: 10.1093/mp/ssu064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| |
Collapse
|
155
|
Hsieh HL, Okamoto H. Molecular interaction of jasmonate and phytochrome A signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2847-57. [PMID: 24868039 DOI: 10.1093/jxb/eru230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytochrome family of red (R) and far-red (FR) light receptors (phyA-phyE in Arabidopsis) play important roles throughout plant development and regulate elongation growth during de-etiolation and under light. Phytochromes regulate growth through interaction with the phytohormones gibberellin, auxin, and brassinosteroid. Recently it has been established that jasmonic acid (JA), a phytohormone for stress responses, namely wounding and defence, is also important in inhibition of hypocotyl growth regulated by phyA and phyB. This review focuses on recent advances in our understanding of the molecular basis of the interaction between JA and phytochrome signalling particularly during seedling development in Arabidopsis. Significantly, JA biosynthesis genes are induced by phyA. The protein abundance of JAR1/FIN219, an enzyme for the final synthesis step to give JA-Ile, an active form of JA, is also determined by phyA. In addition, JAR1/FIN219 directly interacts with an E3-ligase, COP1, a master regulator for transcription factors regulating hypocotyl growth, suggesting a more direct role in growth regulation. There are a number of points of interaction in the molecular signalling of JA and phytochrome during seedling development in Arabidopsis, and we propose a model for how they work together to regulate hypocotyl growth.
Collapse
Affiliation(s)
- Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Haruko Okamoto
- Centre for Biological Sciences, University of Southampton, Southampton, UK Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Iwate, Japan
| |
Collapse
|
156
|
Oelze ML, Muthuramalingam M, Vogel MO, Dietz KJ. The link between transcript regulation and de novo protein synthesis in the retrograde high light acclimation response of Arabidopsis thaliana. BMC Genomics 2014; 15:320. [PMID: 24884362 PMCID: PMC4034770 DOI: 10.1186/1471-2164-15-320] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Efficient light acclimation of photosynthetic cells is a basic and important property of plants. The process of acclimation depends on transformation of retrograde signals in gene expression, transcript accumulation and de novo protein synthesis. While signalling cues, transcriptomes and some involved players have been characterized, an integrated view is only slowly emerging, and information on the translational level is missing. Transfer of low (8 μmol quanta.m-2.s-1) or normal light (80 μmol quanta.m-2.s-1) acclimated 30 d old Arabidopsis thaliana plants to high light (800 μmol quanta.m-2.s-1) triggers retrograde signals. Using this established approach, we sought to link transcriptome data with de novo synthesized proteins by in vivo labelling with 35S methionine and proteome composition. Results De novo synthesized protein and proteome patterns could reliably be matched with newly annotated master gels. Each molecular level could be quantified for a set of 41 proteins. Among the proteins preferentially synthesized in plants transferred to high light were enzymes including carbonic anhydrase, fructose-1,6-bisphosphate aldolase, O-acetyl serine thiol lyase, and chaperones, while low rates upon transfer to high light were measured for e.g. dehydroascorbate reductase, glyceraldehyde-3-phosphate dehydrogenase and CuZn superoxide dismutase, and opposite responses between 10-fold and 100-fold light increment for e.g. glutamine synthetase and phosphoglycerate kinase. Conclusions The results prove the hypothesis that transcript abundance is poorly linked to de novo protein synthesis due to profound regulation at the level of translation. This vertical systems biology approach enables to quantitatively and kinetically link the molecular levels for scrutinizing signal processing and response generation.
Collapse
Affiliation(s)
| | | | | | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology - W5-134, University of Bielefeld, 33501 Bielefeld, Germany.
| |
Collapse
|
157
|
Abstract
In addition to their contribution to metabolism, chloroplasts emit signals that influence the expression of nuclear genes that contribute to numerous plastidic and extraplastidic processes. Plastid-to-nucleus signalling optimizes chloroplast function, regulates growth and development, and affects responses to environmental cues. An incomplete list of plastid signals is available and particular plastid-to-nucleus signalling mechanisms are partially understood. The plastid-to-nucleus signalling that depends on the GENOMES UNCOUPLED (GUN) genes couples the expression of nuclear genes to the functional state of the chloroplast. Analyses of gun mutants provided insight into the mechanisms and biological functions of plastid-to-nucleus signalling. GUN genes contribute to chloroplast biogenesis, the circadian rhythm, stress tolerance, light signalling and development. Some have criticized the gun mutant screen for employing inhibitors of chloroplast biogenesis and suggested that gun alleles do not disrupt significant plastid-to-nucleus signalling mechanisms. Here, I briefly review GUN-dependent plastid-to-nucleus signalling, explain the flaws in the major criticisms of the gun mutant screen and review the influence of plastids on light signalling and development.
Collapse
Affiliation(s)
- Robert M. Larkin
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, Room 106 Plant Biology Building, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, Room 106 Plant Biology Building, East Lansing, MI 48824, USA
| |
Collapse
|
158
|
Alsharafa K, Vogel MO, Oelze ML, Moore M, Stingl N, König K, Friedman H, Mueller MJ, Dietz KJ. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130424. [PMID: 24591725 DOI: 10.1098/rstb.2013.0424] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High light acclimation depends on retrograde control of nuclear gene expression. Retrograde regulation uses multiple signalling pathways and thus exploits signal patterns. To maximally challenge the acclimation system, Arabidopsis thaliana plants were either adapted to 8 (low light (L-light)) or 80 µmol quanta m(-2) s(-1) (normal light (N-light)) and subsequently exposed to a 100- and 10-fold light intensity increase, respectively, to high light (H-light, 800 µmol quanta m(-2) s(-1)), for up to 6 h. Both L → H- and N → H-light plants efficiently regulated CO2 assimilation to a constant level without apparent damage and inhibition. This experimental set-up was scrutinized for time-dependent regulation and efficiency of adjustment. Transcriptome profiles revealed that N-light and L-light plants differentially accumulated 2119 transcripts. After 6 h in H-light, only 205 remained differently regulated between the L → H- and N → H-light plants, indicating efficient regulation allowing the plants to reach a similar transcriptome state. Time-dependent analysis of transcripts as markers for signalling pathways, and of metabolites and hormones as possibly involved transmitters, suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metabolites and redox cues predominantly control the acclimation response, whereas abscisic acid, salicylic acid and auxins play an insignificant or minor role.
Collapse
Affiliation(s)
- Khalid Alsharafa
- Biochemistry and Physiology of Plants, Bielefeld University, , Bielefeld 33501, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Vogel MO, Moore M, König K, Pecher P, Alsharafa K, Lee J, Dietz KJ. Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis. THE PLANT CELL 2014; 26:1151-65. [PMID: 24668746 PMCID: PMC4001375 DOI: 10.1105/tpc.113.121061] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 05/18/2023]
Abstract
Regulation of the expression of nuclear genes encoding chloroplast proteins allows for metabolic adjustment in response to changing environmental conditions. This regulation is linked to retrograde signals that transmit information on the metabolic state of the chloroplast to the nucleus. Transcripts of several APETALA2/ETHYLENE RESPONSE FACTOR transcription factors (AP2/ERF-TFs) were found to respond within 10 min after transfer of low-light-acclimated Arabidopsis thaliana plants to high light. Initiation of this transcriptional response was completed within 1 min after transfer to high light. The fast responses of four AP2/ERF genes, ERF6, RRTF1, ERF104, and ERF105, were entirely deregulated in triose phosphate/phosphate translocator (tpt) mutants. Similarly, activation of MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) was upregulated after 1 min in the wild type but not in the tpt mutant. Based on this, together with altered transcript regulation in mpk6 and erf6 mutants, a retrograde signal transmission model is proposed starting with metabolite export through the triose phosphate/phosphate translocator with subsequent MPK6 activation leading to initiation of AP2/ERF-TF gene expression and other downstream gene targets. The results show that operational retrograde signaling in response to high light involves a metabolite-linked pathway in addition to previously described redox and hormonal pathways.
Collapse
Affiliation(s)
- Marc Oliver Vogel
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Marten Moore
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Katharina König
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Pascal Pecher
- Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Khalid Alsharafa
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
- Address correspondence to
| |
Collapse
|
160
|
Shen J, Tieman D, Jones JB, Taylor MG, Schmelz E, Huffaker A, Bies D, Chen K, Klee HJ. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:419-28. [PMID: 24453226 PMCID: PMC3904703 DOI: 10.1093/jxb/ert382] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
C5 volatile compounds, derived from fatty acids, are among the most important contributors to consumer liking of fresh tomatoes. Despite their important roles in flavour, the genes responsible for C5 volatile synthesis have yet to be identified. This work shows that their synthesis is catalysed in part by a 13-lipoxygenase (LOX), TomloxC, the same enzyme responsible for synthesis of C6 volatiles. C5 synthesis is independent of hydroperoxide lyase (HPL); moreover, HPL knockdown significantly increased C5 volatile synthesis. This LOX-dependent, HPL-independent pathway functions in both fruits and leaves. Synthesis of C5 volatiles increases in leaves following mechanical wounding but does not increase in response to infection with Xanthomonas campestris pv. vesicatoria. Large reductions in C5 and C6 volatiles in antisense TomloxC knockdown plants were observed but those reductions did not alter the development of disease symptoms, indicating that these volatiles do not have an important defensive function against this bacterial pathogen.
Collapse
Affiliation(s)
- Jiyuan Shen
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
- Laboratory of Fruit Quality Biology/The State dgriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- * These authors contributed equally to this manuscript
| | - Denise Tieman
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
- * These authors contributed equally to this manuscript
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-068, USA
| | - Mark G. Taylor
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
| | - Eric Schmelz
- United States Department of Agriculture-Agricultural Research Service, Center for Medical Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Alisa Huffaker
- United States Department of Agriculture-Agricultural Research Service, Center for Medical Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Dawn Bies
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/The State dgriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- To whom correspondence should be addressed. E-mail: or
| | - Harry J. Klee
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
161
|
Speiser A, Haberland S, Watanabe M, Wirtz M, Dietz KJ, Saito K, Hell R. The significance of cysteine synthesis for acclimation to high light conditions. FRONTIERS IN PLANT SCIENCE 2014; 5:776. [PMID: 25653656 PMCID: PMC4300907 DOI: 10.3389/fpls.2014.00776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/15/2014] [Indexed: 05/08/2023]
Abstract
Situations of excess light intensity are known to result in the emergence of reactive oxygen species that originate from the electron transport chain in chloroplasts. The redox state of glutathione and its biosynthesis contribute importantly to the plant's response to this stress. In this study we analyzed the significance of cysteine synthesis for long-term acclimation to high light conditions in Arabidopsis thaliana. Emphasis was put on the rate-limiting step of cysteine synthesis, the formation of the precursor O-acetylserine (OAS) that is catalyzed by serine acetyltransferase (SERAT). Wild type Arabidopsis plants responded to the high light condition (800 μmol m(-2) s(-1) for 10 days) with synthesis of photo-protective anthocyanins, induction of total SERAT activity and elevated glutathione levels when compared to the control condition (100 μmol m(-2) s(-1)). The role of cysteine synthesis in chloroplasts was probed in mutant plants lacking the chloroplast isoform SERAT2;1 (serat2;1) and two knock-out alleles of CYP20-3, a positive interactor of SERAT in the chloroplast. Acclimation to high light resulted in a smaller growth enhancement than wild type in the serat2;1 and cyp20-3 mutants, less induction of total SERAT activity and OAS levels but similar cysteine and glutathione concentrations. Expression analysis revealed no increase in mRNA of the chloroplast SERAT2;1 encoding SERAT2;1 gene but up to 4.4-fold elevated SERAT2;2 mRNA levels for the mitochondrial SERAT isoform. Thus, lack of chloroplast SERAT2;1 activity or its activation by CYP20-3 prevents the full growth response to high light conditions, but the enhanced demand for glutathione is likely mediated by synthesis of OAS in the mitochondria. In conclusion, cysteine synthesis in the chloroplast is important for performance but is dispensable for survival under long-term exposure to high light and can be partially complemented by cysteine synthesis in mitochondria.
Collapse
Affiliation(s)
- Anna Speiser
- Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Stefan Haberland
- Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Mutsumi Watanabe
- Molecular Plant Physiology, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Markus Wirtz
- Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Karl-Josef Dietz
- Plant Biochemistry and Physiology, University of BielefeldBielefeld, Germany
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Rüdiger Hell
- Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: Rüdiger Hell, Plant Molecular Biology, Centre for Organismal Studies, Im Neuenheimer Feld 360, 69115 Heidelberg, Germany e-mail:
| |
Collapse
|
162
|
Koprivova A, Kopriva S. Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. FRONTIERS IN PLANT SCIENCE 2014; 5:589. [PMID: 25400653 PMCID: PMC4212615 DOI: 10.3389/fpls.2014.00589] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/10/2014] [Indexed: 05/19/2023]
Abstract
The pathway of sulfate assimilation, which provides plants with the essential nutrient sulfur, is tightly regulated and coordinated with the demand for reduced sulfur. The responses of metabolite concentrations, enzyme activities and mRNA levels to various signals and environmental conditions have been well described for the pathway. However, only little is known about the molecular mechanisms of this regulation. To date, nine transcription factors have been described to control transcription of genes of sulfate uptake and assimilation. In addition, other levels of regulation contribute to the control of sulfur metabolism. Post-transcriptional regulation has been shown for sulfate transporters, adenosine 5'phosphosulfate reductase, and cysteine synthase. Several genes of the pathway are targets of microRNA miR395. In addition, protein-protein interaction is increasingly found in the center of various regulatory circuits. On top of the mechanisms of regulation of single genes, we are starting to learn more about mechanisms of adaptation, due to analyses of natural variation. In this article, the summary of different mechanisms of regulation will be accompanied by identification of the major gaps in knowledge and proposition of possible ways of filling them.
Collapse
Affiliation(s)
| | - Stanislav Kopriva
- *Correspondence: Stanislav Kopriva, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany e-mail:
| |
Collapse
|
163
|
Moore M, Vogel MO, Dietz KJ. The acclimation response to high light is initiated within seconds as indicated by upregulation of AP2/ERF transcription factor network in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:976479. [PMID: 25482793 PMCID: PMC4622746 DOI: 10.4161/15592324.2014.976479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 05/20/2023]
Abstract
High light acclimation implicates mechanisms on various molecular levels and time scales. The recently identified small transcription factor network of APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors is triggered upon transfer of Arabidopsis to high light and depends on metabolite export and mitogen activated protein kinase activation. An experimental design was developed consisting of a low light to high light and back to low light illumination. This allowed the determination of the time point of no return post high light transfer which activates transcription of the AP2/ERF network. Within 10 seconds of high light treatment transcript levels of ERF6, ERF104, ERF105 and RRTF were triggered to increase from low to high levels within the next 10 minutes witnessing an ultrafast retrograde pathway with a very early time point of no return. This response differed profoundly from other high light-responsive transcripts such as stromal ascorbate peroxidase (sAPX) which accumulated in a dose-dependent manner or COR47.
Collapse
Key Words
- A. thaliana, Arabidopsis thaliana
- ABA, Abscisic Acid
- AP2/ERF, APETALA2/ETHYLENE RESPONSE FACTOR
- ETC, electron transport chain
- H-light, High Light (800 μmol quanta m−2 s−1)
- L-light, Low Light (8 μmol quanta m−2 s−1)
- LH→L, Low Light to High Light to Low Light transfer
- Low Light to High Light transfer
- ROS, reactive oxygen species
- SA, Salicylic Acid
- TF, Transcription Factor; L→H
- WWC, water-water cycle
- acclimation
- chloroplast
- light
- log2, logarithmic fold change to base 2
- photosynthesis
- transcription factor
Collapse
Affiliation(s)
- M Moore
- Biochemistry and Physiology of Plants; Bielefeld University; Bielefeld, Germany
| | - MO Vogel
- Biochemistry and Physiology of Plants; Bielefeld University; Bielefeld, Germany
| | - KJ Dietz
- Biochemistry and Physiology of Plants; Bielefeld University; Bielefeld, Germany
- Correspondence to: KJ Dietz;
| |
Collapse
|
164
|
Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K. Fatty acids and early detection of pathogens. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:520-6. [PMID: 23845737 DOI: 10.1016/j.pbi.2013.06.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 05/20/2023]
Abstract
Early in interactions between plants and pathogens, plants recognize molecular signatures in microbial cells, triggering a form of immunity that may help resist infection and colonization by pathogens. Diverse molecules provide these molecular signatures, called pathogen-associated molecular patterns (PAMPs), including proteins, polysaccharides, and lipids. Before and concurrent with the onset of PAMP-triggered immunity, there are alterations in plant membrane lipid composition, modification of membrane fluidity through desaturase-mediated changes in unsaturated fatty acid levels, and enzymatic and non-enzymatic genesis of bioactive lipid mediators such as oxylipins. These complex lipid changes produce a myriad of potential molecular signatures that are beginning to be found to have key roles in the regulation of transcriptional networks. Further, research on fatty acid action in various biological contexts, including plant-pathogen interactions and stress network signaling, is needed to fully understand fatty acids as regulatory signals that transcend their established role in membrane structure and function.
Collapse
Affiliation(s)
- Justin W Walley
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
165
|
12-Oxo-phytodienoic acid interaction with cyclophilin CYP20-3 is a benchmark for understanding retrograde signaling in plants. Proc Natl Acad Sci U S A 2013; 110:9197-8. [PMID: 23716693 DOI: 10.1073/pnas.1307482110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|