151
|
Yuzawa Y, Nishihara H, Haraguchi T, Masuda S, Shimojima M, Shimoyama A, Yuasa H, Okada N, Ohta H. Phylogeny of galactolipid synthase homologs together with their enzymatic analyses revealed a possible origin and divergence time for photosynthetic membrane biogenesis. DNA Res 2011; 19:91-102. [PMID: 22210603 PMCID: PMC3276260 DOI: 10.1093/dnares/dsr044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The photosynthetic membranes of cyanobacteria and chloroplasts of higher plants have remarkably similar lipid compositions. In particular, thylakoid membranes of both cyanobacteria and chloroplasts are composed of galactolipids, of which monogalactosyldiacylglycerol (MGDG) is the most abundant, although MGDG biosynthetic pathways are different in these organisms. Comprehensive phylogenetic analysis revealed that MGDG synthase (MGD) homologs of filamentous anoxygenic phototrophs Chloroflexi have a close relationship with MGDs of Viridiplantae (green algae and land plants). Furthermore, analyses for the sugar specificity and anomeric configuration of the sugar head groups revealed that one of the MGD homologs exhibited a true MGDG synthetic activity. We therefore presumed that higher plant MGDs are derived from this ancestral type of MGD genes, and genes involved in membrane biogenesis and photosystems have been already functionally associated at least at the time of Chloroflexi divergence. As MGD gene duplication is an important event during plastid evolution, we also estimated the divergence time of type A and B MGDs. Our analysis indicated that these genes diverged ∼323 million years ago, when Spermatophyta (seed plants) were appearing. Galactolipid synthesis is required to produce photosynthetic membranes; based on MGD gene sequences and activities, we have proposed a novel evolutionary model that has increased our understanding of photosynthesis evolution.
Collapse
Affiliation(s)
- Yuichi Yuzawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
|
153
|
Inoue K. Emerging roles of the chloroplast outer envelope membrane. TRENDS IN PLANT SCIENCE 2011; 16:550-7. [PMID: 21775189 DOI: 10.1016/j.tplants.2011.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/11/2011] [Accepted: 06/15/2011] [Indexed: 05/25/2023]
Abstract
The chloroplast is essential for the viability of plants. It is enclosed by a double-membrane envelope that originated from the outer and plasma membranes of a cyanobacterial endosymbiont. Chloroplast biogenesis depends on binary fission and import of nuclear-encoded proteins. Our understanding of the mechanisms and evolutionary origins of these processes has been greatly advanced by recent genetic and biochemical studies on envelope-localized multiprotein machines. Furthermore, the latest studies on outer envelope proteins have provided molecular insights into organelle movement and membrane lipid remodeling, activities that are vital for plant survival under diverse environmental conditions. Ongoing and future research on the chloroplast outer envelope should add to our knowledge of organelle biology and the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- Kentaro Inoue
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
154
|
Botté CY, Deligny M, Roccia A, Bonneau AL, Saïdani N, Hardré H, Aci S, Yamaryo-Botté Y, Jouhet J, Dubots E, Loizeau K, Bastien O, Bréhélin L, Joyard J, Cintrat JC, Falconet D, Block MA, Rousseau B, Lopez R, Maréchal E. Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana. Nat Chem Biol 2011; 7:834-42. [DOI: 10.1038/nchembio.658] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/19/2011] [Indexed: 12/25/2022]
|
155
|
Andrés E, Martínez N, Planas A. Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis: potential target against mycoplasma infections. J Biol Chem 2011; 286:35367-35379. [PMID: 21835921 DOI: 10.1074/jbc.m110.214148] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosyldiacylglycerols. When recombinantly expressed in Escherichia coli, the enzyme was functional in vivo and yielded membrane glycolipids from which Glcβ1,6GlcβDAG was identified as the main product. A chaperone co-expression system and extraction with CHAPS detergent afforded soluble protein that was purified by affinity chromatography. GT MG517 transfers glucosyl and galactosyl residues from UDP-Glc and UDP-Gal to dioleoylglycerol (DOG) acceptor to form the corresponding β-glycosyl-DOG, which then acts as acceptor to give β-diglycosyl-DOG products. The enzyme (GT2 family) follows Michaelis-Menten kinetics. k(cat) is about 5-fold higher for UDP-Gal with either DOG or monoglucosyldioleoylglycerol acceptors, but it shows better binding for UDP-Glc than UDP-Gal, as reflected by the lower K(m), which results in similar k(cat)/K(m) values for both donors. Although sequentially adding glycosyl residues with β-1,6 connectivity, the first glycosyltransferase activity (to DOG) is about 1 order of magnitude higher than the second (to monoglucosyldioleoylglycerol). Because the ratio between the non-bilayer-forming monoglycosyldiacylglycerols and the bilayer-prone diglycosyldiacylglycerols contributes to regulate the properties of the plasma membrane, both synthase activities are probably regulated. Dioleoylphosphatidylglycerol (anionic phospholipid) activates the enzyme, k(cat) linearly increasing with dioleoylphosphatidylglycerol concentration. GT MG517 is shown to be encoded by an essential gene, and the addition of GT inhibitors results in cell growth inhibition. It is proposed that glycolipid synthases are potential targets for drug discovery against infections by mycoplasmas.
Collapse
Affiliation(s)
- Eduardo Andrés
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Núria Martínez
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain.
| |
Collapse
|
156
|
Li C, Wang Y, Liu L, Hu Y, Zhang F, Mergen S, Wang G, Schläppi MR, Chu C. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet 2011; 7:e1002196. [PMID: 21829379 PMCID: PMC3145628 DOI: 10.1371/journal.pgen.1002196] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022] Open
Abstract
Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield production named photoassimilate defective1 (phd1). Molecular and biochemical analyses revealed that PHD1 encodes a novel chloroplast-localized UDP-glucose epimerase (UGE), which is conserved in the plant kingdom. The chloroplast localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts, which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG), a major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG) amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass, and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid membranes for proper chloroplast biogenesis and photosynthetic activity. These findings will be useful for improving crop yields and for bioenergy crop engineering. Photosynthesis is carried out in chloroplast, a plant-specific organelle. Photosynthetic membranes in chloroplasts contain high levels of glycolipids, and UDP-galactose is a dominating donor for glycolipid biosynthesis. Although glycolipid assembly of photosynthetic membranes has been characterized at the genetic and enzymatic level, the mechanism of substrate supply of UDP-galactose for the glycolipid biosynthetic pathway remains obscure. By genetic screening of rice mutants that are impaired in photosynthetic capacity and carbon assimilation, we identified PHD1 as a novel nucleotide sugar epimerase involved in a process of glycolipid biosynthesis and participating in photosynthetic membrane biogenesis. PHD1 was preferentially expressed in green and meristem tissues, and the PHD1 protein was targeted to chloroplasts. We revealed that UDP-galactose for glycolipid biosynthesis catalyzed by the new enzyme was generated inside chloroplasts, and the reduced amounts of glycolipids in the mutant led to decreased chlorophyll content and photosynthetic activity. Overexpression of this gene lead to growth acceleration, enhanced photosynthetic efficiency, and finally improved biomass and grain yield in rice. These results suggest that PHD1 has significant economic implications in both traditional crop improvement and bioenergy crop production.
Collapse
Affiliation(s)
- Chunlai Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Linchuan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yingchun Hu
- College of Life Sciences, Peking University, Beijing, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sod Mergen
- College of Life Sciences, Peking University, Beijing, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Michael R. Schläppi
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
157
|
Masuda S, Harada J, Yokono M, Yuzawa Y, Shimojima M, Murofushi K, Tanaka H, Masuda H, Murakawa M, Haraguchi T, Kondo M, Nishimura M, Yuasa H, Noguchi M, Oh-Oka H, Tanaka A, Tamiaki H, Ohta H. A monogalactosyldiacylglycerol synthase found in the green sulfur bacterium Chlorobaculum tepidum reveals important roles for galactolipids in photosynthesis. THE PLANT CELL 2011; 23:2644-58. [PMID: 21764989 PMCID: PMC3226221 DOI: 10.1105/tpc.111.085357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG), which is conserved in almost all photosynthetic organisms, is the most abundant natural polar lipid on Earth. In plants, MGDG is highly accumulated in the chloroplast membranes and is an important bulk constituent of thylakoid membranes. However, precise functions of MGDG in photosynthesis have not been well understood. Here, we report a novel MGDG synthase from the green sulfur bacterium Chlorobaculum tepidum. This enzyme, MgdA, catalyzes MGDG synthesis using UDP-Gal as a substrate. The gene encoding MgdA was essential for this bacterium; only heterozygous mgdA mutants could be isolated. An mgdA knockdown mutation affected in vivo assembly of bacteriochlorophyll c aggregates, suggesting the involvement of MGDG in the construction of the light-harvesting complex called chlorosome. These results indicate that MGDG biosynthesis has been independently established in each photosynthetic organism to perform photosynthesis under different environmental conditions. We complemented an Arabidopsis thaliana MGDG synthase mutant by heterologous expression of MgdA. The complemented plants showed almost normal levels of MGDG, although they also had abnormal morphological phenotypes, including reduced chlorophyll content, no apical dominance in shoot growth, atypical flower development, and infertility. These observations provide new insights regarding the importance of regulated MGDG synthesis in the physiology of higher plants.
Collapse
Affiliation(s)
- Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Botté CY, Yamaryo-Botté Y, Janouskovec J, Rupasinghe T, Keeling PJ, Crellin P, Coppel RL, Maréchal E, McConville MJ, McFadden GI. Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites. J Biol Chem 2011; 286:29893-903. [PMID: 21712377 PMCID: PMC3191030 DOI: 10.1074/jbc.m111.254979] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apicomplexa are protist parasites that include Plasmodium spp., the causative agents of malaria, and Toxoplasma gondii, responsible for toxoplasmosis. Most Apicomplexa possess a relict plastid, the apicoplast, which was acquired by secondary endosymbiosis of a red alga. Despite being nonphotosynthetic, the apicoplast is otherwise metabolically similar to algal and plant plastids and is essential for parasite survival. Previous studies of Toxoplasma gondii identified membrane lipids with some structural features of plastid galactolipids, the major plastid lipid class. However, direct evidence for the plant-like enzymes responsible for galactolipid synthesis in Apicomplexan parasites has not been obtained. Chromera velia is an Apicomplexan relative recently discovered in Australian corals. C. velia retains a photosynthetic plastid, providing a unique model to study the evolution of the apicoplast. Here, we report the unambiguous presence of plant-like monogalactosyldiacylglycerol and digalactosyldiacylglycerol in C. velia and localize digalactosyldiacylglycerol to the plastid. We also provide evidence for a plant-like biosynthesis pathway and identify candidate galactosyltranferases responsible for galactolipid synthesis. Our study provides new insights in the evolution of these important enzymes in plastid-containing eukaryotes and will help reconstruct the evolution of glycerolipid metabolism in important parasites such as Plasmodium and Toxoplasma.
Collapse
Affiliation(s)
- Cyrille Y Botté
- School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Myers AM, James MG, Lin Q, Yi G, Stinard PS, Hennen-Bierwagen TA, Becraft PW. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. THE PLANT CELL 2011; 23:2331-47. [PMID: 21685260 PMCID: PMC3160020 DOI: 10.1105/tpc.111.087205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The maize (Zea mays) opaque5 (o5) locus was shown to encode the monogalactosyldiacylglycerol synthase MGD1. Null and point mutations of o5 that affect the vitreous nature of mature endosperm engendered an allelic series of lines with stepwise reductions in gene function. C(18:3)/C(18:2) galactolipid abundance in seedling leaves was reduced proportionally, without significant effects on total galactolipid content. This alteration in polar lipid composition disrupted the organization of thylakoid membranes into granal stacks. Total galactolipid abundance in endosperm was strongly reduced in o5(-) mutants, causing developmental defects and changes in starch production such that the normal simple granules were replaced with compound granules separated by amyloplast membrane. Complete loss of MGD1 function in a null mutant caused kernel lethality owing to failure in both endosperm and embryo development. The data demonstrate that low-abundance galactolipids with five double bonds serve functions in plastid membranes that are not replaced by the predominant species with six double bonds. Furthermore, the data identify a function of amyloplast membranes in the development of starch granules. Finally, the specific changes in lipid composition suggest that MGD1 can distinguish the constituency of acyl groups on its diacylglycerol substrate based upon the degree of desaturation.
Collapse
Affiliation(s)
- Alan M. Myers
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Martha G. James
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Qiaohui Lin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Gibum Yi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Philip S. Stinard
- U.S. Department of Agriculture/Agricultural Research Service, Maize Genetics Cooperation Stock Center, Urbana, Illinois 61801
| | | | - Philip W. Becraft
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to
| |
Collapse
|
160
|
Role of phosphatidic acid in plant galactolipid synthesis. Biochimie 2011; 94:86-93. [PMID: 21501653 DOI: 10.1016/j.biochi.2011.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/31/2011] [Indexed: 01/19/2023]
Abstract
Phosphatidic acid (PA) is a precursor metabolite for phosphoglycerolipids and also for galactoglycerolipids, which are essential lipids for formation of plant membranes. PA has in addition a main regulatory role in a number of developmental processes notably in the response of the plant to environmental stresses. We review here the different pools of PA dispatched at different locations in the plant cell and how these pools are modified in different growth conditions, particularly during plastid membrane biogenesis and when the plant is exposed to phosphate deprivation. We analyze how these modifications can affect galactolipid synthesis by tuning the activity of MGD1 enzyme allowing a coupling of phospho- and galactolipid metabolisms. Some mechanisms are considered to explain how physicochemical properties of PA allow this lipid to act as a central internal sensor in plant physiology.
Collapse
|
161
|
Shimojima M, Ohta H. Critical regulation of galactolipid synthesis controls membrane differentiation and remodeling in distinct plant organs and following environmental changes. Prog Lipid Res 2011; 50:258-66. [PMID: 21414359 DOI: 10.1016/j.plipres.2011.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/06/2010] [Accepted: 03/04/2011] [Indexed: 01/08/2023]
Abstract
The plant galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the most abundant lipids in chloroplast membranes, and they constitute the majority of total membrane lipids in plants. MGDG is synthesized by two types of MGDG synthase, type-A (MGD1) and type-B (MGD2, MGD3). These MGDG synthases have distinct roles in Arabidopsis. In photosynthetic organs, Type A MGD is responsible for the bulk of MGDG synthesis, whereas Type B MGD is expressed in non-photosynthetic organs such as roots and flowers and mainly contributes to DGDG accumulation under phosphate deficiency. Similar to MGDG synthesis, DGDG is synthesized by two synthases, DGD1 and DGD2; DGD1 is responsible for the majority of DGDG synthesis, whereas DGD2 makes its main contribution under phosphate deficiency. These galactolipid synthases are regulated by light, plant hormones, redox state, phosphatidic acid levels, and various stress conditions such as drought and nutrient limitation. Maintaining the appropriate ratio of these two galactolipids in chloroplasts is important for stabilizing thylakoid membranes and maximizing the efficiency of photosynthesis. Here we review progress made in the last decade towards a better understanding of the pathways regulating plant galactolipid biosynthesis.
Collapse
Affiliation(s)
- Mie Shimojima
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
162
|
Shimojima M. Biosynthesis and functions of the plant sulfolipid. Prog Lipid Res 2011; 50:234-9. [PMID: 21371504 DOI: 10.1016/j.plipres.2011.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022]
Abstract
Higher-plant chloroplast membranes are composed primarily of four characteristic lipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol. Among them, SQDG is the only sulfur-containing anionic glycerolipid and is the least prevalent component of photosynthetic membrane lipids. SQDG biosynthesis is mostly mediated by UDP-sulfoquinovose synthase (SQD1) and SQDG synthase (SQD2). Recently, another essential gene for SQDG synthesis, UGP3, was identified using transcriptome coexpression analysis and reverse genetics. UGP3 is a novel plastid UDP-glucose pyrophosphorylase that supplies UDP-glucose to SQD1 in plastids. In Arabidopsis, SQDG is dispensable under normal growth conditions but important in certain environments, particularly phosphate-depleted conditions. The function of SQDG under phosphate-limited growth conditions is highly correlated with the regulation of other plant glycerolipid biosyntheses. This review summarizes recent research defining the mechanism for SQDG biosynthesis and its biological function in higher plants, particularly under phosphate-starved conditions.
Collapse
Affiliation(s)
- Mie Shimojima
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
163
|
Moellering ER, Benning C. Galactoglycerolipid metabolism under stress: a time for remodeling. TRENDS IN PLANT SCIENCE 2011; 16:98-107. [PMID: 21145779 DOI: 10.1016/j.tplants.2010.11.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 05/20/2023]
Abstract
Galactoglycerolipids are the predominant lipid building blocks of chloroplast membranes and are essential for plant growth. Plant chloroplasts harbor a constitutive set of UDP-Gal-dependent lipid galactosyltransferases that are responsible for the bulk of galactoglycerolipid biosynthesis. A set of paralogs is induced in response to phosphate deprivation, which leads to the remodeling of extraplastidic membranes with a partial replacement of phosphoglycerolipid by digalactosyldiacylglycerol. A third type of galactoglycerolipid biosynthetic enzyme, a UDP-Gal-independent galactoglycerolipid galactosyltransferase, was recently shown to be involved in freezing tolerance. Here, we look at how understanding of the regulation of galactoglycerolipid biosynthesis in chloroplasts by these multiple enzyme sets is rapidly evolving and discuss the increasingly recognized role of lipid remodeling in response to diverse abiotic stresses.
Collapse
Affiliation(s)
- Eric R Moellering
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
164
|
Breuers FKH, Bräutigam A, Weber APM. The Plastid Outer Envelope - A Highly Dynamic Interface between Plastid and Cytoplasm. FRONTIERS IN PLANT SCIENCE 2011; 2:97. [PMID: 22629266 PMCID: PMC3355566 DOI: 10.3389/fpls.2011.00097] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/29/2011] [Indexed: 05/09/2023]
Abstract
Plastids are the defining organelles of all photosynthetic eukaryotes. They are the site of photosynthesis and of a large number of other essential metabolic pathways, such as fatty acid and amino acid biosyntheses, sulfur and nitrogen assimilation, and aromatic and terpenoid compound production, to mention only a few examples. The metabolism of plastids is heavily intertwined and connected with that of the surrounding cytosol, thus causing massive traffic of metabolic precursors, intermediates, and products. Two layers of biological membranes that are called the inner (IE) and the outer (OE) plastid envelope membranes bound the plastids of Archaeplastida. While the IE is generally accepted as the osmo-regulatory barrier between cytosol and stroma, the OE was considered to represent an unspecific molecular sieve, permeable for molecules of up to 10 kDa. However, after the discovery of small substrate specific pores in the OE, this view has come under scrutiny. In addition to controlling metabolic fluxes between plastid and cytosol, the OE is also crucial for protein import into the chloroplast. It contains the receptors and translocation channel of the TOC complex that is required for the canonical post-translational import of nuclear-encoded, plastid-targeted proteins. Further, the OE is a metabolically active compartment of the chloroplast, being involved in, e.g., fatty acid metabolism and membrane lipid production. Also, recent findings hint on the OE as a defense platform against several biotic and abiotic stress conditions, such as cold acclimation, freezing tolerance, and phosphate deprivation. Moreover, dynamic non-covalent interactions between the OE and the endomembrane system are thought to play important roles in lipid and non-canonical protein trafficking between plastid and endoplasmic reticulum. While proteomics and bioinformatics has provided us with comprehensive but still incomplete information on proteins localized in the plastid IE, the stroma, and the thylakoids, our knowledge of the protein composition of the plastid OE is far from complete. In this article, we report on the recent progress in discovering novel OE proteins to draw a conclusive picture of the OE. A "parts list" of the plastid OE will be presented, using data generated by proteomics of plastids isolated from various plant sources.
Collapse
Affiliation(s)
| | - Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
| | - Andreas P. M. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
- *Correspondence: Andreas P. M. Weber, Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, D-40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
165
|
|
166
|
Motohashi K, Hisabori T. CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid Redox Signal 2010; 13:1169-76. [PMID: 20214498 DOI: 10.1089/ars.2010.3138] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In order to transfer reducing equivalents into the thylakoid lumen, a specific thylakoid membrane transfer system is suggested that mediates the disulfide bond reduction of proteins in the thylakoid lumen of higher plant chloroplasts. In this system, although stromal thioredoxin can supply the reducing equivalents to a thioredoxin-like protein HCF164 in the thylakoid lumen, a mediator protein for electron transfer in the thylakoid membranes is proposed to be required to link the two suborganellar compartments. CcdA is a candidate protein as a component for this transfer system since CcdA- and HCF164-deficient mutants in Arabidopsis thaliana show the same phenotype. We now show that CcdA is localized in the thylakoid membrane and that its redox state, as well as that of HCF164, is modulated in thylakoids by stromal m-type thioredoxin. Our results strongly suggest that CcdA may act as a mediator in thylakoid membranes by transferring reducing equivalents from the stromal to the lumenal side of the thylakoid membrane in chloroplasts.
Collapse
Affiliation(s)
- Ken Motohashi
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kyoto, Japan.
| | | |
Collapse
|
167
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2010; 8:e0133. [PMID: 22303259 PMCID: PMC3244904 DOI: 10.1199/tab.0133] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
168
|
Song W, Maeda H, DellaPenna D. Mutations of the ER to plastid lipid transporters TGD1, 2, 3 and 4 and the ER oleate desaturase FAD2 suppress the low temperature-induced phenotype of Arabidopsis tocopherol-deficient mutant vte2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:1004-18. [PMID: 20345604 DOI: 10.1111/j.1365-313x.2010.04212.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Previous studies with the tocopherol-deficient Arabidopsis thaliana vte2 mutant demonstrated an important role for tocopherols in the development of transfer cell walls and maintenance of photoassimilate export capacity during low-temperature (LT) adaptation. To further understand the processes linking tocopherol deficiency and the vte2 LT phenotypes, a genetic screen was performed for sve mutations (suppressor of the vte2 low temperature-induced phenotype). The three strongest sve loci had differing impacts on LT-induced sugar accumulation, photoassimilate export reduction and vascular-specific callose deposition in vte2. sve1 completely suppressed all vte2 LT phenotypes and is a new allele of fad2, the endoplasmic reticulum-localized oleate desaturase. sve2 showed partial suppression, and is a new allele of trigalactosyldiacylglycerol1 (tgd1), a component of the ER-to-plastid lipid ATP-binding cassette (ABC) transporter. Introduction of tgd2, tgd3 and tgd4 mutations into the vte2 background similarly suppressed the vte2 LT phenotypes, indicating a key role for ER-to-plastid lipid transport in the vte2 LT phenotype. sve7 partially suppressed all vte2 LT phenotypes by affecting fatty acid and lipid metabolism at low temperatures only. Detailed analyses of acyl lipid composition indicated that all suppressors alleviated the increase in the level of linoleic acid esterified to phosphatidylcholine (PC-18:2) in LT-treated vte2, and this alleviation significantly correlated with their extent of suppression of photoassimilate export. Identification and characterization of the sve loci showed that the PC-18:2 change is an early and key component in vte2 LT-induced responses, and highlighted the interaction of tocopherols with non-plastid lipid metabolism.
Collapse
Affiliation(s)
- Wan Song
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
169
|
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 2010; 49:128-58. [DOI: 10.1016/j.plipres.2009.10.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 01/14/2023]
|
170
|
Wallis JG, Browse J. Lipid biochemists salute the genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:1092-106. [PMID: 20409280 DOI: 10.1111/j.1365-313x.2010.04125.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The biochemistry of plant metabolic pathways has been studied for many generations; nevertheless, numerous new enzymes and metabolic products have been discovered in the last 5-10 years. More importantly, many intriguing questions remain in all areas of metabolism. In this review, we consider these issues with respect to several pathways of lipid metabolism and the contributions made by the Arabidopsis genome sequence and the tools that it has spawned. These tools have allowed identification of enzymes and transporters required for the mobilization of seed storage lipids, as well as transporters that facilitate movement of lipids from the endoplasmic reticulum to the chloroplast in green leaf cells. Genomic tools were important in recognition of novel components of the cutin and suberin polymers that form water-impermeable barriers in plants. The waxes that also contribute to these barriers are exported from cells of the epidermis by transporters that are now being identified. Biochemical and genetic knowledge from yeast and animals has permitted successful homology-based searches of the Arabidopsis genome for genes encoding enzymes involved in the elongation of fatty acids and the synthesis of sphingolipids. Knowledge of the genome has identified novel enzymes for the biosynthesis of the seed storage lipid, triacylglycerol, and provided a refined understanding of how the pathways of fatty acid and triacylglycerol synthesis are integrated into overall carbon metabolism in developing seeds.
Collapse
Affiliation(s)
- James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | |
Collapse
|
171
|
Narise T, Kobayashi K, Baba S, Shimojima M, Masuda S, Fukaki H, Ohta H. Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. PLANT MOLECULAR BIOLOGY 2010; 72:533-44. [PMID: 20043234 DOI: 10.1007/s11103-009-9589-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 12/09/2009] [Indexed: 05/02/2023]
Abstract
In higher plants, phosphate (Pi) deficiency induces the replacement of phospholipids with the nonphosphorous glycolipids digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG). Genes involved in membrane lipid remodeling are coactivated in response to Pi starvation, but the mechanisms that guide this response are largely unknown. Previously, we reported the importance of auxin transport for DGDG accumulation during Pi starvation. To understand the role of auxin signaling in Arabidopsis membrane lipid remodeling, we analyzed slr-1, a gain-of-function mutant of IAA14 (a repressor of auxin signaling), and arf7arf19, a loss-of-function mutant of auxin response factors ARF7 and ARF19. In slr-1 and arf7arf19, Pi stress-induced accumulation of DGDG and SQDG was suppressed. Reduced upregulation of glycolipid synthase and phospholipase genes in these mutants under Pi-deficient conditions indicates that IAA14 and ARF7/19 affect membrane lipid remodeling at the level of transcription. Pi stress-dependent induction of a non-protein-coding gene, IPS1, was also lower in slr-1 and arf7arf19, whereas expression of At4 (another Pi stress-inducible non-protein-coding gene), anthocyanin accumulation, and phosphodiesterase induction were not reduced in the shoot. High free Pi content was observed in slr-1 and arf7arf19 even under Pi-deficient conditions, suggesting that Pi homeostasis during Pi starvation is altered in these mutants. These results demonstrate a requirement of auxin signaling mediated by IAA14 and ARF7/19 for low-Pi adaptation in Arabidopsis.
Collapse
Affiliation(s)
- Takafumi Narise
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
172
|
Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 2010; 9:1063-84. [PMID: 20061580 DOI: 10.1074/mcp.m900325-mcp200] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further validated as the compartmentation of well known pathways (for instance, photosynthesis and amino acid, fatty acid, or glycerolipid biosynthesis) within chloroplasts could be dissected. It also allowed revisiting the compartmentation of the chloroplast metabolism and functions.
Collapse
Affiliation(s)
- Myriam Ferro
- INSERM, Laboratoire d'Etude de Dynamique des Protéomes, U880, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Chloroplasts are the defining organelle of photoautotrophic plant cells. Photosynthetic light reactions and electron transport are the functions of an elaborate thylakoid membrane system inside chloroplasts. The lipid composition of photosynthetic membranes is characterized by a substantial fraction of nonphosphorous galactoglycerolipids reflecting the need of sessile plants to conserve phosphorus. Lipid transport and assembly of glycerolipids play an essential role in the biogenesis of the photosynthetic apparatus in developing chloroplasts. During chloroplast biogenesis, fatty acids are synthesized in the plastid and are exported to the endoplasmic reticulum, where they are incorporated into membrane lipids. Alternatively, lipids can also be assembled de novo at the inner envelope membrane of plastids in many plants. A rich repertoire of lipid exchange mechanisms involving the thylakoid membranes, the chloroplast inner and outer envelope membranes, and the endoplasmic reticulum is emerging. Studies of thylakoid biogenesis provide new insights into the general mechanisms of intermembrane lipid transfer.
Collapse
Affiliation(s)
- Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
174
|
|
175
|
Nakamura Y, Shimojima M, Ohta H, Shimojima K. Chapter 13 Biosynthesis and Function of Monogalactosyldiacylglycerol (MGDG), the Signature Lipid of Chloroplasts. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-8531-3_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
176
|
Dubots E, Audry M, Yamaryo Y, Bastien O, Ohta H, Breton C, Maréchal E, Block MA. Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J Biol Chem 2009; 285:6003-11. [PMID: 20023301 DOI: 10.1074/jbc.m109.071928] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the major characteristics of chloroplast membranes is their enrichment in galactoglycerolipids, monogalactosyldiacylglycerol (MGDG), and digalactosyldiacylglycerol (DGDG), whereas phospholipids are poorly represented, mainly as phosphatidylglycerol (PG). All these lipids are synthesized in the chloroplast envelope, but galactolipid synthesis is also partially dependent on phospholipid synthesis localized in non-plastidial membranes. MGDG synthesis was previously shown essential for chloroplast development. In this report, we analyze the regulation of MGDG synthesis by phosphatidic acid (PA), which is a general precursor in the synthesis of all glycerolipids and is also a signaling molecule in plants. We demonstrate that under physiological conditions, MGDG synthesis is not active when the MGDG synthase enzyme is supplied with its substrates only, i.e. diacylglycerol and UDP-gal. In contrast, PA activates the enzyme when supplied. This is shown in leaf homogenates, in the chloroplast envelope, as well as on the recombinant MGDG synthase, MGD1. PG can also activate the enzyme, but comparison of PA and PG effects on MGD1 activity indicates that PA and PG proceed through different mechanisms, which are further differentiated by enzymatic analysis of point-mutated recombinant MGD1s. Activation of MGD1 by PA and PG is proposed as an important mechanism coupling phospholipid and galactolipid syntheses in plants.
Collapse
Affiliation(s)
- Emmanuelle Dubots
- Laboratoire de Physiologie Cellulaire Végétale, CNRS/CEA/INRA/Université Joseph Fourier, CEA-Grenoble, F-38054 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci U S A 2009; 106:20978-83. [PMID: 19923426 DOI: 10.1073/pnas.0907173106] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphate is an essential nutrient for plant viability. It is well-established that phosphate starvation triggers membrane lipid remodeling, a process that converts significant portion of phospholipids to non-phosphorus-containing galactolipids. This remodeling is mediated by either phospholipase C (PLC) or phospholipase D (PLD) in combination with phosphatidate phosphatase (PAP). Two PLC genes, NPC4 and NPC5, and PLD genes, PLDzeta1 and PLDzeta2, are shown to be involved in the remodeling. However, gene knockout studies show that none of them plays decisive roles in the remodeling. Thus, although this phenomenon is widely observed among plants, the key enzyme(s) responsible for the lipid remodeling in a whole plant body is unknown; therefore, the physiological significance of this conversion process has remained to be elucidated. We herein focused on PAP as a key enzyme for this adaptation, and identified Arabidopsis lipin homologs, AtPAH1 and AtPAH2, that encode the PAPs involved in galactolipid biosynthesis. Double mutant pah1pah2 plants had decreased phosphatidic acid hydrolysis, thus affecting the eukaryotic pathway of galactolipid synthesis. Upon phosphate starvation, pah1pah2 plants were severely impaired in growth and membrane lipid remodeling. These results indicate that PAH1 and PAH2 are the PAP responsible for the eukaryotic pathway of galactolipid synthesis, and the membrane lipid remodeling mediated by these two enzymes is an essential adaptation mechanism to cope with phosphate starvation.
Collapse
|
178
|
Temperature-dependent hyper-activation of monoglucosyldiacylglycerol synthase is post-translationally regulated inSynechocystissp. PCC 6803. FEBS Lett 2009; 583:2372-6. [DOI: 10.1016/j.febslet.2009.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/17/2009] [Accepted: 06/17/2009] [Indexed: 11/21/2022]
|
179
|
Kobayashi K, Nakamura Y, Ohta H. Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:518-25. [PMID: 19179086 DOI: 10.1016/j.plaphy.2008.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Indexed: 05/02/2023]
Abstract
Mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively) constitute the bulk of membrane lipids in plant chloroplasts. The final step in MGDG biosynthesis occurs in the plastid envelope and is catalyzed by MGDG synthase. In Arabidopsis, the three MGDG synthases are classified into type A (atMGD1) and type B MGD isoforms (atMGD2 and atMGD3). atMGD1 is an inner envelope membrane-associated protein of chloroplasts and is responsible for the bulk of galactolipid biosynthesis in green tissues. MGD1 function is indispensable for thylakoid membrane biogenesis and embryogenesis. By contrast, type B atMGD2 and atMGD3 are localized in the outer envelopes and have no important role in chloroplast biogenesis or plant development under nutrient-sufficient conditions. These type B MGD genes are, however, strongly induced by phosphate (Pi) starvation and are essential for alternative galactolipid biosynthesis during Pi starvation. MGD1 gene expression is up-regulated by light and cytokinins. By contrast, Pi starvation-dependent expression of atMGD2/3 is suppressed by cytokinins but induced through auxin signaling pathways. These growth factors may control the functional sharing of the inner envelope pathway by atMGD1 and the outer envelope pathway by atMGD2/3 according to the growth environment.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
180
|
Nakamura Y, Kobayashi K, Ohta H. Activation of galactolipid biosynthesis in development of pistils and pollen tubes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:535-9. [PMID: 19181535 DOI: 10.1016/j.plaphy.2008.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/22/2008] [Accepted: 12/30/2008] [Indexed: 05/07/2023]
Abstract
Galactolipids such as monogalactosyldiacylglycerol and digalactosyldiacylglycerol are essential lipids for the proper functioning of photosynthetic membranes. However, the function of galactolipids in flowers is unknown. Previously, we reported that pistils have higher galactolipid-producing activity than leaves. The present study investigated galactolipid biosynthesis in pistils in more detail using Petunia hybrida and Lilium longiflorum. The results showed that digalactosyldiacylglycerol levels increased during flower development. In addition, the galactose incorporation activity into galactolipids was induced, suggesting that the pathway for the production of digalactosyldiacylglycerol was stimulated. Interestingly, a significant increase in galactolipids was also observed in elongated pollen tubes. Therefore, pistils are the main site of galactolipid biosynthesis and whose galactolipid biosynthesis activity is induced during flower development, and this induction includes considerable galactolipid biosynthesis in pollen tubes.
Collapse
Affiliation(s)
- Yuki Nakamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
| | | | | |
Collapse
|
181
|
Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K, Tanaka H, Matsuda F, Hirai A, Hirai MY, Ohta H, Saito K. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. THE PLANT CELL 2009; 21:892-909. [PMID: 19286968 PMCID: PMC2671695 DOI: 10.1105/tpc.108.063925] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants synthesize a sulfur-containing lipid, sulfoquinovosyldiacylglycerol, which is one of three nonphosphorus glycerolipids that provide the bulk of the structural lipids in photosynthetic membranes. Here, the identification of a novel gene, UDP-glucose pyrophosphorylase3 (UGP3), required for sulfolipid biosynthesis is described. Transcriptome coexpression analysis demonstrated highly correlated expression of UGP3 with known genes for sulfolipid biosynthesis in Arabidopsis thaliana. Liquid chromatography-mass spectrometry analysis of leaf lipids in two Arabidopsis ugp3 mutants revealed that no sulfolipid was accumulated in these mutants, indicating the participation of UGP3 in sulfolipid biosynthesis. From the deduced amino acid sequence, UGP3 was presumed to be a UDP-glucose pyrophosphorylase (UGPase) involved in the generation of UDP-glucose, serving as the precursor of the polar head of sulfolipid. Recombinant UGP3 was able to catalyze the formation of UDP-glucose from glucose-1-phosphate and UTP. A transient assay using fluorescence fusion proteins and UGPase activity in isolated chloroplasts indicated chloroplastic localization of UGP3. The transcription level of UGP3 was increased by phosphate starvation. A comparative genomics study on UGP3 homologs across different plant species suggested the structural and functional conservation of the proteins and, thus, a committing role for UGP3 in sulfolipid synthesis.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
|
183
|
Kobayashi K, Awai K, Nakamura M, Nagatani A, Masuda T, Ohta H. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:322-31. [PMID: 18808455 DOI: 10.1111/j.1365-313x.2008.03692.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively) constitute the bulk of membrane lipids in plant chloroplasts. Mutant analyses in Arabidopsis have shown that these galactolipids are essential for chloroplast biogenesis and photoautotrophic growth. Moreover, these non-phosphorous lipids are proposed to participate in low-phosphate (Pi) adaptations. Under Pi-limited conditions, a drastic accumulation of DGDG occurs concomitantly with a large reduction in membrane phospholipids, suggesting that plants substitute DGDG for phospholipids during Pi starvation. Previously, we reported that among the three MGDG synthase genes (MGD1, MGD2 and MGD3), the type-B MGD2 and MGD3 are upregulated in parallel with DGDG synthase genes during Pi starvation. Here, we describe the identification and characterization of T-DNA insertional mutants of Arabidopsis type-B MGD genes. Under Pi-starved conditions, the mgd3-1 mutant showed a drastic reduction in DGDG accumulation, particularly in the root, indicating that MGD3 is the main isoform responsible for DGDG biosynthesis in Pi-starved roots. Moreover, in the roots of mgd2 mgd3 plants, Pi stress-induced accumulation of DGDG was almost fully abolished, showing that type-B MGD enzymes are essential for membrane lipid remodeling in Pi-starved roots. Reductions in fresh weight, root growth and photosynthetic performance were also observed in these mutants under Pi-starved conditions. These results demonstrate that Pi stress-induced membrane lipid remodeling is important in plant growth during Pi starvation. The widespread distribution of type-B MGD genes in land plants suggests that membrane lipid remodeling mediated by type-B MGD enzymes is a potent adaptation to Pi deficiency for land plants.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226 8501, Japan
| | | | | | | | | | | |
Collapse
|
184
|
|
185
|
Andersson MX, Dörmann P. Chloroplast Membrane Lipid Biosynthesis and Transport. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
186
|
Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Block M, Joyard J. The Chloroplast Envelope Proteome and Lipidome. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
187
|
|
188
|
Gaude N, Nakamura Y, Scheible WR, Ohta H, Dörmann P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:28-39. [PMID: 18564386 DOI: 10.1111/j.1365-313x.2008.03582.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The replacement of phospholipids by galacto- and sulfolipids in plant membranes represents an important adaptive process for growth on phosphate-limiting soils. Gene expression and lipid analyses revealed that the MYB transcription factor PHR1 that has been previously shown to regulate phosphate responses is not a major factor controlling membrane lipid changes. Candidate genes for phospholipid degradation were selected based on induction of expression during phosphate deprivation. Lipid measurements in the corresponding Arabidopsis mutants revealed that the non-specific phospholipase C5 (NPC5) is required for normal accumulation of digalactosyldiacylglycerol (DGDG) during phosphate limitation in leaves. The growth and DGDG content of a double mutant npc5 pho1 (between npc5 and the phosphate-deficient pho1 mutant) are reduced compared to parental lines. The amount of DGDG increases from approximately 15 mol% to 22 mol% in npc5, compared to 28 mol% in wild-type, indicating that NPC5 is responsible for approximately 50% of the DGDG synthesized during phosphate limitation in leaves. Expression in Escherichia coli revealed that NPC5 shows phospholipase C activity on phosphatidylcholine and phosphatidylethanolamine. A double mutant of npc5 and pldzeta2 (carrying a mutation in the phospholipase Dzeta2 gene) was generated. Lipid measurements in npc5 pldzeta2 indicated that the contribution of PLDzeta2 to DGDG production in leaves is negligible. In contrast to the chloroplast envelope localization of galactolipid synthesis enzymes, NPC5 localizes to the cytosol, suggesting that, during phosphate limitation, soluble NPC5 associates with membranes where it contributes to the conversion of phospholipids to diacylglycerol, the substrate for galactolipid synthesis.
Collapse
Affiliation(s)
- Nicole Gaude
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
189
|
Tjellström H, Andersson MX, Larsson KE, Sandelius AS. Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. PLANT, CELL & ENVIRONMENT 2008; 31:1388-98. [PMID: 18643953 DOI: 10.1111/j.1365-3040.2008.01851.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
It is well established that phosphate deficiency induces the replacement of membrane phospholipid with non-phosphorous lipids in extra-plastidial membranes (e.g. plasma membrane, tonoplast, mitochondria). The predominant replacement lipid is digalactosyl diacylglycerol (DGDG). This paper reports that the phospholipid-to-DGDG replacement is reversible, and that when oat seedlings are re-supplied with radio-labelled phosphate, it is initially recovered primarily in phosphatidylcholine (PC). Within 2 d, the shoot contains more than half of the lipid-associated radiolabel, reflecting phosphate translocation. Oat was also cultivated in different concentrations of phosphate and the DGDG/PC ratio in roots and phospholipase activities in isolated plasma membranes was assayed after different times of cultivation. The DGDG/PC ratio in root tissue correlated more closely with plasma membrane-localized phospholipase D, yielding phosphatidic acid (PA), than with plasma membrane-localized PA phosphatase, the activity that results in a decreased proportion of phospolipids. The lipid degradation data did not reflect a significant involvement of phospholipase C, although a putative phospholipase C analogue, non-specific phospholipase C4 (NPC4), was present in oat roots. The correlation between increased phospholipase D activity and DGDG/PC ratio is consistent with a model where phospholipid-to-DGDG replacement involves formation of PA that readily is removed from the plasma membrane for further degradation elsewhere.
Collapse
Affiliation(s)
- Henrik Tjellström
- Department of Plant and Environmental Sciences, University of Gothenburg, Goteborg, Sweden
| | | | | | | |
Collapse
|
190
|
Aronsson H, Schöttler MA, Kelly AA, Sundqvist C, Dörmann P, Karim S, Jarvis P. Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. PLANT PHYSIOLOGY 2008; 148:580-92. [PMID: 18641085 PMCID: PMC2528128 DOI: 10.1104/pp.108.123372] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/14/2008] [Indexed: 05/18/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) is the major lipid constituent of chloroplast membranes and has been proposed to act directly in several important plastidic processes, particularly during photosynthesis. In this study, the effect of MGDG deficiency, as observed in the monogalactosyldiacylglycerol synthase1-1 (mgd1-1) mutant, on chloroplast protein targeting, phototransformation of pigments, and photosynthetic light reactions was analyzed. The targeting of plastid proteins into or across the envelope, or into the thylakoid membrane, was not different from wild-type in the mgd1 mutant, suggesting that the residual amount of MGDG in mgd1 was sufficient to maintain functional targeting mechanisms. In dark-grown plants, the ratio of bound protochlorophyllide (Pchlide, F656) to free Pchlide (F631) was increased in mgd1 compared to the wild type. Increased levels of the photoconvertible pigment-protein complex (F656), which is photoprotective and suppresses photooxidative damage caused by an excess of free Pchlide, may be an adaptive response to the mgd1 mutation. Leaves of mgd1 suffered from a massively impaired capacity for thermal dissipation of excess light due to an inefficient operation of the xanthophyll cycle; the mutant contained less zeaxanthin and more violaxanthin than wild type after 60 min of high-light exposure and suffered from increased photosystem II photoinhibition. This is attributable to an increased conductivity of the thylakoid membrane at high light intensities, so that the proton motive force is reduced and the thylakoid lumen is less acidic than in wild type. Thus, the pH-dependent activation of the violaxanthin de-epoxidase and of the PsbS protein is impaired.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Plant and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
191
|
|
192
|
Qu Y, Egelund J, Gilson PR, Houghton F, Gleeson PA, Schultz CJ, Bacic A. Identification of a novel group of putative Arabidopsis thaliana beta-(1,3)-galactosyltransferases. PLANT MOLECULAR BIOLOGY 2008; 68:43-59. [PMID: 18548197 DOI: 10.1007/s11103-008-9351-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/16/2008] [Indexed: 05/18/2023]
Abstract
To begin biochemical and molecular studies on the biosynthesis of the type II arabinogalactan chains on arabinogalactan-proteins (AGPs), we adopted a bioinformatic approach to identify and systematically characterise the putative galactosyltransferases (GalTs) responsible for synthesizing the beta-(1,3)-Gal linkage from CAZy GT-family-31 from Arabidopsis thaliana. These analyses confirmed that 20 members of the GT-31 family contained domains/motifs typical of biochemically characterised beta-(1,3)-GTs from mammalian systems. Microarray data confirm that members of this family are expressed throughout all tissues making them likely candidates for the assembly of the ubiquitously found AGPs. One member, At1g77810, was selected for further analysis including location studies that confirmed its presence in the Golgi and preliminary enzyme substrate specificity studies that demonstrated beta-(1,3)-GalT activity. This bioinformatic/molecular study of CAZy GT-family-31 was validated by the recent report of Strasser et al. (Plant Cell 19:2278-2292, 2007) that another member of this family (At1g26810; GALT1) encodes a beta-(1,3)-GalT involved in the biosynthesis of the Lewis a epitope of N-glycans in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yongmei Qu
- Plant Cell Biology Research Centre, School of Botany, The University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
193
|
Xu C, Fan J, Cornish AJ, Benning C. Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein. THE PLANT CELL 2008; 20:2190-204. [PMID: 18689504 PMCID: PMC2553622 DOI: 10.1105/tpc.108.061176] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/19/2008] [Accepted: 07/27/2008] [Indexed: 05/18/2023]
Abstract
The development of chloroplasts in Arabidopsis thaliana requires extensive lipid trafficking between the endoplasmic reticulum (ER) and the plastid. The biosynthetic enzymes for the final steps of chloroplast lipid assembly are associated with the plastid envelope membranes. For example, during biosynthesis of the galactoglycerolipids predominant in photosynthetic membranes, galactosyltransferases associated with these membranes transfer galactosyl residues from UDP-Gal to diacylglycerol. In Arabidopsis, diacylglycerol can be derived from the ER or the plastid. Here, we describe a mutant of Arabidopsis, trigalactosyldiacylglycerol4 (tgd4), in which ER-derived diacylglycerol is not available for galactoglycerolipid biosynthesis. This mutant accumulates diagnostic oligogalactoglycerolipids, hence its name, and triacylglycerol in its tissues. The TGD4 gene encodes a protein that appears to be associated with the ER membranes. Mutant ER microsomes show a decreased transfer of lipids to isolated plastids consistent with in vivo labeling data, indicating a disruption of ER-to-plastid lipid transfer. The complex lipid phenotype of the mutant is similar to that of the tgd1,2,3 mutants disrupted in components of a lipid transporter of the inner plastid envelope membrane. However, unlike the TGD1,2,3 complex, which is proposed to transfer phosphatidic acid through the inner envelope membrane, TGD4 appears to be part of the machinery mediating lipid transfer between the ER and the outer plastid envelope membrane. The extent of direct ER-to-plastid envelope contact sites is not altered in the tgd4 mutant. However, this does not preclude a possible function of TGD4 in those contact sites as a conduit for lipid transfer between the ER and the plastid.
Collapse
Affiliation(s)
- Changcheng Xu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
194
|
Huang J, Gogarten JP. Concerted gene recruitment in early plant evolution. Genome Biol 2008; 9:R109. [PMID: 18611267 PMCID: PMC2530860 DOI: 10.1186/gb-2008-9-7-r109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/24/2008] [Accepted: 07/08/2008] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes. RESULTS Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants. Ten of these genes are rarely found in cyanobacteria or have additional plastid-derived homologs in plants. These genes most likely provided new functions, often essential for plant growth and development, to the ancestral plant. Many remaining genes may represent replacements of endogenous homologs with a similar function. Furthermore, over 78% of the anciently acquired genes are related to the biogenesis and functionality of plastids, the defining character of plants. CONCLUSION Our data suggest that, although ancient horizontal gene transfer events did occur in eukaryotic evolution, the number of acquired genes does not predict the role of horizontal gene transfer in the adaptation of the recipient organism. Our data also show that multiple independently acquired genes are able to generate and optimize key evolutionary novelties in major eukaryotic groups. In light of these findings, we propose and discuss a general mechanism of horizontal gene transfer in the macroevolution of eukaryotes.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
195
|
Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J. Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:106-17. [PMID: 18088304 DOI: 10.1111/j.1365-313x.2007.03400.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense mechanism that is activated throughout the plant, subsequent to localized inoculation with a pathogen. The establishment of SAR requires translocation of an unknown signal from the pathogen-inoculated leaf to the distal organs, where salicylic acid-dependent defenses are activated. We demonstrate here that petiole exudates (PeXs) collected from Arabidopsis leaves inoculated with an avirulent (Avr) Pseudomonas syringae strain promote resistance when applied to Arabidopsis, tomato (Lycopersicum esculentum) and wheat (Triticum aestivum). Arabidopsis FATTY ACID DESATURASE7 (FAD7), SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 (SFD1) and SFD2 genes are required for accumulation of the SAR-inducing activity. In contrast to Avr PeX from wild-type plants, Avr PeXs from fad7, sfd1 and sfd2 mutants were unable to activate SAR when applied to wild-type plants. However, the SAR-inducing activity was reconstituted by mixing Avr PeXs collected from fad7 and sfd1 with Avr PeX from the SAR-deficient dir1 mutant. Since FAD7, SFD1 and SFD2 are involved in plastid glycerolipid biosynthesis and SAR is also compromised in the Arabidopsis monogalactosyldiacylglycerol synthase1 mutant we suggest that a plastid glycerolipid-dependent factor is required in Avr PeX along with the DIR1-encoded lipid transfer protein for long-distance signaling in SAR. FAD7-synthesized lipids provide fatty acids for synthesis of jasmonic acid (JA). However, co-infiltration of JA and methylJA with Avr PeX from fad7 and sfd1 did not reconstitute the SAR-inducing activity. In addition, JA did not co-purify with the SAR-inducing activity confirming that JA is not the mobile signal in SAR.
Collapse
Affiliation(s)
- Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Xu C, Moellering ER, Fan J, Benning C. Mutation of a mitochondrial outer membrane protein affects chloroplast lipid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:163-175. [PMID: 18208519 DOI: 10.1111/j.1365-313x.2008.03417.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipid biosynthesis in plant cells is associated with various organelles, and maintenance of cell lipid homeostasis requires nimble regulation and coordination. In plants, environmental cues such as phosphate limitation require readjustment of the lipid biosynthetic machinery to substitute phospholipids by non-phosphorous glycolipids. Biosynthesis of the galactoglycerolipids predominant in plants proceeds by a constitutive and an alternative pathway that is known to be induced in response to phosphate deprivation. Plant lipid galactosyltransferases involved in both pathways are associated with the plastid envelope membranes and are encoded by nuclear genes. To identify mechanisms governing the activity of the alternative galactoglycerolipid pathway, a genetic suppressor screen was conducted in the background of the digalactolipid-deficient dgd1 mutant of Arabidopsis. A suppressor line that partially restored digalactoglycerolipid content in the dgd1 background carries a point mutation in a mitochondrial protein, which was tentatively designated DGD1 SUPPRESSOR 1 (DGS1). Presumed orthologs of this protein are present in plants, algae and fungi, but its molecular function is not yet known. In the dgd1 dgs1 double mutant, expression of nuclear genes encoding enzymes of the alternative galactoglycerolipid pathway is increased and hydrogen peroxide levels are elevated. This increase in hydrogen peroxide is proposed to be the reason for activation of the alternative pathway in the dgd1 dgs1 double mutant. Accordingly, hydrogen peroxide and treatments producing reactive oxygen also activate the alternative pathway in the wild-type. These results likely implicate the production of reactive oxygen in the regulation of the alternative galactoglycerolipid pathway in plants.
Collapse
Affiliation(s)
- Changcheng Xu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
197
|
Yamaryo Y, Dubots E, Albrieux C, Baldan B, Block MA. Phosphate availability affects the tonoplast localization of PLDzeta2, an Arabidopsis thaliana phospholipase D. FEBS Lett 2008; 582:685-90. [PMID: 18242181 DOI: 10.1016/j.febslet.2008.01.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/16/2008] [Accepted: 01/24/2008] [Indexed: 11/24/2022]
Abstract
Under phosphate deprivation, higher plants change their lipid composition and recycle phosphate from phospholipids. A phospholipase D, PLDzeta2, is involved in this recycling and in other cellular functions related to plant development. We investigated the localization of Arabidopsis PLDzeta2 by cell fractionation and in vivo GFP confocal imaging. AtPLDzeta2 localizes to the tonoplast and the Nter regulatory domain is sufficient for its sorting. Under phosphate deprivation, AtPLDzeta2 remains located in the tonoplast but its distribution is uneven. We observed PLDzeta2-enriched tonoplast domains preferentially positioned close to mitochondria and beside chloroplasts. In absence of PLDzeta2, membrane developments were visualized inside vacuoles.
Collapse
Affiliation(s)
- Yoshiki Yamaryo
- Laboratoire de Physiologie Cellulaire Végétale, CNRS, CEA, INRA, Université J. Fourier, CEA-Grenoble, iRTSV/LPCV, 17 Rue des Martyrs, Grenoble, France
| | | | | | | | | |
Collapse
|
198
|
Botté C, Saïdani N, Mondragon R, Mondragón M, Isaac G, Mui E, McLeod R, Dubremetz JF, Vial H, Welti R, Cesbron-Delauw MF, Mercier C, Maréchal E. Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii. J Lipid Res 2008; 49:746-62. [PMID: 18182683 DOI: 10.1194/jlr.m700476-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a unicellular parasite characterized by unique extracellular and intracellular membrane compartments. The lipid composition of subcellular membranes has not been determined, limiting our understanding of lipid homeostasis, control, and trafficking, a series of processes involved in pathogenesis. In addition to a mitochondrion, Toxoplasma contains a plastid called the apicoplast. The occurrence of a plastid raised the question of the presence of chloroplast galactolipids. Using three independent rabbit and rat antibodies against digalactosyldiacylglycerol (DGDG) from plant chloroplasts, we detected a class of Toxoplasma lipids harboring a digalactolipid-like epitope (DGLE). Immunolabeling characterization supports the notion that the DGLE polar head is similar to that of DGDG. Mass spectrometry analyses indicated that dihexosyl lipids having various hydrophobic moieties (ceramide, diacylglycerol, and acylalkylglycerol) might react with anti-DGDG, but we cannot exclude the possibility that more complex dihexosyl-terminated lipids might also be immunolabeled. DGLE localization was analyzed by immunofluorescence and immunoelectron microscopy and confirmed by subcellular fractionation. No immunolabeling of the apicoplast could be observed. DGLE was scattered in pellicle membrane domains in extracellular tachyzoites and was relocalized to the anterior tip of the cell upon invasion in an actin-dependent manner, providing insights on a possible role in pathogenetic processes. DGLE was detected in other Apicomplexa (i.e., Neospora, Plasmodium, Babesia, and Cryptosporidium).
Collapse
Affiliation(s)
- Cyrille Botté
- Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique-Commissariat à l'Energie, Institut de Recherches en Technologies et Sciences pour le Vivant, 38058 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Andersson MX, Dörmann P. Chloroplast Membrane Lipid Biosynthesis and Transport. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
200
|
Nakamura Y, Ohta H. The diacylglycerol forming pathways differ among floral organs ofPetunia hybrida. FEBS Lett 2007; 581:5475-9. [DOI: 10.1016/j.febslet.2007.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/26/2007] [Accepted: 10/26/2007] [Indexed: 11/25/2022]
|