151
|
Vullo D, Nishimori I, Scozzafava A, Köhler S, Winum JY, Supuran CT. Inhibition studies of a β-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorg Med Chem Lett 2010; 20:2178-82. [DOI: 10.1016/j.bmcl.2010.02.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 11/16/2022]
|
152
|
Joseph P, Turtaut F, Ouahrani-Bettache S, Montero JL, Nishimori I, Minakuchi T, Vullo D, Scozzafava A, Köhler S, Winum JY, Supuran CT. Cloning, Characterization, and Inhibition Studies of a β-Carbonic Anhydrase from Brucella suis. J Med Chem 2010; 53:2277-85. [DOI: 10.1021/jm901855h] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pascale Joseph
- Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France
| | - François Turtaut
- Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France
| | - Safia Ouahrani-Bettache
- Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France
| | - Jean-Louis Montero
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France
| | - Isao Nishimori
- Department of Gastroenterology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Tomoko Minakuchi
- Department of Gastroenterology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Stephan Köhler
- Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France
| | - Claudiu T. Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
153
|
Abstract
Brucellosis is a prevalent zoonotic disease and is endemic in the Middle East, South America, and other areas of the world. In this study, complete inventories of putative functional ABC systems of five Brucella species have been compiled and compared. ABC systems of Brucella melitensis 16M, Brucella abortus 9-941, Brucella canis RM6/66, Brucella suis 1330, and Brucella ovis 63/290 were identified and aligned. High numbers of ABC systems, particularly nutrient importers, were found in all Brucella species. However, differences in the total numbers of ABC systems were identified (B. melitensis, 79; B. suis, 72; B. abortus 64; B. canis, 74; B. ovis, 59) as well as specific differences in the functional ABC systems of the Brucella species. Since B. ovis is not known to cause human brucellosis, functional ABC systems absent in the B. ovis genome may represent virulence factors in human brucellosis.
Collapse
|
154
|
Al-Mariri A. Protection of BALB/c mice against Brucella melitensis 16M infection induced by vaccination with live Escherchia coli expression Brucella P39 protein. Vaccine 2010; 28:1766-70. [DOI: 10.1016/j.vaccine.2009.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/25/2009] [Accepted: 12/07/2009] [Indexed: 11/17/2022]
|
155
|
|
156
|
Whatmore AM. Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. INFECTION GENETICS AND EVOLUTION 2009; 9:1168-84. [DOI: 10.1016/j.meegid.2009.07.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/09/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
157
|
Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009; 364:2275-89. [PMID: 19571247 DOI: 10.1098/rstb.2009.0037] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic 'individual' can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as 'backbone modules' to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of 'accessory elements' that contribute adaptive traits to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized 'private genes'.
Collapse
Affiliation(s)
- Anders Norman
- Department of Biology, Section for Evolution and Microbiology, University of Copenhagen, Copenhagen K, Denmark.
| | | | | |
Collapse
|
158
|
Construction and evaluation of an ORFeome-based Brucella whole-genome DNA microarray. Microb Pathog 2009; 47:189-95. [DOI: 10.1016/j.micpath.2009.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/28/2009] [Accepted: 06/04/2009] [Indexed: 11/21/2022]
|
159
|
Scholz HC, Nöckler K, Göllner C, Bahn P, Vergnaud G, Tomaso H, Al Dahouk S, Kämpfer P, Cloeckaert A, Maquart M, Zygmunt MS, Whatmore AM, Pfeffer M, Huber B, Busse HJ, De BK. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol 2009; 60:801-808. [PMID: 19661515 DOI: 10.1099/ijs.0.011148-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, non-motile, non-spore-forming coccoid bacterium (strain BO1(T)) was isolated recently from a breast implant infection of a 71-year-old female patient with clinical signs of brucellosis. Affiliation of strain BO1(T) to the genus Brucella was confirmed by means of polyamine pattern, polar lipid profile, fatty acid profile, quinone system, DNA-DNA hybridization studies and by insertion sequence 711 (IS711)-specific PCR. Strain BO1(T) harboured four to five copies of the Brucella-specific insertion element IS 711, displaying a unique banding pattern, and exhibited a unique 16S rRNA gene sequence and also grouped separately in multilocus sequence typing analysis. Strain BO1(T) reacted with Brucella M-monospecific antiserum. Incomplete lysis was detected with bacteriophages Tb (Tbilisi), F1 and F25. Biochemical profiling revealed a high degree of enzymic activity and metabolic capabilities. In multilocus VNTR (variable-number tandem-repeat) analysis, strain BO1(T) showed a very distinctive profile and clustered with the other 'exotic' Brucella strains, including strains isolated from marine mammals, and Brucella microti, Brucella suis biovar 5 and Brucella neotomae. Comparative omp2a and omp2b gene sequence analysis revealed the most divergent omp2 sequences identified to date for a Brucella strain. The recA gene sequence of strain BO1(T) differed in seven nucleotides from the Brucella recA consensus sequence. Using the Brucella species-specific multiplex PCR assay, strain BO1(T) displayed a unique banding pattern not observed in other Brucella species. From the phenotypic and molecular analysis it became evident that strain BO1( T) was clearly different from all other Brucella species, and therefore represents a novel species within the genus Brucella. Because of its unexpected isolation, the name Brucella inopinata with the type strain BO1(T) (=BCCN 09-01(T)=CPAM 6436(T)) is proposed.
Collapse
Affiliation(s)
- Holger C Scholz
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937 Munich, Germany
| | - Karsten Nöckler
- Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Cornelia Göllner
- Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Peter Bahn
- Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Gilles Vergnaud
- Université Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, 91405 Orsay, France
- DGA/D4S - Mission pour la Recherche et l'Innovation Scientifique, 7, rue des Mathurins, 92220 Bagneux, France
| | - Herbert Tomaso
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937 Munich, Germany
| | - Sascha Al Dahouk
- RWTH Aachen University, Department of Internal Medicine III, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Peter Kämpfer
- Institute for Applied Microbiology, Justus-Liebig-Universitat Giessen, IFZ, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Axel Cloeckaert
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, F-37380 Nouzilly, France
| | - Marianne Maquart
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, F-37380 Nouzilly, France
| | - Michel S Zygmunt
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, F-37380 Nouzilly, France
| | - Adrian M Whatmore
- Veterinary Laboratories Agency, Woodham Lane, Addlestone KT15 3NB, UK
| | - Martin Pfeffer
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937 Munich, Germany
| | - Birgit Huber
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Barun Kumar De
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, USA
| |
Collapse
|
160
|
Molecular epidemiology of Brucella genotypes in patients at a major hospital in central Peru. J Clin Microbiol 2009; 47:3147-55. [PMID: 19656979 DOI: 10.1128/jcm.00900-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiple-locus variable-number repeat analysis of 90 human Brucella melitensis isolates from a large urban area in central Peru revealed variations at 4 (Bruce07, Bruce09, Bruce18, and Bruce42) out of 16 loci investigated, of which 1 (Bruce42) also is used for species identification. Ten genotypes were identified, separated by the number of Bruce42 repeats into two groups that may have distinct phenotypic characteristics. Whereas genotypes with five or six Bruce42 repeats were cultured mainly from adult patients, genotypes with three Bruce42 repeats were isolated from children and young adolescents as well as from adults. In addition, the isolates with three Bruce42 repeats were obtained more often from patients with splenomegaly (P = 0.02) or hepatomegaly (P = 0.006). An annual variation in the diversity of genotypes was observed, possibly reflecting changes in sources of fresh dairy products, supply routes to city shops and markets, and the movement of infected dairy goat herds.
Collapse
|
161
|
Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics 2009; 10:352. [PMID: 19653890 PMCID: PMC2743711 DOI: 10.1186/1471-2164-10-352] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/04/2009] [Indexed: 12/02/2022] Open
Abstract
Background Using a combination of pyrosequencing and conventional Sanger sequencing, the complete genome sequence of the recently described novel Brucella species, Brucella microti, was determined. B. microti is a member of the genus Brucella within the Alphaproteobacteria, which consists of medically important highly pathogenic facultative intracellular bacteria. In contrast to all other Brucella species, B. microti is a fast growing and biochemically very active microorganism with a phenotype more similar to that of Ochrobactrum, a facultative human pathogen. The atypical phenotype of B. microti prompted us to look for genomic differences compared to other Brucella species and to look for similarities with Ochrobactrum. Results The genome is composed of two circular chromosomes of 2,117,050 and 1,220,319 base pairs. Unexpectedly, we found that the genome sequence of B. microti is almost identical to that of Brucella suis 1330 with an overall sequence identity of 99.84% in aligned regions. The most significant structural difference between the two genomes is a bacteriophage-related 11,742 base pairs insert only present in B. microti. However, this insert is unlikely to have any phenotypical consequence. Only four protein coding genes are shared between B. microti and Ochrobactrum anthropi but impaired in other sequenced Brucella. The most noticeable difference between B. microti and other Brucella species was found in the sequence of the 23S ribosomal RNA gene. This unusual variation could have pleiotropic effects and explain the fast growth of B. microti. Conclusion Contrary to expectations from the phenotypic analysis, the genome sequence of B. microti is highly similar to that of known Brucella species, and is remotely related to the one of O. anthropi. How the few differences in gene content between B. microti and B. suis 1330 could result in vastly different phenotypes remains to be elucidated. This unexpected finding will complicate the task of identifying virulence determinants in the Brucella genus. The genome sequence of B. microti will serve as a model for differential expression analysis and complementation studies. Our results also raise some concerns about the importance given to phenotypical traits in the definition of bacterial species.
Collapse
|
162
|
Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM. The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 2009; 77:3466-74. [PMID: 19487482 PMCID: PMC2715675 DOI: 10.1128/iai.00444-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/03/2009] [Accepted: 05/20/2009] [Indexed: 11/20/2022] Open
Abstract
The gene designated BAB1_1460 in the Brucella abortus 2308 genome sequence is predicted to encode the manganese transporter MntH. Phenotypic analysis of an isogenic mntH mutant indicates that MntH is the sole high-affinity manganese transporter in this bacterium but that MntH does not play a detectable role in the transport of Fe(2+), Zn(2+), Co(2+), or Ni(2+). Consistent with the apparent selectivity of the corresponding gene product, the expression of the mntH gene in B. abortus 2308 is repressed by Mn(2+), but not Fe(2+), and this Mn-responsive expression is mediated by a Mur-like repressor. The B. abortus mntH mutant MWV15 exhibits increased susceptibility to oxidative killing in vitro compared to strain 2308, and a comparative analysis of the superoxide dismutase activities present in these two strains indicates that the parental strain requires MntH in order to make wild-type levels of its manganese superoxide dismutase SodA. The B. abortus mntH mutant also exhibits extreme attenuation in both cultured murine macrophages and experimentally infected C57BL/6 mice. These experimental findings indicate that Mn(2+) transport mediated by MntH plays an important role in the physiology of B. abortus 2308, particularly during its intracellular survival and replication in the host.
Collapse
Affiliation(s)
- Eric S Anderson
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Lamontagne J, Forest A, Marazzo E, Denis F, Butler H, Michaud JF, Boucher L, Pedro I, Villeneuve A, Sitnikov D, Trudel K, Nassif N, Boudjelti D, Tomaki F, Chaves-Olarte E, Guzmán-Verri C, Brunet S, Côté-Martin A, Hunter J, Moreno E, Paramithiotis E. Intracellular adaptation of Brucella abortus. J Proteome Res 2009; 8:1594-609. [PMID: 19216536 DOI: 10.1021/pr800978p] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophages were infected with virulent Brucella abortus strain 2308 or attenuated strain 19. Intracellular bacteria were recovered at different times after infection and their proteomes compared. The virulent strain initially reduced most biosynthesis and altered its respiration; adaptations reversed later in infection. The attenuated strain was unable to match the magnitude of the virulent strain's adjustments. The results provide insight into mechanisms utilized by Brucella to establish intracellular infections.
Collapse
Affiliation(s)
- Julie Lamontagne
- Caprion Proteomics, Inc., 7150 Alexander-Fleming, Montreal, Quebec, Canada, H4S 2C8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: a re-emerging zoonosis. Vet Microbiol 2009; 140:392-8. [PMID: 19604656 DOI: 10.1016/j.vetmic.2009.06.021] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/04/2009] [Accepted: 06/12/2009] [Indexed: 12/30/2022]
Abstract
Brucellosis, especially caused by Brucella melitensis, remains one of the most common zoonotic diseases worldwide with more than 500,000 human cases reported annually. The bacterial pathogen is classified by the CDC as a category (B) pathogen that has potential for development as a bio-weapon. Brucella spp. are considered as the most common laboratory-acquired pathogens. The geographical distribution of brucellosis is constantly changing with new foci emerging or re-emerging. The disease occurs worldwide in both animals and humans, except in those countries where bovine brucellosis has been eradicated. The worldwide economic losses due to brucellosis are extensive not only in animal production but also in human health. Although a number of successful vaccines are being used for immunization of animals, no satisfactory vaccine against human brucellosis is available. When the incidence of brucellosis is controlled in the animal reservoirs, there is a corresponding and significant decline in the incidence in humans.
Collapse
Affiliation(s)
- Mohamed N Seleem
- The Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
165
|
Proteomic analysis of Brucella suis
under oxygen deficiency reveals flexibility in adaptive expression of various pathways. Proteomics 2009; 9:3011-21. [DOI: 10.1002/pmic.200800266] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
166
|
Tsolis RM, Seshadri R, Santos RL, Sangari FJ, Lobo JMG, de Jong MF, Ren Q, Myers G, Brinkac LM, Nelson WC, DeBoy RT, Angiuoli S, Khouri H, Dimitrov G, Robinson JR, Mulligan S, Walker RL, Elzer PE, Hassan KA, Paulsen IT. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS One 2009; 4:e5519. [PMID: 19436743 PMCID: PMC2677664 DOI: 10.1371/journal.pone.0005519] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/23/2009] [Indexed: 01/08/2023] Open
Abstract
Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.
Collapse
Affiliation(s)
- Renee M. Tsolis
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Rekha Seshadri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Renato L. Santos
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Escola de Veteranaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felix J. Sangari
- Molecular Biology Department, University of Cantabria, Santander, Spain
| | | | - Maarten F. de Jong
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Qinghu Ren
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Garry Myers
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Lauren M. Brinkac
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - William C. Nelson
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Robert T. DeBoy
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Samuel Angiuoli
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Hoda Khouri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - George Dimitrov
- J. Craig Venter Institute, La Jolla, California, United States of America
| | | | - Stephanie Mulligan
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Richard L. Walker
- California Animal Health and Food Safety Laboratory, Davis, California, United States of America
| | - Philip E. Elzer
- Department of Veterinary Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- J. Craig Venter Institute, La Jolla, California, United States of America
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- * E-mail:
| |
Collapse
|
167
|
Comparison of two multiple-locus variable-number tandem-repeat analysis methods for molecular strain typing of human Brucella melitensis isolates from the Middle East. J Clin Microbiol 2009; 47:2226-31. [PMID: 19439543 DOI: 10.1128/jcm.02362-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella species are highly monomorphic, with minimal genetic variation among species, hindering the development of reliable subtyping tools for epidemiologic and phylogenetic analyses. Our objective was to compare two distinct multiple-locus variable-number tandem-repeat analysis (MLVA) subtyping methods on a collection of 101 Brucella melitensis isolates from sporadic human cases of brucellosis in Egypt (n = 83), Qatar (n = 17), and Libya (n = 1). A gel-based MLVA technique, MLVA-15(IGM), was compared to an automated capillary electrophoresis-based method, MLVA-15(NAU), with each MLVA scheme examining a unique set of variable-number tandem repeats. Both the MLVA(IGM) and MLVA(NAU) methods were highly discriminatory, resolving 99 and 101 distinct genotypes, respectively, and were able to largely separate genotypes from Egypt and Qatar. The MLVA-15(NAU) scheme presented higher strain-to-strain diversity in our test population than that observed with the MLVA-15(IGM) assay. Both schemes were able to genetically correlate some strains originating from the same hospital or region within a country. In addition to comparing the genotyping abilities of these two schemes, we also compared the usability, limitations, and advantages of the two MLVA systems and their applications in the epidemiological genotyping of human B. melitensis strains.
Collapse
|
168
|
Rossetti CA, Galindo CL, Lawhon SD, Garner HR, Adams LG. Brucella melitensis global gene expression study provides novel information on growth phase-specific gene regulation with potential insights for understanding Brucella:host initial interactions. BMC Microbiol 2009; 9:81. [PMID: 19419566 PMCID: PMC2684542 DOI: 10.1186/1471-2180-9-81] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 05/06/2009] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Brucella spp. are the etiological agents of brucellosis, a zoonotic infectious disease that causes abortion in animals and chronic debilitating illness in humans. Natural Brucella infections occur primarily through an incompletely defined mechanism of adhesion to and penetration of mucosal epithelium. In this study, we characterized changes in genome-wide transcript abundance of the most and the least invasive growth phases of B. melitensis cultures to HeLa cells, as a preliminary approach for identifying candidate pathogen genes involved in invasion of epithelial cells. RESULTS B. melitensis at the late logarithmic phase of growth are more invasive to HeLa cells than mid-logarithmic or stationary growth phases. Microarray analysis of B. melitensis gene expression identified 414 up- and 40 down-regulated genes in late-log growth phase (the most invasive culture) compared to the stationary growth phase (the least invasive culture). As expected, the majority of up-regulated genes in late-log phase cultures were those associated with growth, including DNA replication, transcription, translation, intermediate metabolism, energy production and conversion, membrane transport, and biogenesis of the cell envelope and outer membrane; while the down-regulated genes were distributed among several functional categories. CONCLUSION This Brucella global expression profile study provides novel information on growth phase-specific gene expression. Further characterization of some genes found differentially expressed in the most invasive culture will likely bring new insights into the initial molecular interactions between Brucella and its host.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77483-4467, USA.
| | | | | | | | | |
Collapse
|
169
|
Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N. TargetingBrucella melitensiswith polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett 2009; 294:24-31. [DOI: 10.1111/j.1574-6968.2009.01530.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
170
|
Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol 2009; 191:3569-79. [PMID: 19346311 DOI: 10.1128/jb.01767-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact beta-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the "domino theory" of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host.
Collapse
|
171
|
Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW. Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 2009; 191:2501-11. [PMID: 19251847 PMCID: PMC2668409 DOI: 10.1128/jb.01779-08] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/10/2009] [Indexed: 12/23/2022] Open
Abstract
The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.
Collapse
Affiliation(s)
- Steven C Slater
- Virginia Bioinformatics Institute, Washington St., MC 0477, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Bandara AB, Schurig GG, Sriranganathan N, Prasad R, Boyle SM. The putative penicillin-binding proteins 1 and 2 are important for viability, growth and cell morphology of Brucella melitensis. Vet Microbiol 2009; 133:387-93. [DOI: 10.1016/j.vetmic.2008.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 07/18/2008] [Accepted: 07/24/2008] [Indexed: 11/24/2022]
|
173
|
Artificial plasmid engineered to simulate multiple biological threat agents. Appl Microbiol Biotechnol 2009; 81:1129-39. [DOI: 10.1007/s00253-008-1715-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/03/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
174
|
Defense Against Biological Weapons (Biodefense). NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES, NIH 2009. [PMCID: PMC7122899 DOI: 10.1007/978-1-60327-297-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Biological warfare (germ warfare) is defined as the use of any disease-causing organism or toxin(s) found in nature as weapons of war with the intent to destroy an adversary. Though rare, the use of biological weapons has occurred throughout the centuries.
Collapse
|
175
|
Rifampicin resistance phenotyping of Brucella melitensis by rpoB gene analysis in clinical isolates. J Chemother 2008; 20:431-5. [PMID: 18676221 DOI: 10.1179/joc.2008.20.4.431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
R Rifampicin resistance of Brucella melitensis by rpoB gene analysis has not yet been performed in Turkey, where brucellosis is endemic. In this study, we investigated the efficacy of E-test and single nucleotide polymorphism (SNP) analysis of the B. melitensis rpoB gene, for the detection of mutations conferring rifampicin resistance, by sequencing 21 human B. melitensis strains from the Southeast and Marmara regions of Turkey. On CLSI slow-growing bacteria standards, all isolates were sensitive to rifampicin except for 6 which showed intermediate resistance to rifampicin. MIC(50) and MIC(90)values were 1 microg/ml and 1.5 microg/ml respectively (range 0.50 -1.5 microg/ml). The rifampicin-resistant phenotype was investigated at Cd 154 (GTT/TTT), Cd 526 (GAC/TAC, GAC/AAC, GAC/GGC), Cd 536 (CAC/CTC, CAC/TAC), Cd 539 (CGC/AGC), Cd 541 (TCG/TTG) and Cd 574 (CCG/CTG) of the rpoB gene in B. melitensis 16M and B115 strains, and in clinical isolates. No missense mutations were found in any of the B. melitensis isolates, which indicates that all isolates were rifampicin-susceptible. In conclusion, SNP analysis was useful as a molecular tool for rifampin resistance testing. Although resistance to rifampicin was not detected in our strains of B. melitensis; the presence of strains with intermediate resistance to rifampicin indicates that susceptibility testing should be performed periodically.
Collapse
|
176
|
Iannino F, Ugalde RA, Iñón de Iannino N. Characterization of Brucella abortus sigma factor σ54 (rpoN): Genetic complementation of Sinorhizobium meliloti ntrA mutant. Microb Pathog 2008; 45:394-402. [DOI: 10.1016/j.micpath.2008.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 11/30/2022]
|
177
|
|
178
|
Leclercq SY, Oliveira SC. Protective Immunity Induced by DNA-library Immunization against an Intracellular Bacterial Infection. J Drug Target 2008; 11:531-8. [PMID: 15203922 DOI: 10.1080/10611860410001669983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA-based immunization has shown to be a viable alternative approach to induce protective immunity against Brucella abortus infection. However, the use of a unique gene may not be sufficient to induce full protection. Therefore, a new strategy based on library immunization has been described to improve the level of protection against different pathogens and to identify new protective genes. In the present study, a B. abortus library was subcloned into the mammalian expression vector pCMV-Ubi. This plasmid was designed to create a fusion between the gene of interest with ubiquitin. The analysis of this Brucella-library showed approximately 72% of clones containing inserts with an average size of 500-2000 bp. Further, homology searches were performed using the BLASTn program, and all sequenced clones showed homology with Brucella genes, as expected. BALB/c mice immunised intramuscularly with the Brucella genomic expression library showed a strong specific total IgG antibody response to a Brucella protein extract, with production of IgG1 and IgG2a isotypes. Regarding cellular immunity, high levels of IFN-gamma and no IL-4 were detected in primed mouse splenocytes and partial protection against infection was reached in animals vaccinated with the Brucella library compared to the control group.
Collapse
Affiliation(s)
- Sophie Y Leclercq
- Department of Biochemistry and Immunology, Institute for Investigation in Immunology-Millenium Institute, Federal University of Minas Gerais, Pampulha, Belo Hoizonte-MG, Brazil
| | | |
Collapse
|
179
|
Adone R, Francia M, Ciuchini F. Evaluation of Brucella melitensis B115 as rough-phenotype vaccine against B. melitensis and B. ovis infections. Vaccine 2008; 26:4913-7. [DOI: 10.1016/j.vaccine.2008.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/02/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
180
|
González M, Andrews E, Folch H, Sáez D, Cabrera A, Salgado P, Oñate A. Cloning, expression and immunogenicity of the translation initiation factor 3 homologue of Brucella abortus. Immunobiology 2008; 214:113-20. [PMID: 19167989 DOI: 10.1016/j.imbio.2008.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/05/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
The infC gene of Brucella abortus encoding the translation initiation factor 3 (IF3) was cloned, sequenced and expressed in Escherichia coli. The amino acid sequence analysis predicted a product with 74-80% identity with the IF3 proteins from Mesorhizobium loti, Sinorhizobium meliloti, Aurantimona sp. and Mesorhizobium sp. This protein also show 54% amino acid sequence identity with the E. coli IF3, sharing most of the residues which were described as responsible for the biological activity of this protein. Since we have previously reported the immunoprotective capacity of this Brucella protein, we stimulated lymphoid cells from animals immunized with purified recombinant Brucella IF3 protein "in vitro" with this antigen. The lymphocytes were able to mount a strong proliferative response with concomitant production of gamma interferon, but without the secretion of either IL-4 or antibodies. Thus, immunization with the Brucella recombinant IF3 protein promotes a TH-1 polarized response, allowing us to propose it as a promising candidate antigen for the development of subunit vaccines against Brucella.
Collapse
Affiliation(s)
- Marcela González
- Department of Microbiology, Faculty of Biological Sciences, Molecular Immunology Laboratory, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
181
|
|
182
|
Carrica MDC, Craig PO, Alonso SDV, Goldbaum FA, Cravero SL. Brucella abortus MFP: a trimeric coiled-coil protein with membrane fusogenic activity. Biochemistry 2008; 47:8165-75. [PMID: 18616282 DOI: 10.1021/bi800462y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The bacterial genus Brucella consists of a group of facultative intracellular pathogens which produces abortion and infertility in animals and a chronic debilitating febrile illness in humans. BMFP is a basic protein of Brucella abortus that belongs to a highly conserved group of homologue proteins of unknown structure and function in proteobacteria (COG2960). In this study, we report the structural and biochemical characterization of this protein. We found that BMFP has two structural domains: a carboxyl-terminal coiled-coil domain through which the protein self-associates as a trimer and a natively disordered amino-terminal domain which has propensity to adopt an amphipathic alpha-helical structure. This natively unfolded domain undergoes a structural rearrangement from unfolded to alpha-helix in the presence of high ionic strength, acidic pH, detergents, and phospholipid vesicles. Moreover, we demonstrated that the interaction of BMFP with phospholipid vesicles promotes in vitro membrane fusion. These results contribute to the elucidation of the structural and functional properties of this protein and its homologues present in most proteobacteria.
Collapse
Affiliation(s)
- Mariela del Carmen Carrica
- Instituto de Biotecnología, CICVyA, INTA, Los reseros y las cabanas s/n, Castelar, Buenos Aires, Agentina.
| | | | | | | | | |
Collapse
|
183
|
Jacob AI, Adham SAI, Capstick DS, Clark SRD, Spence T, Charles TC. Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:979-87. [PMID: 18533838 DOI: 10.1094/mpmi-21-7-0979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The short-chain dehydrogenase/reductase (SDR) family is one of the largest and most ubiquitous protein families in bacterial genomes. Despite there being a few well-characterized examples, the substrate specificities or functions of most members of the family are unknown. In this study, we carried out a large-scale mutagenesis of the SDR gene family in the alfalfa root nodule symbiont Sinorhizobium meliloti. Subsequent phenotypic analysis revealed phenotypes for mutants of 21 of the SDR-encoding genes. This brings the total number of S. meliloti SDR-encoding genes with known function or associated phenotype to 25. Several of the mutants were deficient in the utilization of specific carbon sources, while others exhibited symbiotic deficiencies on alfalfa (Medicago sativa), ranging from partial ineffectiveness to complete inability to form root nodules. Five of the mutants had both symbiotic and carbon utilization phenotypes. These results clearly demonstrate the importance of the SDR family in both symbiosis and saprotrophy, and reinforce the complex nature of the interaction of S. meliloti with its plant hosts. Further analysis of the genes identified in this study will contribute to the overall understanding of the biology and metabolism of S. meliloti in relation to its interaction with alfalfa.
Collapse
Affiliation(s)
- Asha I Jacob
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | | | | | | | | | | |
Collapse
|
184
|
Fretin D, Whatmore AM, Al Dahouk S, Neubauer H, Garin-Bastuji B, Albert D, Van Hessche M, Ménart M, Godfroid J, Walravens K, Wattiau P. Brucella suis identification and biovar typing by real-time PCR. Vet Microbiol 2008; 131:376-85. [PMID: 18499359 DOI: 10.1016/j.vetmic.2008.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 04/02/2008] [Accepted: 04/10/2008] [Indexed: 11/29/2022]
Abstract
Fast and accurate identification of Brucella suis at the biovar level is an important issue for public health laboratories because some of the biovars that infect suidae (boars and pigs) are pathogenic for humans while others are not. Since classical biovar typing methods are often time-consuming, hard to standardize and require high-level biosafety containment, methodological improvements are desirable. This article describes new single nucleotide polymorphism (SNP) signatures for the rapid identification and biovar characterization of B. suis. These SNPs were included together with previously described ones in real-time PCR assays applicable to low-biosafety conditions. Allelic profiles unique for each B. suis biovar were defined and the most relevant signatures were determined on a collection of 137 field strains of worldwide origin characterized previously. Biovars assigned with both present and classical methods were globally consistent except for some biovar 3 field strains which matched the allelic profile of biovar 1.
Collapse
Affiliation(s)
- David Fretin
- Veterinary and Agrochemical Research Centre, Department of Bacteriology and Immunology, Groeselenberg 99, B-1180 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS One 2008; 3:e2193. [PMID: 18478107 PMCID: PMC2364660 DOI: 10.1371/journal.pone.0002193] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/13/2008] [Indexed: 01/07/2023] Open
Abstract
The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9–941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism.
Collapse
|
186
|
Pei J, Turse JE, Ficht TA. Evidence of Brucella abortus OPS dictating uptake and restricting NF-kappaB activation in murine macrophages. Microbes Infect 2008; 10:582-90. [PMID: 18457975 PMCID: PMC2752336 DOI: 10.1016/j.micinf.2008.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/08/2007] [Accepted: 01/11/2008] [Indexed: 11/16/2022]
Abstract
Smooth Brucella abortus S2308 is virulent while rough derivatives are attenuated. Intracellular killing is often blamed for these differences. In the studies described, uptake kinetics and interaction of S2308 and S2308 manBA::Tn5 (CA180) rough mutants with macrophages were investigated. The results revealed that smooth B. abortus was rapidly internalized, achieving a maximum level in less than 5 min without additional uptake over the next 30 min. In contrast, continued uptake of the rough mutant was observed and only achieves a maximum level after 30 min. The results were confirmed by the differences in F-actin polymerization, lipid raft staining, early endosome colocalization and electron microscopic observations after smooth and rough Brucella infection. We also demonstrated for the first time that uptake of S2308, but not rough mutant CA180 was PI3-kinase and toll-like receptor 4 (TLR4) dependent. Differences in uptake were associated with differences in macrophage activation with regard to NF-kappaB translocation and cytokine production. These results provide evidence that the presence of B. abortus OPS dictates the interactions between Brucella and specific cell surface receptors minimizing macrophage activation and enhancing Brucella survival and/or persistence.
Collapse
Affiliation(s)
- Jianwu Pei
- Department of Veterinary Pathobiology, Texas A&M University and Texas Agricultural Experiment Station, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
187
|
Brucella: A pathogen without classic virulence genes. Vet Microbiol 2008; 129:1-14. [DOI: 10.1016/j.vetmic.2007.11.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 11/19/2007] [Accepted: 11/22/2007] [Indexed: 01/18/2023]
|
188
|
Abstract
repABC plasmids are widely distributed among alpha-proteobacteria. They are especially common in Rhizobiales. Some strains of this bacterial order can contain multiple repABC replicons indicating that this plasmid family includes several incompatibility groups. The replication and stable maintenance of these replicons depend on the presence of a repABC operon. The repABC operons sequenced to date share some general characteristics. All of them contain at least three protein-encoding genes: repA, repB and repC. The first two genes encode proteins involved in plasmid segregation, whereas repC encodes a protein crucial for replication. The origin of replication maps within the repC gene. In contrast, the centromere-like sequence (parS) can be located at various positions in the operon. In this review we will summarize current knowledge about this plasmid family, with special emphasis on their structural diversity and their complex genetic regulation. Finally, we will examine some ideas about their evolutionary origin and trends.
Collapse
|
189
|
Xiang Z, Tian Y, He Y. PHIDIAS: a pathogen-host interaction data integration and analysis system. Genome Biol 2008; 8:R150. [PMID: 17663773 PMCID: PMC2323235 DOI: 10.1186/gb-2007-8-7-r150] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/08/2007] [Accepted: 07/30/2007] [Indexed: 01/03/2023] Open
Abstract
PHIDIAS is a web-based database system serving as a centralized source to search, compare and analyse integrated genome sequences, conserved domains and transcriptional data related to pathogen-host interactions. The Pathogen-Host Interaction Data Integration and Analysis System (PHIDIAS) is a web-based database system that serves as a centralized source to search, compare, and analyze integrated genome sequences, conserved domains, and gene expression data related to pathogen-host interactions (PHIs) for pathogen species designated as high priority agents for public health and biological security. In addition, PHIDIAS allows submission, search and analysis of PHI genes and molecular networks curated from peer-reviewed literature. PHIDIAS is publicly available at .
Collapse
Affiliation(s)
- Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Dr., Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, 1150 W. Medical Dr., Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Biology, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
| | - Yuying Tian
- Medical School Information Services, University of Michigan, 535 W. William St., Ann Arbor, MI, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Dr., Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, 1150 W. Medical Dr., Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Biology, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
| |
Collapse
|
190
|
Ohtsuki R, Kawamoto K, Kato Y, Shah MM, Ezaki T, Makino SI. Rapid detection of Brucella spp. by the loop-mediated isothermal amplification method. J Appl Microbiol 2008; 104:1815-23. [PMID: 18248366 DOI: 10.1111/j.1365-2672.2008.03732.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIMS To develop a rapid and sensitive method for detecting Brucella spp. METHODS AND RESULTS Two sets of six Brucella-specific primers for loop-mediated isothermal amplification (LAMP) were designed from the sequence of the Brucella abortus BCSP31 gene. The specificity and sensitivity were examined for six Brucella species (22 strains) and 18 non-Brucella species (28 strains). The LAMP assay was specific to Brucella spp. in 35 min at 63 degrees C and sensitive (detected 10 fg of genomic DNA). The assay was also applied for the detection of Brucella DNA in contaminated milk and infected mouse organs. CONCLUSIONS We developed a sensitive and specific LAMP assay for Brucella spp., with the test appearing to be useful for the detection of the pathogen from clinical and food samples. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the development of LAMP for the detection of Brucella spp. As the LAMP assay can be performed at a constant temperature and its reactivity is directly observed with the naked eye without electrophoresis, our assay should be useful for the diagnosis of brucellosis as well as the detection of the bacteria in environmental or food samples.
Collapse
Affiliation(s)
- R Ohtsuki
- Laboratory of Food Microbiology and Immunology, Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
191
|
Ocampo-Sosa AA, García-Lobo JM. Demonstration of IS711 transposition in Brucella ovis and Brucella pinnipedialis. BMC Microbiol 2008; 8:17. [PMID: 18218072 PMCID: PMC2266754 DOI: 10.1186/1471-2180-8-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 01/24/2008] [Indexed: 01/16/2023] Open
Abstract
Background The Brucella genome contains an insertion sequence (IS) element called IS711 or IS6501, which is specific to the genus. The copy number of IS711 varies in the genome of the different Brucella species, ranging from 7 in B. abortus, B. melitensis and B. suis to more than 30 in B. ovis and in Brucella strains isolated from marine mammals. At present, there is no experimental evidence of transposition of IS711, but the occurrence of this element with a high copy number in some species, and the isolation of Brucella strains with "ectopic" copies of IS711 suggested that this IS could still transpose. Results In this study we obtained evidence of transposition of IS711 from the B. ovis and B. pinnipedialis chromosomes by using the "transposon trap" plasmid pGBG1. This plasmid expresses resistance to tetracycline only if the repressor gene that it contains is inactivated. The strains B. melitensis 16 M, B. abortus RB51, B. ovis BOC22 (field strain) and B. pinnipedialis B2/94, all containing the plasmid pGBG1, were grown in culture media with tetracycline until the appearance of tetracycline resistant mutants (TcR). TcR mutants due to IS711 transposition were only detected in B. ovis and B. pinnipedialis strains. Conclusion Four different copies of IS711 were found to transpose to the same target sequence in the plasmid pGBG1. This demonstrated that IS711 are active in vivo, specially in Brucella species with a high number of IS711 copies as B. ovis and B. pinnipedialis.
Collapse
Affiliation(s)
- Alain A Ocampo-Sosa
- Departamento de Biología Molecular, Universidad de Cantabria, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, CSIC-Universidad de Cantabria-IDICAN, Santander, Spain.
| | | |
Collapse
|
192
|
De BK, Stauffer L, Koylass MS, Sharp SE, Gee JE, Helsel LO, Steigerwalt AG, Vega R, Clark TA, Daneshvar MI, Wilkins PP, Whatmore AM. Novel Brucella strain (BO1) associated with a prosthetic breast implant infection. J Clin Microbiol 2008; 46:43-9. [PMID: 17977982 PMCID: PMC2224274 DOI: 10.1128/jcm.01494-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/09/2007] [Accepted: 10/21/2007] [Indexed: 11/20/2022] Open
Abstract
We report the microbiological, biochemical, and molecular characterization of an unusual Brucella strain (BO1) isolated from a breast implant wound in a 71-year-old woman with clinical symptoms consistent with brucellosis. Initial phenotypic analysis, including biochemical and antimicrobial susceptibility testing, cellular fatty acid analysis, and molecular analysis based on DNA-DNA reassociation and the presence of multiple copies of IS711 element suggested that the isolate was a Brucella-like organism, but species determination using microbiological algorithms was unsuccessful. Furthermore, molecular data based on 16S rRNA gene sequencing and multilocus sequence analysis demonstrated that BO1 was an unusual Brucella strain and not closely related to any currently described Brucella species. However, comparison with equivalent sequences in Ochrobactrum spp. confirms that the isolate is much more closely related to Brucella than to Ochrobactrum spp., and thus the isolate likely represents an atypical and novel strain within the genus Brucella.
Collapse
Affiliation(s)
- Barun K De
- Centers for Disease Control and Prevention, Mail Stop G34, 1600 Clifton Rd., Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Neurobrucellosi. Neurologia 2008. [DOI: 10.1016/s1634-7072(08)70539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
194
|
Gupta RS, Mok A. Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. BMC Microbiol 2007; 7:106. [PMID: 18045498 PMCID: PMC2241609 DOI: 10.1186/1471-2180-7-106] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/28/2007] [Indexed: 01/11/2023] Open
Abstract
Background Alpha proteobacteria are one of the largest and most extensively studied groups within bacteria. However, for these bacteria as a whole and for all of its major subgroups (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales), very few or no distinctive molecular or biochemical characteristics are known. Results We have carried out comprehensive phylogenomic analyses by means of Blastp and PSI-Blast searches on the open reading frames in the genomes of several α-proteobacteria (viz. Bradyrhizobium japonicum, Brucella suis, Caulobacter crescentus, Gluconobacter oxydans, Mesorhizobium loti, Nitrobacter winogradskyi, Novosphingobium aromaticivorans, Rhodobacter sphaeroides 2.4.1, Silicibacter sp. TM1040, Rhodospirillum rubrum and Wolbachia (Drosophila) endosymbiont). These studies have identified several proteins that are distinctive characteristics of all α-proteobacteria, as well as numerous proteins that are unique repertoires of all of its main orders (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales) and many families (viz. Rickettsiaceae, Anaplasmataceae, Rhodospirillaceae, Acetobacteraceae, Bradyrhiozobiaceae, Brucellaceae and Bartonellaceae). Many other proteins that are present at different phylogenetic depths in α-proteobacteria provide important information regarding their evolution. The evolutionary relationships among α-proteobacteria as deduced from these studies are in excellent agreement with their branching pattern in the phylogenetic trees and character compatibility cliques based on concatenated sequences for many conserved proteins. These studies provide evidence that the major groups within α-proteobacteria have diverged in the following order: (Rickettsiales(Rhodospirillales (Sphingomonadales (Rhodobacterales (Caulobacterales-Parvularculales (Rhizobiales)))))). We also describe two conserved inserts in DNA Gyrase B and RNA polymerase beta subunit that are distinctive characteristics of the Sphingomonadales and Rhodosprilllales species, respectively. The results presented here also provide support for the grouping of Hyphomonadaceae and Parvularcula species with the Caulobacterales and the placement of Stappia aggregata with the Rhizobiaceae group. Conclusion The α-proteobacteria-specific proteins and indels described here provide novel and powerful means for the taxonomic, biochemical and molecular biological studies on these bacteria. Their functional studies should prove helpful in identifying novel biochemical and physiological characteristics that are unique to these bacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton L8N3Z5, Canada.
| | | |
Collapse
|
195
|
Real-time PCR assays of single-nucleotide polymorphisms defining the major Brucella clades. J Clin Microbiol 2007; 46:296-301. [PMID: 18032628 DOI: 10.1128/jcm.01496-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Members of the genus Brucella are known worldwide as pathogens of wildlife and livestock and are the most common organisms of zoonotic infection in humans. In general, brucellae exhibit a range of host specificity in animals that has led to the identification of at least seven Brucella species. The genomes of the various Brucella species are highly conserved, which makes the differentiation of species highly challenging. However, we found single-nucleotide polymorphisms (SNPs) in housekeeping and other genes that differentiated the seven main Brucella species or clades and thus enabled us to develop real-time PCR assays based around these SNPs. Screening of a diverse panel of 338 diverse isolates with these assays correctly identified each isolate with its previously determined Brucella clade. Six of the seven clade-specific assays detected DNA concentrations of less than 10 fg, indicating a high level of sensitivity. This SNP-based approach places samples into a phylogenetic framework, allowing reliable comparisons to be made among the lineages of clonal bacteria and providing a solid basis for genotyping. These PCR assays provide a rapid and highly sensitive method of differentiating the major Brucella groups that will be valuable for clinical and forensic applications.
Collapse
|
196
|
Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 2007; 76:542-50. [PMID: 18025092 DOI: 10.1128/iai.00952-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rickettsia rickettsii is an obligate intracellular pathogen that is the causative agent of Rocky Mountain spotted fever. To identify genes involved in the virulence of R. rickettsii, the genome of an avirulent strain, R. rickettsii Iowa, was sequenced and compared to the genome of the virulent strain R. rickettsii Sheila Smith. R. rickettsii Iowa is avirulent in a guinea pig model of infection and displays altered plaque morphology with decreased lysis of infected host cells. Comparison of the two genomes revealed that R. rickettsii Iowa and R. rickettsii Sheila Smith share a high degree of sequence identity. A whole-genome alignment comparing R. rickettsii Iowa to R. rickettsii Sheila Smith revealed a total of 143 deletions for the two strains. A subsequent single-nucleotide polymorphism (SNP) analysis comparing Iowa to Sheila Smith revealed 492 SNPs for the two genomes. One of the deletions in R. rickettsii Iowa truncates rompA, encoding a major surface antigen (rickettsial outer membrane protein A [rOmpA]) and member of the autotransporter family, 660 bp from the start of translation. Immunoblotting and immunofluorescence confirmed the absence of rOmpA from R. rickettsii Iowa. In addition, R. rickettsii Iowa is defective in the processing of rOmpB, an autotransporter and also a major surface antigen of spotted fever group rickettsiae. Disruption of rompA and the defect in rOmpB processing are most likely factors that contribute to the avirulence of R. rickettsii Iowa. Genomic differences between the two strains do not significantly alter gene expression as analysis of microarrays revealed only four differences in gene expression between R. rickettsii Iowa and R. rickettsii strain R. Although R. rickettsii Iowa does not cause apparent disease, infection of guinea pigs with this strain confers protection against subsequent challenge with the virulent strain R. rickettsii Sheila Smith.
Collapse
|
197
|
Mallick A, Singha H, Khan S, Anwar T, Ansari M, Khalid R, Chaudhuri P, Owais M. Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against murine brucellosis. Vaccine 2007; 25:7873-84. [DOI: 10.1016/j.vaccine.2007.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 08/31/2007] [Accepted: 09/03/2007] [Indexed: 11/29/2022]
|
198
|
Delpino MV, Estein SM, Fossati CA, Baldi PC. Partial protection against Brucella infection in mice by immunization with nonpathogenic alphaproteobacteria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1296-1301. [PMID: 17715332 PMCID: PMC2168122 DOI: 10.1128/cvi.00459-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 04/02/2007] [Accepted: 08/10/2007] [Indexed: 01/18/2023]
Abstract
Previous findings indicate that Brucella antigens and those from nonpathogenic alphaproteobacteria (NPAP) are cross-recognized by the immune system. We hypothesized that immunization with NPAP would protect mice from Brucella infection. Mice were immunized subcutaneously with heat-killed Ochrobactrum anthropi, Sinorhizobium meliloti, Mesorhizobium loti, Agrobacterium tumefaciens, or Brucella melitensis H38 (standard positive control) before intravenous challenge with Brucella abortus 2308. Cross-reacting serum antibodies against Brucella antigens were detected at the moment of challenge in all NPAP-immunized mice. Thirty days after B. abortus challenge, splenic CFU counts were significantly lower in mice immunized with O. anthropi, M. loti, and B. melitensis H38 than in the phosphate-buffered saline controls (protection levels were 0.80, 0.66, and 1.99 log units, respectively). In mice immunized intraperitoneally with cytosoluble extracts from NPAP or Brucella abortus, protection levels were 1.58 for the latter, 0.63 for O. anthropi, and 0.40 for M. loti. To test whether the use of live NPAP would increase protection further, mice were both immunized and challenged by the oral route. Immunization with NPAP induced a significant increase in serum immunoglobulin G (IgG), but not serum or fecal IgA, against Brucella antigens. After challenge, anti-Brucella IgA increased significantly in the sera and feces of mice orally immunized with O. anthropi. For all NPAP, protection levels were higher than those obtained with systemic immunizations but were lower than those obtained by oral immunization with heat-killed B. abortus. These results show that immunization with NPAP, especially O. anthropi, confers partial protection against Brucella challenge. However, such protection is lower than that conferred by immunization with whole Brucella or its cytosoluble fraction.
Collapse
Affiliation(s)
- M Victoria Delpino
- Instituto de Estudios de la Immunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
199
|
Swartz TE, Tseng TS, Frederickson MA, Paris G, Comerci DJ, Rajashekara G, Kim JG, Mudgett MB, Splitter GA, Ugalde RA, Goldbaum FA, Briggs WR, Bogomolni RA. Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 2007; 317:1090-3. [PMID: 17717187 DOI: 10.1126/science.1144306] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Histidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation. Infection of macrophages by B. abortus was stimulated by light in the wild type but was limited in photochemically inactive and null mutants, indicating that the flavin-containing histidine kinase functions as a photoreceptor regulating B. abortus virulence.
Collapse
Affiliation(s)
- Trevor E Swartz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ, Barbian KD, Babar A, Dorward DW, Holland SM. Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 2007; 189:8727-36. [PMID: 17827295 PMCID: PMC2168926 DOI: 10.1128/jb.00793-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited immune deficiency characterized by increased susceptibility to infection with Staphylococcus, certain gram-negative bacteria, and fungi. Granulibacter bethesdensis, a newly described genus and species within the family Acetobacteraceae, was recently isolated from four CGD patients residing in geographically distinct locales who presented with fever and lymphadenitis. We sequenced the genome of the reference strain of Granulibacter bethesdensis, which was isolated from lymph nodes of the original patient. The genome contains 2,708,355 base pairs in a single circular chromosome, in which 2,437 putative open reading frames (ORFs) were identified, 1,470 of which share sequence similarity with ORFs in the nonpathogenic but related Gluconobacter oxydans genome. Included in the 967 ORFs that are unique to G. bethesdensis are ORFs potentially important for virulence, adherence, DNA uptake, and methanol utilization. GC% values and best BLAST analysis suggested that some of these unique ORFs were recently acquired. Comparison of G. bethesdensis to other known CGD pathogens demonstrated conservation of some putative virulence factors, suggesting possible common mechanisms involved in pathogenesis in CGD. Genotyping of the four patient isolates by use of a custom microarray demonstrated genome-wide variations in regions encoding DNA uptake systems and transcriptional regulators and in hypothetical ORFs. G. bethesdensis is a genetically diverse emerging human pathogen that may have recently acquired virulence factors new to this family of organisms.
Collapse
Affiliation(s)
- David E Greenberg
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892-1684, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|